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We describe the consequences of time-reversal invariance of the Stokes equations for the hydrodynamic
scattering of two low-Reynolds-number swimmers. For swimmers that are related to each other by a time-
reversal transformation, this leads to the striking result that the angle between the two swimmers is preserved
by the scattering. The result is illustrated for the particular case of a linked-sphere model swimmer. For more
general pairs of swimmers, not related to each other by time reversal, we find that hydrodynamic scattering can
alter the angle between their trajectories by several tens of degrees. For two identical contractile swimmers,
this can lead to the formation of a bound state.
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The motile behavior of micron-sized organisms offers an
insight into a physical environment very different to our
own. Micron length scales correspond to low-Reynolds-
number conditions where viscous forces dominate over the
effects of inertia. Since Taylor’s seminal paper �1�, there has
been considerable progress in our understanding of how low-
Reynolds-number swimmers generate their motility �2–6�. In
the past few years this has included both the development of
artificial microswimmers �7� and a number of simple theo-
retical models �8,9�.

A topic of growing interest is the role played by hydrody-
namic interactions in determining low-Reynolds-number
swimming. These interactions may be expected to be sub-
stantial because of the long-range nature of the fluid flow
generated by point forces at low Reynolds number and have
already been shown to be important in magnetotactic band
formation �10� and in many aspects of bacterial behavior
near surfaces �11–13�. Hydrodynamic interactions between
swimmers have been studied using a variety of theoretical
models, including flagella-driven micromachines �14�, rig-
idly rotating helices �15�, squirmers �16�, linked-sphere
swimmers �17�, and simple “body” and “thruster” models
�18�.

A vital concept in understanding the swimming of micro-
scopic organisms is that the Stokes’ equations, which govern
zero-Reynolds-number fluid flows, do not possess any intrin-
sic notion of time. For an incompressible fluid of viscosity �,
the fluid velocity u and pressure p satisfy

��2u − �p = 0, � · u = 0, �1�

and the flow throughout the entire fluid is determined by
specifying the instantaneous boundary conditions. The fluid
moves when the boundaries move and stops when the bound-
aries stop. If the motion of the boundaries is reversed, then
the fluid flow is also reversed and each fluid element returns
to its original position, a phenomenon known as kinematic
reversibility of Stokes flows. This has important conse-
quences for the locomotion of microscopic organisms, for if
their motions are reciprocal, such as the opening and closing
of a single-hinged scallop �3,19�, then kinematic reversibility
implies that the forward motion of the first half of the stroke
is exactly canceled during the second half and there is no net

motion, a result commonly referred to as the Scallop
theorem.

Kinematic reversibility also implies that when the motion
of a swimmer �A� is reversed, it produces a second swim-
ming stroke �Ā� just with the swimmer moving in the oppo-
site direction. We refer to this as a T-dual swimmer, which
may be interpreted as the original swimmer going backwards
in time. In this article we exploit the time reversal invariance
of the Stokes equations to show that, during any scattering
event involving a swimmer and its T-dual, the initial state as
t→−� is recovered exactly in the final state as t→ +�, i.e.,
the angle between the swimmers is unchanged by the scat-
tering. Experimental verification of the scattering behavior
we describe should be possible using biological or fabricated
microswimmers.

For simplicity we focus our attention on planar scattering;
however, our results naturally generalize to three-
dimensional geometries. Two swimmers A and B travel along
coplanar trajectories with instantaneous swimming directions
nA�t� and nB�t� �see Fig. 1�. Provided these directions are not
parallel, they generate two straight lines which intersect at
some point. The angle between these lines defines the angle
of incidence, �, and the difference in the distances, sA and sB,
of the two swimmers from the intersection point defines the
impact parameter, b=sA−sB. The limiting values ��� ,b��
=limt→���� ,b� are used to define the initial and final states.
The change in orientation of an individual swimmer as a
result of the scattering process is described by the scattering
angle

FIG. 1. �Color online� Schematic diagram of the geometry of a
planar scattering event: see text for details.
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� = arccos�n�t → + �� · n�t → − ��� , �2�

which we take to be positive if the swimmer rotates in an
anticlockwise sense and negative otherwise.

Hydrodynamic scattering may be viewed as providing a
map from the initial state ��− ,b−� to the final state ��+ ,b+�.
The differences between these two states, defined by the
functions ��ª�+−�− and �bªb+−b−, describe the tendency
for the swimmers to align ����0� or cluster ��b�0� via
hydrodynamic interactions. Viewing the entire process back-
ward in time corresponds to the hydrodynamic scattering of

the T-dual swimmers �B̄ , Ā� taking the initial state ��+ ,b+�
into the final state ��− ,b−�, thereby establishing an isomor-
phism between the scattering of an arbitrary pair of swim-
mers and the scattering of their T-duals. In particular, the

functions ��B̄,Ā� are simply related to the functions ��A,B�:

��B̄,Ā���+,b+� = − ��A,B���−,b−� . �3�

In the case of a pair of mutually T-dual swimmers �B̄
=A ; Ā=B�, Eq. �3� is sufficient to show that ��+ ,b+�
���− ,b−�.

We motivate this result using symmetry arguments. Dur-
ing any scattering event, the quantity sA+sB changes from
being large and positive to being large and negative. Since it
does this continuously, it must pass through zero, which we
use to define the time t=0. The separation between the two
swimmers is given by r= �sA+sB��nA−nB� /2+ �sA−sB��nA

+nB� /2 and is orthogonal to the direction nA−nB at t=0. At
this instant reversing the direction of time, followed by a 	
rotation about an axis parallel to nA−nB and passing through
the point midway between the two swimmers, leads to a

configuration where B̄ and Ā have the same positions and
orientations as A and B, respectively. For mutually T-dual
swimmers this returns the same configuration we started
with. It follows that A’s outgoing trajectory for t
0 will be
given by B’s ingoing trajectory for t�0 �with the direction
of time reversed� and vice versa, from which we conclude
that the initial and final states are the same. In addition, this
construction implies that the swimmers rotate in the same
direction and with equal scattering angles, �A=�B. We there-
fore refer to these as turn events and show an example in
Fig. 2�I�.

An exception to this scenario occurs if the swimmers ever
become exactly parallel, nA=nB. However, taking t=0 at this
instant and choosing the rotation axis to be parallel to nA

�r leads to the same conclusion. This time, since the two
swimmers rotate in opposite directions, the constraint that
�+=�− can only be met if the scattering angles take the
values �= ��− independent of b−. In such an event A will
rotate so that its outgoing trajectory is parallel to B’s ingoing
trajectory and vice versa. We call this an exchange event, an
example of which is shown in Fig. 2�II�. Since we expect
�→0 as b−→�, exchange events can only occur for suffi-
ciently small values of b−. Finally, we comment that, since
for purely planar scattering there is no way to cross smoothly
between these two cases, they are necessarily separated by
some form of discontinuous behavior.

There is a subtlety in the foregoing observations. To ex-

actly interchange the swimmers as described, the time t=0
must coincide with particular instants during the swimming
cycle; otherwise, although the positions and orientations of
the swimmers will be the same, the stages they are at during
their swimming strokes will not. We have not been able to
show generally that the time t=0 does indeed coincide with
one of these instances �although for this not to be the case
would imply rather peculiar properties for the functions

��A,Ā��. However, in numerical tests using the Golestanian
model the swimmers do indeed reach t=0 at a suitable stage
of their stroke. Also, since our discussion has mentioned only
the swimming direction n, it has been restricted to swimmers
that are axisymmetric, requiring only this vector to com-
pletely specify their orientation.

These general symmetry considerations provide a frame-
work for what can be expected in two-body swimmer scat-

FIG. 2. �Color online� Box: schematic diagram of the Golesta-
nian model swimmer �8� and its T-dual. The swimmer is self-T-dual
if the two arm amplitudes are equal, �R=�F. Below: exemplary
scattering trajectories of two identical, self-T-dual Golestanian
swimmers obtained using the Oseen tensor description of the hy-
drodynamics. In �I� the swimmers rotate in the same direction,
while in �II� they rotate in opposite directions and exchange trajec-
tories. The rotation axes for the symmetry transformations are indi-
cated in the central panel, which corresponds to the time t=0. The
initial conditions were �−=30° with b−=3.5D for the turn event �I�
and b−=2D for the exchange event �II�.
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tering. In the remainder of this article we illustrate and ex-
tend the results by describing the hydrodynamic scattering of
a simple model of linked-sphere swimmers first introduced
by Najafi and Golestanian �8�. Three spheres, each of radius
a, are connected by thin rods of natural length D, as shown
in Fig. 2. By periodically extending and contracting these
rods, the organism is able to swim in the direction of its long
axis. Many different swimming strokes are possible, but we
consider here only a simple stroke in which the rods undergo
sinusoidal oscillations with amplitudes �R and �F and with a
phase lag  between them. Viewing this motion backward in
time, one sees that T-duality corresponds to an interchange
of the amplitudes, �R↔�F. Note that the swimming stroke is
unchanged if the amplitudes are equal. This is an example of
a special type of swimmer which we refer to as self-T-dual.
Swimmers of this type have strokes that “look the same for-
ward and backward in time” and yet are not reciprocal: they
are time-reversal covariant rather than invariant. A number of
simple model swimmers commonly referred to in the litera-
ture are self-T-dual, such as Taylor’s rotating torus �1�, Pur-
cell’s three-link swimmer �3�, the “pushmepullyou” swim-
mer �9�, a sinusoidally waving sheet �1�, and a rigidly
rotating helical filament �2�.

The swimming motion of a single Golestanian swimmer
may be determined analytically using the Oseen tensor to
describe the hydrodynamics �8�. This approach may also be

applied to determine the interactions between two swimmers
�17�. These interactions prescribe how the positions and ori-
entations of each swimmer are altered by the fluid flow gen-
erated by the other during one swimming stroke. By iterating
theses changes numerically we are able to generate the tra-
jectories of the two swimmers during a scattering event.
Since this approach is based on the Oseen tensor approxima-
tion to the hydrodynamics, it is only valid as long as the
separation r between the swimmers is large compared to the
size of the spheres—i.e., a /r�1. An important feature of the
interactions is that they are strongly sensitive to the relative
phase � of the two swimmers, which therefore has a signifi-
cant influence on the type of behavior that is observed �17�.

We consider first two identical swimmers that are in
phase, �=0, and have equal arm amplitudes, �R=�F, for
which the swimming stroke is self-T-dual. For all trajectories
��+ ,b+�= ��− ,b−� in accordance with the symmetry argu-
ments we have presented above. The type of scattering event
�exchange or turn� that occurs is shown as a function of the
two initial conditions �− and b− in Fig. 3�a�, together with a
detailed cut showing how the scattering angle � varies with
b− for a fixed value of �−=30° �Fig. 3�b��. There is a wide
range of initial conditions at small values of b− for which the
scattering is of the exchange type and �= ��−. At larger
values of b− the scattering is always of the turn type with the
scattering angle decaying to zero as b−→�. In the region

FIG. 3. �Color online� Hydro-
dynamic scattering of two identi-
cal Golestanian swimmers ob-
tained using the Oseen tensor
description of the hydrodynamics.
�a� The type of scattering ob-
served for different values of the
initial conditions �− and b− when
the swimmers are in phase, �=0.
�b� Dependence of the scattering
angle on b− for a fixed value of
�−=30°, corresponding to the
dashed line in �a�. The change in
alignment �� is shown as a func-
tion of �c� b− for �−=30°, �
=	 /2 and �d� � for �−=30°, b−

=4D, for two extensile �circles�
and two contractile �crosses�
swimmers. �e� Variation of ��

with the difference in amplitudes
�F−�R for two identical swimmers
with �−=30°, b−=4D, and �
=	 /2 and �f� exemplary trajectory
of the bound-state formation for
�F−�R=0.17D.
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labeled “Collide” the swimmers approach so closely that the
Oseen tensor description of the hydrodynamics is no longer
valid and we are unable to determine what happens during
the scattering. In our simulations we took this to occur when
the minimum separation between any two spheres became
less than 10a.

We now outline how the properties of swimmer scattering
change when the two swimmers are not mutually T-dual and
our preceeding symmetry arguments no longer apply. In Fig.
3�c� we show the dependence of �� on b− for �−=30° and
�=	 /2. For a pair of identical extensile swimmers with
��R ,�F�= �0.3D ,0.1D� the scattering predominantly leads to
an increase in the angle between the two swimmers—i.e.,
��
0. By contrast, a pair of identical contractile swimmers
with ��R ,�F�= �0.1D ,0.3D� predominantly shows hydrody-
namically induced alignment, ���0. The relative phase is
important for these results, as illustrated in Fig. 3�d�. In par-
ticular, the sign of �� is different for 0���	 and 	��
�2	 for both extensile and contractile swimmers, revealing
that there is not a simple, direct link between the type of
swimming stroke and a tendency for hydrodynamic align-
ment. Moreover, for �=0,	 we find the intriguing result that
��=0 even though the swimmers are not mutually T-dual, a
result which is also found for all other initial conditions
��− ,b−� as long as the swimmers do not collide �not shown�.

One further feature of the scattering of contractile swim-
mers deserves mention: namely, the appearance in Figs. 3�c�
and 3�d� of a range of scattering events for which �� takes
the constant value −30°, corresponding to �+=0°. This rep-
resents the formation of a bound state in which the two
swimmers are exactly aligned one behind the other. An ex-
ample of swimmer trajectories during the formation of this
bound state is shown in Fig. 3�e�. On either side of the

bound-state region �� takes a value somewhat larger than
−30°, indicating that �� is discontinuous at the transition
from scattering to bound-state formation. This qualitative ob-
servation is supported by the behavior when the transition is
approached from a different direction, that of increasing the
difference in amplitudes �F−�R at a fixed value of b−=4D as
shown in Fig. 3�d�. We vary this difference in amplitudes
while holding the product �R�F fixed to maintain an approxi-
mately constant swimming speed �8,17�. As �F−�R is in-
creased from zero, �� decreases smoothly until it reaches the
value 0.16D where there is an abrupt transition to the bound
state, accompanied by a substantial discontinuity in ��.

We have described the constraints imposed on the hydro-
dynamic scattering of two swimmers by the time-reversal
invariance of the Stokes equations. The most striking obser-
vation concerns T-dual swimmers, which have strokes that
map onto each other under time reversal: for scattering
events involving two such swimmers the angle and impact
parameter between their trajectories are the same before and
after the collision. For swimmers unrelated by T-duality we
show numerically that scattering is complex, with the possi-
bility of changes in the angle between the two swimmers of
several tens of degrees or the formation of bound states.
Experiments on biological or fabricated microswimmers
should show these striking differences between pairs of mu-
tually T-dual and symmetry-unrelated swimmers. In future
work it may be possible to extend our ideas to more than two
swimmers, thereby constraining the properties expected of
large groups or swarms and providing a connection to con-
tinuum models.

We are grateful to Mike Cates, Scott Edwards, Davide
Marenduzzo, and Vic Putz for enlightening discussions about
this work.
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