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Rheological properties of adherent cells are essential for their physiological functions, and microrheological
measurements on living cells have shown that their viscoelastic responses follow a weak power law over a
wide range of time scales. This power law is also influenced by mechanical prestress borne by the cytoskeleton,
suggesting that cytoskeletal prestress determines the cell’s viscoelasticity, but the biophysical origins of this
behavior are largely unknown. We have recently developed a stochastic two-dimensional model of an elasti-
cally joined chain that links the power-law rheology to the prestress. Here we use a similar approach to study
the creep response of a prestressed three-dimensional elastically jointed chain as a viscoelastic model of
semiflexible polymers that comprise the prestressed cytoskeletal lattice. Using a Monte Carlo based algorithm,
we show that numerical simulations of the chain’s creep behavior closely correspond to the behavior observed
experimentally in living cells. The power-law creep behavior results from a finite-speed propagation of free
energy from the chain’s end points toward the center of the chain in response to an externally applied stretching
force. The property that links the power law to the prestress is the chain’s stiffening with increasing prestress,
which originates from entropic and enthalpic contributions. These results indicate that the essential features of
cellular rheology can be explained by the viscoelastic behaviors of individual semiflexible polymers of the
cytoskeleton.
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INTRODUCTION

An outstanding problem of cellular mechanics is to delin-
eate the mechanisms responsible for the rheological proper-
ties of the cytoskeleton �CSK�, an intracellular network of
semiflexible biopolymers including actin filaments, microtu-
bules, and intermediate filaments. This is important since the
rheological properties of the CSK are essential for many in-
tegrated cellular functions including migration, spreading,
division, invasion, contraction, mechanotransduction, and in-
tracellular transport. Rheological measurements on various
types of living adherent cells have shown that their dynamic
modulus and creep compliance scale, respectively, with fre-
quency �f� and time �t� according to a weak power law, �f�

and �t�, when analyzed using oscillatory �10−2–103 Hz�
and creep �10−2–102 s� measurements. The scaling exponent
� is between 0.05 and 0.35. It was also found that cell stiff-
ness systematically increases, while � systematically de-
creases, with increasing levels of mechanical distending
stress �or prestress� carried by the CSK �1–8�. Since � is
indicative of cell transition from elastic solidlike ��=0� to
viscous fluidlike ��=1� behavior, these findings suggest that
cytoskeletal prestress influences viscoelastic properties of
living cells. At higher frequencies �from 102–103 Hz�, this
power-law behavior crosses over to another power law with
��0.75 �8,9�, which is indicative of the entropic dynamics
of semiflexible polymer networks �10–13�. However, these
high frequencies are of little relevance for cellular physi-
ological functions, whereas at physiological frequencies

mechanisms that drive the power-law behavior are not well
understood.

Soft glass rheology �SGR�—a semiempirical theory from
soft matter physics �14�—has recently gained interest in cell
biology as a framework for interpreting various dynamic be-
haviors of the CSK, including the rheological behavior
�1,2,7,15–17�. According to this theory, the CSK is a soft
glassy system that slowly deforms under applied mechanical
stress such that its viscoelastic response follows a weak
power law �1,2,6�. However, the physical origins of glass
dynamics within living cells still remain unclear. Moreover,
SGR cannot link the power-law rheology to the prestress
�17�.

The cellular tensegrity model �cf. �18�� offers a natural
framework for explaining various prestress-dependent be-
haviors of living cells �cf. �19��. This model depicts the CSK
as a prestressed network of opposed tension-supporting and
compression-supporting molecular components. The hall-
mark property of prestressed networks is that they stiffen
with increasing level of the prestress. However, tensegrity
structures do not naturally predict the power-law behavior.

In contrast to the tensegrity picture which requires a net-
work, an alternative explanation for the cell stiffening with
increasing prestress is that it represents a stress-hardening
behavior of the CSK due to intrinsic material nonlinearity of
individual components of the CSK; e.g., due to nonlinear
bending properties of cytoskeletal actin filaments �20� or due
to elastic nonlinearity of cytoskeletal cross-linking proteins
�21�. However, stress hardening per se does not explain why
the power-law exponent decreases with increasing prestress.

Recently, Kroy and co-workers �22,23� and we �24� pro-
posed new models that link the power-law rheology to pre-
stress. A key premise of those models is that mechanical*Corresponding author. dimitrij@bu.edu
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tension carried by semiflexible polymers within a prestressed
cytoskeletal lattice influences their molecular dynamics and
thereby affects the power-law rheology of the whole CSK.
Both studies evoked the wormlike chain �WLC� model,
which is a minimal model of a semiflexible polymer �cf.
�25��. The model proposed by Kroy and colleagues describes
the viscoelastic response of a continuous glassy WLC under
tension. This is accomplished by exponential stretching of
the relaxation time spectrum of the standard WLC �22,23�.
While the model predictions compare favorably with experi-
mental data from purified actin gels, they are less successful
when compared to the experimental data from living cells
�23�. The model that we proposed considered a two-
dimensional �2D� version of a discrete WLC, known as the
elastically jointed chain, comprised of nonlinearly elastic
line segments connected by linear torsional springs �24�. As-
suming that the chain’s dynamics is thermally driven, the
model could simulate a power-law creep response such that
the power-law exponent decreases with increasing level of
prestress, consistent with the observed behavior of living
cells. The model shows that enthalpic contributions to the
prestress dependence of the exponent, which result from
nonlinear elasticity of bonds, are essential for linking the
power law to the prestress, while entropic contributions as-
sociated with the chain’s conformational changes are minor.

In this study, we expand our discrete 2D elastically
jointed chain model to a more realistic three-dimensional
�3D� model. Since the number of conformational possibili-
ties in the 3D model is greater than in 2D, the 3D model can
provide a better insight into the relative contributions of en-
tropic versus enthalpic chain dynamics to the overall creep
response than the 2D model. We use a Monte Carlo–based
algorithm to simulate the creep behavior of single chains at
different levels of prestress. We find that the behavior of the
3D model is generally consistent with that of the 2D model,
but that there are also important differences that provide ad-
ditional insight into the dynamics of the chain and its appli-
cability to the rheology of living cells and actin gels.

MODEL

We model a WLC as a 3D elastically jointed chain com-
prised of nonlinear elastic springs �bonds�, connected by lin-
ear torsional springs. Since the movement of a single poly-
mer chain within a polymer network is confined to a tubelike
region bounded by its neighboring chains �cf. �25��, our
chain model is constrained to move inside a long straight
tube of a uniform cross section �Fig. 1�. The dynamics of the
chain is driven by the motion of its joints as they thermally
seek an energetically favorable position in a fixed neighbor-
hood. The chain is stretched by a series of step forces in the
direction parallel with the tube’s axis and its creep response
is calculated as follows.

The elastic energy �U� stored in the chain is given by

U =
1
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where N is the total number of bonds in the chain, K1 and K2
are the linear and nonlinear bond stiffnesses, respectively, K�

is the angular joint stiffness, �b is the change in bond length
from an initial length b0, and �� is the change in bond angle
from an initial bond angle �0; it is assumed that b0 and �0 are
uniform throughout the chain. K� is needed for the chain to
be semiflexible, whereas K1 and K2 are from the first two
terms in the expansion �about b0� of the bond energy with
extension. We showed previously in the 2D chain model that
the K2 term has a major effect on the relationship between
the power-law creep and the prestress �24�.

The chain is first allowed to thermodynamically equili-
brate using a Monte Carlo energy minimization procedure
�26,27� as follows. A joint is selected at random and then
moved to M random positions within a given region �R�
inside the tube and the corresponding changes in the elastic
energy ��U� of the chain, with respect to the original con-
figuration, are calculated according to Eq. �1�. The configu-
ration with the lowest �U is selected from these attempts. If
�U corresponding to the selected configuration is negative, it
is accepted as the new configuration of the chain. If �U is
positive, the probability of accepting this configuration is
given by �=exp�−�U /kBT�, where kB is the Boltzmann con-
stant and T is absolute temperature. This entire procedure is
applied to each internal joint of the chain in a random order
which defines one Monte Carlo time step �26� which, in turn,
represents a time unit in our model. Since the chain is con-
fined in a tubelike region, motions of all joints in the trans-
verse direction are constrained to be less than some constant
d indicative of the tube’s lateral dimensions. Throughout the
procedure, T is maintained constant.

NUMERICAL SIMULATIONS

To simulate the creep response, the chain is stretched
along the tube’s axis by a pair of forces �F� applied at the
end points. F is increased in successive steps ��F� and at
each step we define the prestressing force �F0� upon which
�F is superimposed as F0=F−�F. To avoid an instantaneous
equilibration of the chain’s end bonds after application of �F,
we add a dashpot in parallel and a lumped mass �m� in series
to both end bonds. The damping coefficient of the dashpot is
chosen to be equal to 2
K1m. The damping coefficient was

FIG. 1. Schematic of a 3D elastically jointed chain model of
N=64 bonds confined inside a rectangular tube at steady state, for
F0�0. The dots represent joints and the connecting lines are bonds.
�a� For visualization of the whole chain, lateral dimensions of the
tube are exaggerated. �b� A segment of the same chain with the
axial and lateral dimensions in scale shows that the bond angles are
close to 180°.
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chosen such that the end bonds were critically damped when
stretched from their initial unstretched state. This allows for
the quickest equilibration, while avoiding the instabilities as-
sociated with instantaneous equilibration.

We perform a dynamic force balance of the lumped mass
in the direction of �F to determine the positions of the
chain’s ends, which is followed by a single Monte Carlo step
to obtain a new chain configuration while the chain’s ends
are held fixed. The force balance is then recalculated to ob-
tain the new end-to-end length of the chain. This entire pro-
cedure is repeated in order to obtain the creep behavior by
tracking the change ��L� in the chain’s end-to-end length in
the direction parallel with F, as a function of Monte Carlo
time �t�. Once �L reaches a steady state, the force is incre-
mented by �F and the creep response of the chain is recal-
culated.

All calculations are carried out for the chain inside a tube
of a square cross section with side lengths equal to d
=1.25b0 and of the axial length much greater than Nb0, for N
ranging from 24 to 27, M =10, and R=1.5b0�0.75b0
�0.75b0. We choose a square-shaped tube to simplify nu-
merical calculations. Following initial simulations, final cal-
culations are carried out using the following arbitrarity cho-
sen nondimensional parameter values: b0=1, �0=3� /4, K1
=160, K2=512, K�=3, and m=1000, for nondimensional
�F=20. These parameter values were not entirely physically
based. Similar parameter values were used in the 2D chain
model since they provided a stable numerical procedure �24�.
In order to compare results between the 3D and 2D simula-
tions, we use here the same parameter values. We have also
shown previously in the 2D model that variation of M and R
has little effect on the creep curves �24�. At each �F, the
creep behavior is simulated over sufficient number of Monte
Carlo steps �106� for the chain to reach a steady state regime.
For the case of an unstretched chain, which does not equili-
brate within 106 Monte Carlo steps, we shorten the equilibra-
tion process by applying a unit force ��F=1� to the un-
stretched chain. Once the chain reaches the steady state, we
increase the force by �F=19. From there on, all subsequent
forces are incremented at �F=20. Final calculations are car-
ried out for nine force steps, i.e., for F0 ranging from 1
to160. Since F0 corresponding to �F=1 equals unity, which
is much smaller than the subsequent steps, we approximate
the initial F0�0. Calculations are carried out assuming that
kBT equals unity. In order to smooth out numerical noise,
creep simulations for a single chain are repeated n times,
where n generally depends on the chain length �i.e., on N�,
and the average creep curve is obtained.

RESULTS

For a given F0, the simulated creep curves of the chain are
characterized by three distinct regimes: an initial fast creep,
followed by a slow power-law regime �t�, which crosses
over to a steady state �Fig. 2�a��. This behavior is the same
for chains of different N �i.e., different initial contour
lengths�; only the duration of the power-law creep increases
with increasing N. For a given N, the three creep regimens
change with increasing F0 as follows. The initial creep re-

sponse changes little for F0�80, but for F0	80 one can
observe small oscillations �“ringing” effect� near the end of
the initial creep regime �Fig. 2�b��, indicating that the
lumped mass at the end bonds is no longer critically damped
�see next section for explanation�. The power-law creep rate
decreases with increasing F0 such that the creep curves ex-
hibit a splay, while the duration of the power-law creep in-
creases with increasing F0 �Fig. 2�b��. At the steady state, the
value of �L decreases with increasing F0 �Fig. 2�b��.

To quantify the duration of the power-law creep regime,
we calculate the crossover times �tx� between the power-law
and the steady-state regimes as follows. For a given F0, the
exponent � is first estimated by fitting the power-law portion
of the creep curve of the longest chain with a function At�,
where A is a constant. This power-law regime is common to
the creep curves corresponding different chain lengths �i.e.,

FIG. 2. �a� Creep response of single chains of increasing number
�N� of bonds. The creep curves are given as the average change in
end-to-end length �L as a function of time �t�, where �L corre-
sponds to the length change relative to the previous step, and are
calculated for N=24–27 and prestress F0=20. The creep is charac-
terized by three distinct time regimes: an initial fast response, a
power-law intermediate-time response, and a steady state. The du-
ration of the power-law creep regime increases with increasing N,
whereas the short-time response is not affected. �b� Average creep
responses �L versus t of internal segments of a chain of N=128
bonds for F0 of 1, 20, 40, 60,…,160. The rate of creep slows down
with increasing F0 such that the curves exhibit splay with increasing
F0. Curves are means from n=400, 200, 100, and 50 simulations for
N=16, 32, 64, and 128, respectively.
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different N� at the same F0 �Fig. 2�a��. For each N, the
steady-state value of the chain’s extension �Lx�N�, is then
estimated by fitting the steady-state portion of the �L versus
t relationship. The crossover time tx is then estimated as the
time at which Atx

��N�=�Lx�N�, for each N=24 , . . . ,27 and
each F0=0 , . . . ,160. We find that tx increases with increasing
N as a power law, tx
Nz �Fig. 3�a��, with a scaling exponent
z that increases with increasing F0 from z�1.5 at F0=1, and
saturates at z�2 for F0�120 �Fig. 3�b��. This exponent is
indicative of the dynamics of the chain’s thermal fluctuations
at thermodynamic equilibrium; when z=1 the dynamics is
wave-propagation dominated and when z=2 it is diffusion
dominated �28�.

The log-log slopes �i.e., �� of the power-law creep curves
decrease with increasing F0 �Fig. 2�b��. To quantify this de-
pendence, we obtain � as a function of F0 from fitting the
power-law portions of the creep curves as described above.
We find that � decreases nearly hyperbolically with increas-
ing F0 �Fig. 4�. This is qualitatively consistent with the de-

crease in the power-law exponent with increasing prestress
as observed in living cells �5�. A similar dependence was also
obtained with the 2D model �24�, although the values of �
for the 2D model are somewhat higher and the rate of de-
crease of � with increasing F0 is somewhat lower than those
for the 3D model over the same range of F0 �Fig. 4�. Quan-
titatively, the values of � obtained from both models are at
least a factor of 2 greater than the values obtained from ex-
periments on living cells �1–8�. A possible reason for this
discrepancy is that values of � from the model depend on the
choice of model parameters. For example, if we hold all
parameters fixed and only vary kBT, � can be brought into
the range of experimentally observed values by lowering
kBT. On the other hand, values of � in Fig. 4 are consistent
with values obtained from in vitro measurements on cross-
linked, myosin-activated purified actin networks �29�. Those
data show that with increasing tension in actin filaments due
to myosin activation, � of the network decreases within the
range of values bounded by 0.75 �no tension� and 0.5 �high
tension�. This, in turn suggests that the chain model also can
describe rheology of actin networks in vitro.

Using the data from the steady-state regime �Fig. 1�b��,
we calculate the extension ��L� versus applied force �F�
relationships for chains of N=24–27 bonds, where �L is the
end-to-end length change in the direction of F from its un-
stretched value. By scaling �L with N, we obtain �L /N ver-
sus F curves that show a stiffening behavior �Fig. 5�. Impor-
tantly, these curves exhibit little dependence on N, indicating
that the stiffening is only mildly dependent on the chain’s
initial contour length.

PHYSICAL INTERPRETATIONS
OF THE NUMERICAL RESULTS

Origins of the creep response

The initial creep regime is determined by the viscoelastic
properties of the chain’s end bonds, which are a spring–

FIG. 3. �a� Crossover time �tx� between the creep regime and the
steady-state regime for curves of N=24–27 and F0

=1,20,40, . . . ,160. tx increases with N according to a power law,
tx�Nz. Dots are averages from n=400, 200, 100, and 50 simula-
tions for N=16, 32, 64, and 128, respectively, and lines are best fits.
�b� Exponent z increases with increasing F0 and saturates at z=2.
The dashed line at z=2 separates superdiffusive from subdiffusive
dynamics. Standard deviation �SD� bars are fitting errors for the
z-exponent from �a�.

FIG. 4. Power-law creep exponent ��� decreases with increasing
F0; solid symbols correspond to the three-dimensional chain model
and open symbols to the two-dimensional chain model. The values
of � are obtained by fitting the power-law regime of creep curves
by At�. For the 3D chain dots are averages from n=50 runs for N
=128; SD bars are fitting errors of �. For the 2D chain, n=5 and
N=350 bonds.
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dashpot–lumped mass system. Thus, the initial creep re-
sponse is the same for all chains, regardless of their contour
lengths �i.e., regardless of the number of bonds N� �Fig.
2�a��. The power-law creep regime, however, includes con-
tributions from all bonds in the chain and thus it depends on
N. The power-law creep is possible only when T	0. If T
→0, the probability �→0 and the chain would oppose �F
only by elastic forces arising instantaneously from the defor-
mation of its bonds and joints, i.e., there will be no creep
except in the end-bonds due to the presence of the dashpots.
If, however, T	0, then �	0 and the chain will develop
elastic forces over a finite time interval since the disturbance
caused by �F would travel with a finite speed from the
chain’s end points toward the center of the chain. The speed
of this disturbance would fluctuate along the chain due to the
continuous thermal bombardment of the joints, which makes
their movement probabilistic. Segments of the chain closer to
the center should have longer delays of the onset of creep
than those at the ends. To examine this, we calculate the
creep response of chain’s internal segments of an equal num-
ber �Ns� of bonds. We find that the outer segments begin to
creep earlier than the segments closer to the center of the
chain �Fig. 6�. We quantify the creep of the internal chain’s
segments by fitting the segmental creep curves with the fol-
lowing function in the semilogarithmic domain using a least
squares method,

�Ls =
h

1 + ��/t�
 , �2�

where �Ls is a change in the segment’s end-to-end length and
h, 
, and � are free parameters. With the obtained values of
h, 
, and �, we calculate the delayed onset of creep �td�
defined as the time that corresponds to �Ls equal to 1% of its
steady-state value. From the contour length of the segments
and td we then calculate the mean speed �v� of propagation

of the disturbance along the chain as the ratio of the two. We
find that v decreases from the end segments toward the cen-
tral segment of the chain, indicative of slowing down the
propagation of the disturbance along the chain �Fig. 7�. A
possible explanation for this slowing down is as follows.
When an external force �F is applied to the chain’s end
points, elastic forces do not simultaneously develop in all
bonds. Instead, due to the damping effect of the thermal
bombardment of the joints the elastic forces first develop in
the end segments, then in the next pair of segments and so

FIG. 5. At steady state, the chain exhibits stiffening behavior
with increasing stretching force �F� which is little dependent on the
number of bonds N. �L is the change in the end-to-end length in the
direction of F from the unstretched end-to-end length. Data are
means � SD from n=400, 200, 100, and 50 simulations for N
=16, 32, 64, and 128, respectively.

FIG. 6. Average creep curves ��Ls versus t� of internal segments
of a chain �N=64�, starting from end bonds toward center of the
chain for F0=0. Each segment contains eight bonds; Ns denotes the
range of bond numbers for a given segment; Ns=1 and 64 of the
two end bonds; Ns=32 and 33 are the bonds at the center of the
chain. Because of symmetry, results are shown only for half of the
chain. The onset of creep is delayed in the segments closer to the
center of the chain. Points are average values � SD from n=200
simulations; lines are best fit of Eq. �2�.

FIG. 7. Mean propagation speed �v� of a mechanical disturbance
decreases from the end points toward the center of the chain. v is
calculated from the data in Fig. 6. Results are shown for only half
of the chain where Ns=8 corresponds to the outer segment and Ns

=32 is the segment at the center of the chain. Increasing tension
�F0� causes v to increase in the outer segment and to decrease in the
internal segments.
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on, until they finally develop in the central segments. This
creates a force gradient in each segment and this gradient
decreases from the end bonds towards the center of the
chain. As a result, the propagation speed of the disturbance
decreases.

Superposition of these delayed creep responses of the
chain’s internal segments leads to the global power-law be-
havior of the chain. This global creep response reaches a new
steady state when the chain’s central segment reaches the
steady state. In the new steady state, the chain is character-
ized by lower entropy, higher internal energy, and hence in-
creased free energy, compared to the previous steady state.
Thus, the creep is associated with the gradual propagation of
the free energy from the end bonds toward the center of the
chain.

Effects of the prestress

Our numerical simulations show that all three creep regi-
mens, the initial creep, the power-law creep, and the steady
state, are influenced by F0. Potential mechanisms for these
influences are discussed below.

The “ringing” effect in the initial creep response �Fig.
2�b�� is explained as follows. An increase in F0 causes an
increase in the effective bond stiffness due to the bond’s
nonlinear elasticity. On the other hand, increasing F0 does
not affect the coefficient of viscous damping of the dashpot
in the end bonds that remains constant and equal to 2
K1m,
which is equivalent to the critical damping of a linear spring
of stiffness K1. Since the apparent stiffness of the end bonds
increases while their damping coefficient does not change
with increasing F0, the end bonds become under damped,
which produces the observed ringing.

The splay in the power-law creep curves �Fig. 2�b�� is
explained as follows. Since the chain exhibits stiffening at
the steady state �Fig. 5�, this implies that in response to in-
creasing F0 in equal step increments �F, the corresponding
steady-state values �Lx systematically decrease. Since the
initial creep response exhibits little dependence on F0, this
decrease in �Lx with increasing F0 causes the power-law
creep curves to splay and the creep rate and � to decrease.
Thus, the nonlinear stiffening behavior of the chain is essen-
tial for the decrease of � with increasing F0 �Fig. 4�.

To understand the relative contributions of the entropic
changes versus nonlinear bond elasticity to the creep behav-
ior, we calculate creep curves for chains with nonlinearly
elastic and linearly elastic bonds �i.e., K2=0�, while keeping
all other model parameters unchanged. Since the bond stiff-
ness is constant in the chain with linearly elastic bonds, the
global chain stiffening should only reflect the decreasing en-
tropy of the chain during stretching. We find that in the chain
with linearly elastic bonds � still decreases with increasing
F0 but to an extent much less than in the equivalent chain
with nonlinearly elastic bonds �Fig. 8�. We attribute this dif-
ference to the contribution of nonlinear elasticity of the
bonds. Importantly, in a 2D model with linearly elastic bonds
� exhibits very little dependence on F0 �Fig. 8, inset�. This
suggests that the entropic effects in the 2D model are less
important for the � versus F0 relationship than in the 3D

model. A possible reason for this difference is that, at a given
F0, the number of conformational possibilities in the 2D
chain is much smaller than in the 3D chain.

An increase in F0 causes the disturbance propagation
speed v to increase in the end segments and to decreases in
the internal segments �Fig. 7�. This indicates that in a chain
with more tension disturbance that travels along the chain
reaches the central segment with a greater delay than in a
chain with less tension, which explains why the crossover
time tx increases with increasing tension �see Fig. 3�a��. This
is different than in the 2D model, where v increases with
increasing F0 over the entire chain length such that tx re-
mains virtually independent of F0. We interpreted this in-
crease in v in the 2D model as a wave-propagation phenom-
enon; since increasing F0 causes the chain to stiffen, then a
wave-propagating disturbance should travel faster along a
stiffer chain than along a less stiff chain �24�. However, the
disturbance propagation dynamics in the 3D chain is more
complex than in the 2D chain as described below.

Our simulations show that the exponent z, indicative of
chain’s steady-state dynamics, increases with increasing F0
and reaches a saturating value of z=2 �Fig. 3�b��. Thus, the
chain dynamics is driven by faster than diffusive processes at
low F0 and diffusive processes at high F0 �Fig. 3�b�� and that
with increasing F0 the chain dynamics switches from the
wave-propagation-dominated �z=1� to the diffusion-
dominated �z=2� behavior. This is different from what was
observed in the 2D model where z�2 and independent of
F0, indicating that the chain dynamics was wave-propagation
dominated �24�. Since z reflects dynamics of the chain’s ther-
mal fluctuations at equilibrium, it must satisfy the general-
ized Stokes-Einstein relationship, i.e., z=1 /� �cf. �30��. In-
deed, our results for the 3D chain show that this relationship
holds for different levels of F0 �Fig. 9�.

Seifert et al. �31� and Obermayer et al. �32� studied the
effect of prestress on the dynamics of semiflexible chains
using inextensible deterministic chain models. They found

FIG. 8. Comparison of the � versus F0 relationship for the chain
with nonlinearly elastic bonds �solid symbols� and the equivalent
chain with linearly elastic bonds �open symbols�. Dots are averages
from n=50 chains of N=128 bonds; SD bars are fitting errors of �.
Inset: Data for 2D chain �n=5, N=350�.
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that the propagation speed of the disturbance caused by chain
stretching decreases from the end points toward the central
region of the chain and that this decrease is faster in pre-
stressed than in unprestressed chains, which is consistent
with our results �Fig. 7�. They also found that with increasing
prestress the propagation speed of the disturbance changes
from subdiffusive to diffusive, whereas our results show that
increasing prestress leads to transition from superdiffusive to
diffusive behavior �Fig. 3�b��. Since with increasing prestress
our chain model stiffens �Fig. 5�, it becomes less extensible
and therefore its behavior is close to that of the inextensible
chain models. However, at low prestress, in our model the
propagation speed is determined by both stretching and
bending mechanisms, whereas in the inextensible continuum
models it is determined only by bending. Furthermore, our
model takes into account the effect of thermal fluctuations
during disturbance propagation whereas in the inextensible
chain models this contribution is ignored. Taken together,
these differences between the two models are the likely
cause of the different dynamic behaviors at low prestress.

APPLICATION TO CYTOSKELETAL MECHANICS

We show that our chain model can describe the power-law
creep response and its dependence on the prestress in a man-
ner that is consistent with the observed behaviors of living
cells. Whether these results are quantitatively consistent with
time scales at which the power law is observed in cells and
with length scales of the cytoskeletal ultrastructure remains
to be addressed. We first consider our results in light of pre-
viously reported data for creep behavior of an individual ac-
tin filament pulled by magnetic tweezers from an actin gel
�33�. It was found that the creep behavior of the pulled fila-
ment exhibits two regimes: an initial fast creep �0–1 s�, fol-
lowed by a slow creep ��1–3 s�. However, due to the short
duration of the experiments ��3 s�, it is not possible to es-
tablish whether or not the slow-creep regime follows a power

law, and hence we are unable to compare it with the power
law regime of our model. Instead, we compare the duration
of the initial creep regime from the experiments �0–1 s� with
the duration of the initial creep regime of the 3D chain model
��100 Monte Carlo time units�. From this comparison, we
calculate a time scaling factor that we use to estimate the
duration of the power-law creep of the model. We obtain that
for a chain of N=60 bonds, the power-law creep lasts �10 s,
which is consistent with the power-law time scale in creep
observed in living cells �6,34�. However, this estimate should
be taken with caution since the experimental creep data in-
clude combined contributions of viscoelasticity, of the pulled
actin filament, and of the gel from which the filament was
pulled. The latter is not included in our model.

Experiments on living cells also show that, over longer
time scales, the power-law creep regime changes to another,
stronger time-dependent power-law regime and that these
two regimes are often separated by a plateau region �34–36�,
indicating that the creep behavior of cells is time-scale de-
pendent. While our chain model exhibits a power-law creep
over a finite time interval, whose length depends on the
chain’s length �Fig. 1�a��, it cannot explain the emergence of
the second power-law creep regime. It is possible that in
living cells the two separate power-law regimes correspond
to two different cytoskeletal polymer structures �e.g., actin
and intermediate filament networks� which contribute to the
overall rheological behaviors at different time scales.

Our choice of N=60 bonds in the above calculations is
based on the fact that the bond length of actin polymers is
5–10 nm �37,38� and therefore 60 bonds would correspond
to the chain’s contour length of �300–600 nm, which is
approximately the length of cytoskeletal actin filaments �39�.
However, this length is much smaller than the persistence
length of actin filaments ��17 �m� �40�, suggesting that
conformational changes of cytoskeletal actin filaments have
a minor effect on the rheological properties of the cell. Fur-
thermore, tensile tests on isolated actin filaments show that
in the physiological range of forces filaments whose lengths
are close to their cytoskeletal length exhibit a linear elastic
�i.e., constant stiffness� behavior, whereas longer filaments
exhibit stiffening behavior that precedes the linear regime as
a result of entropic effects �41�. Thus, the length of cytosk-
eletal actin filaments is too short for the individual filaments
to exhibit stiffening behavior which, according to our model,
is essential for linking the power-law exponent to the pre-
stress. Importantly, data from in vitro rheological measure-
ments on cross-linked purified actin gels, where actin fila-
ments were shortened close to their length within the CSK,
show that their power-law exponent � is quantitatively simi-
lar to the values obtained for living cells �42�. On the other
hand, data from actin gels where filament lengths are close to
their persistence length have higher values of �, similar to
those predicted by our model �29�. Taken together, those
findings suggest that only in actin networks where filament
lengths are on the order of their persistence length the rheo-
logical response of the network is primarily determined by
the rheological responses of individual filaments. In actin
networks where filament lengths are shorter than their per-
sistence length and close to the length they have within the
CSK of living cells, the rheological response of the network

FIG. 9. Exponents z and � are reciprocal, indicating that the
chain dynamics conforms to the generalized Stokes-Einstein equa-
tion. The data are obtained from the cross plot of z versus F0 �Fig.
3�b�� and � versus F0 �Fig. 4� relationships. The solid line is z
=1 /�, given for comparison.
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appears to be determined by the deformability of the whole
network, not of individual filaments. Thus, future work
should incorporate our chain model into a network in order
to obtain better insight into relative contributions of confor-
mational changes of individual chains to the network rheo-
logical behaviors.

Other important cytoskeletal semiflexible filamentous
biopolymers are intermediate filaments. Unlike actin fila-
ments, their persistence length ��1 �m� is substantially
smaller than their typical length in living cells ��15 �m�,
and they exhibit elastic stiffening behavior in the physiologi-
cal range of tension �43�. Thus, they are likely to contribute
to the cell’s viscoelasticity via their conformational changes
and their nonlinear elasticity in the manner described by our
model. However, experimental evidence for this contribution
is currently lacking.

Measurements of spontaneous motions of CSK-bound
cell-surface tracer particles in living cells show that that over
short time scales ��1 s� cytoskeletal dynamics is subdiffu-
sive and that over longer time scales �	1 s�, it is superdif-
fusive �16�. The dynamics of the chain’s steady-state fluctua-
tions exhibit superdiffusive to diffusive behaviors over time
scales which coincide with the power-law creep �	100
Monte Carlo time units, which corresponds to 	1 s�. Experi-
ments also show that over short time scales ��1 s� cytosk-
eletal dynamics is consistent with the generalized Stokes-
Einstein relationship, whereas over longer time scales �	1 s�
this relationship breaks down in living cells, indicating that
fluctuations in the CSK are driven by nonthermal, possibly
ATP-related energy �16,44�. This long-time behavior is in-

consistent with our model’s prediction that the generalized
Stokes-Einstein relationship holds for all time scales �Fig. 9�.
The reason for this discrepancy is the model assumption that
the chain dynamics is driven only by thermal agitations and
not by other energetic processes �e.g., ATP-related processes,
polymerization and depolymerization, interaction with other
cytoskeletal molecules, etc.� which are present in living cells.

CONCLUDING REMARKS

Our discrete WLC model of a semiflexible polymer pro-
vides a link between the power-law rheology and mechanical
prestress. It shows that for this relationship it is critical that
under tension the chain at the steady state exhibits a stiffen-
ing behavior, which originates from both entropic and enthal-
pic contributions. The model also reveals that the power-law
creep is a result of gradual stretching-induced propagation of
the free energy from the ends to the center of the chain.
Based on qualitative similarities between model simulations
and experimental data from living cells and actin gels, it is
conceivable that the mechanisms embodied in our model
may also be key determinants of the overall viscoelastic
properties of the CSK and of actin gels.
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