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It is evident from a wide range of experimental findings that ion channel gating is inherently stochastic. The
issue of “memory effects” �diffusional retardation due to local changes in water viscosity� in ionic flow has
been recently addressed using Brownian dynamics simulations. The results presented indicate such memory
effects are negligible, unless the diffusional barrier is much higher than that of free solute. In this paper using
differential stochastic methods we conclude that the Markovian property of exponential dwell times gives rise
to a high barrier, resulting in diffusional memory effects that cannot be ignored in determining ionic flow
through channels. We have addressed this question using a generalized Langevin equation that contains a
combination of Markovian and non-Markovian processes with different time scales. This approach afforded the
development of an algorithm that describes an oscillatory ionic diffusional sequence. The resulting oscillatory
function behavior, with exponential decay, was obtained at the weak non-Markovian limit with two distinct
time scales corresponding to the processes of ionic diffusion and drift. This will be analyzed further in future
studies using molecular dynamics simulations. We propose that the rise of time scales and memory effects is
related to differences of shear viscosity in the cytoplasm and extracellular matrix.
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I. INTRODUCTION

Ion channels are transmembrane proteins that include a
pore-forming subunit that allows ions to flow between the
extracellular and intracellular and interior of a cell. The open
or closed condition of such channels may be gated by either
the transmembrane electric field, via a dipole moment sensi-
tive moiety, or via ligand interactions with “chemical sens-
ing” moieties in the channel proteins. Ion channel pores
present a narrow cross section �100 Å� and define a path of
low dielectric constant across the membrane. When open, the
channel pore presents a rather specific ion selectivity filter
where the lines of the electric field tend to be confined to the
high dielectric interior of the pore. This paper addresses the
problem of pore selectivity.

The continuity requirement for the orthogonal component
of the electric displacement field between the interior of a
channel and membrane is given by �wEw

n =�pEm
n . Since the

lipid membrane has a dielectric constant �p�2, while the
dielectric constant of water is ��80, it becomes evident that
the orthogonal component of the electric field at the mem-
brane pore boundary must be very close to zero. Indeed,
there is only a very slight penetration of the electric field into
the interior of the phospholipid membrane. The situation,
therefore, is very similar to the expulsion of the magnetic
field by a superconductor. As an example, in a channel with
a 3 Å radius and a channel of length L=25 Å, the barrier is
about 6kBT. Although it is quite large, it should allow ionic
conductivity. This is not too different from such conditions

where water filled nanopores are introduced into silicon ox-
ide films, polymer membranes, etc. �1,2�.

Methods ranging from molecular dynamics �MD� and
Brownian dynamics �BD� �which treat water implicitly as a
uniform dielectric continuum� to the mean-field Poisson-
Nernst Planck equation �PNP� �which treats both the ions
and water implicitly as a uniform dielectric continuum� have
been used to simulate the characteristics of ion channel phe-
nomena. While MD simulations are clearly the most accu-
rate, they are computationally very intensive �3�. Brownian
dynamics are significantly faster than MD, but because of the
dielectric discontinuities across the various interfaces, a new
solution of the Poisson equation is required for each configu-
ration of the ionic-pore profiles during permeation. The sim-
plest approach to study the ionic conduction is based on the
PNP theory �4,5�. This combines the continuity equation
with the Poisson equation and Ohm’s and Fick’s laws. PNP is
intrinsically mean field and is, therefore, bound to fail when
ionic correlations become important.

For narrow channels, the cylindrical geometry, combined
with the field confinement, results in a pseudo one-
dimensional potential of very long range �6�. Under these
conditions the correlational effects dominate, and the mean-
field approximation fails �7�. Indeed, a recent comparison
between the BD and the PNP showed that the PNP breaks
down when the pore radius is smaller than about two debye
lengths �8,9�. At the moment, therefore, for narrow pores it
appears that a semicontinuum �implicit solvent� BD simula-
tion is best compromised between computational load and
accuracy �10–12�. If the interaction potential between the
ions inside the channel were known, the simulation could
proceed orders of magnitude faster.

Note that though BD simulations of ion channels have
yielded suitable results, these studies have been confined to
the use of the Langevin equation with Markovian random
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forces. The Markovian approximation is justified when the
Brownian particles are much heavier than the solvent mol-
ecules, a condition that obviously is not satisfied for ions in
water. Correlations are important and can be taken into ac-
count using the generalized Langevin equation �GLE� �13�.
In a recent paper these issues have been discussed in the
context of memory effect and were found to be negligible in
bulk simulations �14�. However, when ions have to cross
energy barriers, the memory effects via the GLE become
quite significant. This means that interesting physics of ion
channels are concentrated in the pore region where the sto-
chasticity of gating phenomena is a crucial parameter. We
argue here, that while Einstein’s relation �=nq2D /kT indi-
cates that ionic conductivity exhibits a simple dependence on
�t and may be employed in the BD simulations at lower field
strength, such a simple relation disappears in a higher field
strength. Indeed, as mentioned before, the stochastic nature
of the potential energy barrier being defined by V�z , i�
=Vi exp�−z2 /2d2�, where Vi is the random variable associ-
ated with the barrier height and d is its width, implies a
stochastic contribution to the barrier height. Thus, contrary to
the recent survey �14�, memory effects will be important in a
variety of cases depending on the random effects of the po-
tential barrier.

The most significant dynamic aspects of the memory ef-
fects can best be visualized using recent development in
atomic force microscopy �15� that suggests that capillary wa-
ter condensation increases short term memory due to shear-
ing elastic frictional forces. This indicates that there is a
crucial change in the elastic response of the forces between
water molecules at nanoscale that leads to a different viscos-
ity than in the ionic channels. This viscosity difference is
thus the key element that gives rise to memory effects. Such
an assertion requires a serious investigation of how the shear
response behavior may be coupled to the stochastic dynam-
ics. In this context, it should be noted that diffusion governed
by Brownian motion is an efficient transport mechanism for
short time and length scales. Even a highly organized sys-
tem, such as a living cell, relies on the random Brownian
motion of its constituents to fulfill complex functions. A
Brownian particle will rapidly explore a heterogeneous envi-
ronment that in turn strongly alters its trajectory. Thus, de-
tailed information about the environment can be gained by
analyzing the particle’s trajectory. It is well known that the
non-negligible fluid’s inertia leads to hydrodynamic memory
effects �16� resulting in a characteristic long-time tail of t−3/2

in the velocity correlations of the particle’s motion. The vis-
cosity of the PE solution is recently calculated �17–22� as a
function of the concentration and hydrodynamic memory ef-
fects present in such solutions. We find that memory is lost
above the critical concentration C*, which corresponds to the
point where neighboring polymer coils start to overlap and
form a transient mesh where fluid dynamics is dominated by
viscous terms rather than inertial ones. Above this point the
mesh surrounding the Brownian particle increases its effec-
tive mass and therefore the characteristic power law of the
velocity correlations vanishes. In this paper we construct a
GLE model including non-Markovian processes using a
white noise and a linear combination of colored noises, in the
sense of the Ornstein-Uhlenbeck process. Our model in-

cludes an evolutionary memory and the mixing processes
that generate oscillations within the pore. For purely Mar-
kovian or purely non-Markovian processes the time depen-
dence is monotonic, thus, it is clear that the oscillations are
the result of the competitive interactions between the Mar-
kovian and non-Markovian subprocesses. The non-
Markovian nature of the noise affects both the time depen-
dent and stationary properties of the driven stochastic
processes. We also initiate a brief discussion on the physical
origin of non-Markovian processes. The time dependent pro-
cesses are characterized by distinct time scales. A discussion
of the time scales for the diffusive process will be followed
by a description of our model and the specific algorithm for
the mixture of the Markovian and non-Markovian processes.

II. POTASSIUM CHANNELS

The structure of the KcsA channel is strikingly consistent
with the classical views of a very selective, fast-conducting,
multi-ion pore. The pore comprises a wide, nonpolar aqueous
cavity on the intracellular side, leading up, on the extracel-
lular side to a narrow pore that is 12� long and lined exclu-
sively by main chain carbonyl oxygens. Formed by the resi-
dues corresponding to the signature sequence TTVGYG,
common to all K+ channels, this region of the pore acts as a
selectivity filter by allowing only the passage of nearly de-
hydrated K+ ions across the cell membrane. The x-ray crys-
tallographic structure unambiguously demonstrated that the
K+ ions entering the selectivity filter have to lose nearly all
their hydration shell and must be directly coordinated by
backbone carbonyl oxygens. Specifically, the K+ ion in the
selectivity filter is surrounded by two groups of four oxygen
atoms, just as in water. These oxygen atoms are held in place
by the protein, and are in the backbone carbonyl oxygens of
the selectivity filter loops of the four surrounding filter sub-
units. In this manner, the filter is constrained in an optimal
geometry so that a dehydrated K+ ion fits with proper coor-
dination, but the Na+ ions are too small for proper coordina-
tion, in accordance with the snug-fit mechanism proposed by
Bezanilla and Armstrong �23�. This simple and appealing
structural mechanism has been widely adopted to explain the
selectivity of the K+ channel. Indeed, a rigid K+ pore cannot
close down around a Na+ ion, and so presents a much higher
energy than diffusion in water. Indeed, for structural reasons,
the selectivity filter cannot constrict sufficiently to bring
more than two of the carbonyls within good bonding distance
of the Na+ and as a result, the energy of the Na+ in the pore
is very high compared with its energy in water �24�.

This implies a significant structural inability to deform
and adapt: the energetic cost upon collapsing to cradle a Na+

�a structural distortion of about 0.38 Å� must give rise to a
significant energy penalty �much larger than kBT assuming
the existence of molecular forces opposing a subangstrom
distortion is tantamount to postulating structural rigidity�.
Furthermore, the geometry of such a rigid pore must be very
precisely suited for K+ because it would be unable to adapt
small perturbations without paying a significant energy price
�much larger than kBT�. Therefore, precisions in structural
rigidity and geometric precision are two underlying micro-
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scopic consequences. However, there are fundamental prob-
lems with the common view. Proteins, like most biological
macromolecular assemblies, are soft materials displaying
significant structural flexibility �25�. Despite some uncertain-
ties, the B factors of the KcsA channel indicate that the rms
fluctuations of the atoms lining the selectivity filter are on
the order of 0.75–1.0 Å. This is in general agreement with
numerous independent MD simulations of KcsA. The mag-
nitude of atomic thermal fluctuations is fundamentally re-
lated to the intrinsic flexibility of a protein, i.e., how it re-
sponds structurally to external perturbations. These
considerations suggest that, at room temperature, the flexible
fluctuating channel should distort easily to cradle Na+ with
little energetic cost, as is seen in MD simulations with Na+ in
KcsA. The flexibility of the pore is further highlighted by the
experimental observation that K+ is needed for the overall
stability of the channel structure �26,27�. Therefore, even ion
channel proteins appear to be inherently too flexible to sat-
isfy the requirement of the traditional snug-fit mechanism.
Furthermore, structural flexibility is absolutely essential for
ion conduction since in some places the diameter of the pore
in the x-ray structure of KcsA is too narrow to allow the
passage of a water molecule or a K+ ion. In the electric
circuit equivalent model the channel proteins thereby play
the role of field-effect transistors, with a voltage imposed
across the cell membrane “gating” the transfer of ion bound
charges through the membrane. Two different aspects char-
acterize channel function: ion-selective permeation and gat-
ing, i.e., control of access of ions to the permeation pathway.
We will base the subsequent concept on potassium channels,
employing the crystal structure of the KcsA and KvAP chan-
nels at a resolution ranging from 1.9�10−10 m to 3.2
�10−10 m, as revealed by the work of MacKinnon’s group
�28,29�. The channel structure is basically conserved among
all potassium channels with some differences relating to gat-
ing characteristics rather than ionic selectivity. In the open
gate configuration the protein selects the permeation of K+

ions against other ions in the selectivity filter and can still
allow ion permeation rates near the diffusion limit. In the
view of Hodgkin-Huxley �HH�-type models of membrane
potentials, K+ permeation stabilizes the membrane potential,
resetting it from firing threshold values to resting conditions.

The atomic level reconstruction of parts of the channel
and accompanying MD simulations at the 10–12 s reso-
lution have changed the picture of ion permeation: the chan-
nel protein can transiently stabilize three K+ states, two
within the permeation pathway and one within the “water
cavity” located towards the intracellular side of the perme-
ation path. The essential feature behind the channel structure
relating to the present work is provided by the closed gate
�low-K+ permeation pore state� in accordance to the original
crystallographic image, whereas in the open gate state �with
the cavity exposed to the high intracellular K+ concentration�
the interior of the protein represents an almost barrierless
pathway for selected ion flow. By contrast, the closed gate
state represents a stable ion-protein conformation.

More recently, the development of computational ap-
proaches based on sophisticated all atom molecular dynam-
ics simulations �30� offers a virtual route for testing various
ideas about the molecular mechanism of ion selectivity. One

of our goals with this work, in addition to reviewing the
recent results from modern computations, will be to provide
a model based on the relation of non-Markovian processes
linked with a proposal of a different viscosity of water inside
and outside the channels to address the pore selectivity prob-
lem.

III. GATING KINETICS AND THE ROLE OF DIFFUSION

The equation describing diffusive motion in a one-
dimensional �1D� potential of mean force �pmf� is given by
the Smoluchowski equation as

ṗ�z,t� = −
�

�z
�−

V��z,i�
R�z�

p −
kT

R�z�
�

�z
p� , �1�

where p is the probability density of the gating particle,
V�z , i� is the random pmf, and R�z� is the friction coefficient.
The equation mainly states the local probability conservation
corresponding to the processes of drift and diffusion. Drift
motion occurs in the presence of a pmf gradient producing a
directed displacement of the probability distribution to a re-
gion of local energy minimum. Diffusive motion allows ac-
tivated transitions over energy barriers to take place. In the
equilibrium state drift and diffusion balance each other
through the Boltzmann distribution. Well-defined states hap-
pen only for local minima in the energy landscape. To satisfy
the Markovian property of exponential dwell times activation
barriers must be sufficiently high. Thus, in accordance to the
previous analysis, the role of the GLE becomes inevitable
and there arises the need to understand the dynamics of ion
channels through the GLE by extending the process to be an
admixture of both Markovian and non-Markovian processes.
Experimentally, large bandwidth recordings of the initial
transient current may measure drift phenomena after a rapid
voltage jump. Giant patch recordings of K+ channels provide
evidence for the existence of an early fast component of
gating currents. Apart from these variables there is another
slow physiological time scale that is determined by the dwell
time within the above states that can be measured by the
detection of fluctuations in the gating current with shot noise
features.

Equation �1� is of the form of a Fokker-Planck �FP� equa-
tion as

�p

�t
= Fp , �2�

where F=− �
�zA�z�+ 1

2
�2

�z2 B�z� and A ,B are the operators con-
structed from Eq. �1�. The energy term U�z� is constructed
from the spurious drift term and the pmf as

U�z� = V�z� + kT ln R�z� . �3�

The basic method used to obtain the probability density
and the correlation functions is associated by solving Eq. �2�.
The methodology lies in discretizing the equation as
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d

dt
p�i�z� = ai−1p„�i − 1��z… + bi+1p„�i + 1��z… − aip„�i��z…

+ bip„�i��z… . �4�

Monte Carlo simulations �31� may be performed with a
single barrier model, by placing two harmonic wells side by
side separated by a 6kBT barrier. The analysis showed that
two transition rates can be obtained. With the full range of
time scales taken into account the single barrier model com-
bines features from both, harmonic well and discrete two
state models.

One of the properties of the Markov process is that it
satisfies the Fokker-Planck equation or the Smoluchowski-
Chapman-Kolmogorov equation �32�. The degree of non-
Markovianity can be associated with the deviation from this
equation. In fact, the Fokker-Planck equation can be obtained
as an approximation to the generalized master equation �33�.
Using the Kramers-Moyal expansion, one writes the equa-
tion as

�p�y,t�
�t

= �
�

�
�− 1��

�!
	 �

�y

�

a��y�P . �5�

This is normally identical with the above master equation.
One obtains the Fokker-Planck equation as an approximation
to this equation �Kramers-Moyal expansion� if all the terms
after �	2 are negligible. Kolmogorov took a�=0 for �	2.
In general, this is not true for physical systems �34�. Consid-
ering the higher order terms, the integral measure �mean
square characteristics� of non-Markovianity can be written as
�35�

G = G�
,T� = � 1

T

1

M2�
m,n

M �




+T

dtDm,n
2 �t,
��1/2

, �6�

where Dm,n
2 �t ,
� is the degree of non-Markovianity, T is the

range of time t, and 
 is the shift in the master equation.

IV. DYNAMICAL SIMULATIONS

As mentioned in the last section, formulating the
structure-function relationships in biological ion channels
has gained a new impetus with the determination of the
KcsA potassium channel structure. Most of the theoretical
efforts in modeling the KcsA channel so far have focused on
MD simulations of potassium ions in the channel. These
studies provide valuable information on the selectivity
mechanism and the energetics of ion permeation in the chan-
nel, but do not make predictions about the quantity that can
be directly measured experimentally, namely, the conduc-
tance. A recent 100-ns MD simulation, �36� calculated the
conductance of a simplified channel in somewhat extreme
conditions �1 M solution with a 1.1-V applied potential�.
This gives hope that it may be possible to determine conduc-
tance of biological channels from MD studies. Currently,
however, typical MD simulations of biological channels can
be typically tuned for no more than 10 ns, which is too short
to estimate the channel conductance, or even to explore the
dynamics of a single conduction event. However, this is not

a new problem, and permeation models of lower resolution
such as BD and PNP equations have long been addressed in
the literature �37�. The latter approach has recently been
shown to be invalid in a narrow pore environment because it
neglects the self-energy of ions.

The determination of the structure of the KcsA K+ chan-
nel represents an extraordinary opportunity for understand-
ing biological ion channels at the atomic level. In principle,
MD simulations based on detailed atomic models can
complement the experimental data and help to characterize
the microscopic factors that ultimately determine the perme-
ation of ions through KcsA. A number of MD studies
�38–42�, broadly aimed at analyzing the dynamical motions
of water molecules and ions in the KcsA channel, have now
been reported. The potential functions that were used to cal-
culate the microscopic interatomic forces and that predict the
dynamical trajectory have been generated. In particular, the
atomic partial charges and the Lennard-Jones radii, which
are at the heart of the potential function, varied widely. Fur-
thermore, some include all atoms �AMBER and CHARMM
PARAM22�, whereas others are extended-atom models that
treat only the polar hydrogen atoms that are able to form
hydrogen bonds explicitly �CHARMM PARAM19 and
GROMOS�. How these differences affect the results of MD
calculations is an important concern for future investigation.

For meaningful theoretical studies of permeation, it is
necessary to have a potential energy function that provides a
realistic and accurate representation of the microscopic inter-
actions. In practice, this presents a difficult challenge. The
permeation process through KcsA involves the partial dehy-
dration of a K+ ion, followed by the translocation through the
interior of a narrow pore that is 12 Å long, and is lined by
backbone carbonyl oxygens, which act as a selectivity filter
�43�. Thus, the conductance and selectivity of the KcsA
channel results from a delicate balance of very strong micro-
scopic interactions, the large energetic loss of dehydration
being roughly compensated by coordination with main chain
carbonyl oxygens. Gas phase experiments on model systems
provide the most direct information concerning the indi-
vidual microscopic interactions �44�. High-level quantum-
mechanical ab initio calculations can also be used to supple-
ment the �often scarce� information available from
experiments �45�. Of particular interest is the interaction of
ions with a single water molecule, or with a single isolated
N-methylacetamide �NMA� molecule, an excellent model of
the backbone carbonyl of proteins. Despite the considerable
uncertainty in the experimental data and the ab initio calcu-
lations, both clearly indicate that the interaction of cations
with a single NMA is substantially larger than with a single
water molecule. The binding enthalpy of K+ with a water
molecule is 17.9 kcal /mol, whereas it is roughly
25–30 kcal /mol with NMA. The interactions are even larger
in the case of Na+. This trend is generally reproduced by all
the potential functions, with the exception of GROMOS
�46�. In this case, the interaction of K+ and Na+ with a single
NMA molecule is actually smaller than the interaction with a
single water molecule. Our analysis has thereby relied on BD
simulations with some assumptions overlaid.

BD simulations were first proposed as a way to study ion
channels by Cooper and Jan �47�. The early simulations in-
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volved 1D studies of schematic channels, but its extension to
the three dimensions �3D�, necessary for realistic modeling,
has not been achieved until recently. The difficulty lies in the
calculation of the forces on ions at each time step, typically
found from the solution of Poisson’s equation, which is com-
putationally very intensive if implemented numerically.
Thus, the first 3D BD simulations were performed �48,49�
using a torus-shaped channel, for which analytical solutions
of Poisson’s equation are available. For a channel with an
arbitrary shape, this problem was finally resolved by storing
the potential and electric field values in a set of lookup
tables, and interpolating the required values during simula-
tions from the table entries �50–52�. Recently, questions have
arisen about the methods of implementing the boundaries in
BD simulations of ion channels. Another issue, distinct from
that of boundaries, is the accurate representation of the forces
on ions in the channel interior. In our simulations, viscosity
is a mean-field parameter that plays a crucial role in deter-
mining the velocity profiles in the diffusion BD model that
affords us distinct time scales for the profiles. Limits to our
model accuracy are given by the fact that, as channel con-
ductance has an exponential dependence on energy barriers,
so calculated conductance values could be very sensitive to
errors. A second concern is that in our treatment the self-
energy of the ion is ignored.

The above discussion makes it clear that some simplifying
assumptions are required. In the approach described in this
section, it is assumed that the protein structure is held fixed
and the water molecules are replaced by a continuum. With
these assumptions, the 3D movement of ion i can be de-
scribed by the following simple equation:

m
dv
dt

= mi fivi + FR�t� + qiEi, �7�

where mi, vi, qi, and f i are the mass, velocity, charge, and
frictional coefficient on the ith ion, respectively. FR is a ran-
dom thermal force representing the effects of collisions with
the water and channel wall. Ei is the total electrical field on
the ion, including the partial charges in the protein, all the
other ions in the system, and the induced charges from the
variation in the dielectric constant at the boundaries between
the protein, water, and lipid.

Although one could always add other short-range specific
force terms, this would, in effect, be adding an empirical
term that did not arise directly from the known protein struc-
ture. The solution for this approach proceeds as in the above
MD method. The channel boundaries are defined, all the ions
in the channel and attached bulk reservoirs are positioned,
and then, for each ion i, it is integrated in discrete time steps
�Brownian dynamics�. Because the dynamics of the water
and protein are no longer included and relatively long time
steps can be taken for the ion motion, this approach is many
orders of magnitude faster than the exact MD approach �see
below for a specific example�.

The ability to account accurately for the interaction be-
tween ions in the channel system is one of the most difficult
and critical aspects of modeling ion channels. In the absence
of such interactions, the channel conductance will vary lin-
early with the ion concentration. A major advantage of this

BD approach is that it allows a direct simulation of this
ion-ion interaction. At each step in the dynamics, the position
of all the ions in the channel system are determined and their
interaction energy is calculated for each time step. One dif-
ficulty with this approach is that, because of the induced
charges at the membrane and channel water interface, the
calculation of the electrostatic energy at each step requires an
involved, time-consuming calculation. Our approach �see be-
low� is to operate with a nonequivalent role of viscosity in
the outer and inner pore of the channels to modulate the
conductance and thereby see how the Poisson-Boltzmann
equation leads to a mean-field dynamics with distinct time
scales.

The next simplifying approximation is to keep Eq. �7�, but
replace the exact expression by a mean-field approximation
Ei that represents a sort of average over all the possible po-
sitions of the other ions in the system. This E is calculated
using Poisson’s equation. This combination of random ther-
mal motion of the ion combined with a Poisson solution for
E is referred to as the PNP solution. The modified 3D steady
state Nernst-Planck equation is given by

0 = � · ��ci�x� + � � Vi�x�ci�x�� , �8�

Vi�x� = U�x� + zie��x� , �9�

where U�x� is the potential due to nonelectrostatic forces, �
is the electrostatic potential, zi is the valence of the ith ion,
and e is the electron charge.

V. VARIABLE VISCOSITY AND NON-MARKOVIAN
PROCESSES

Channels gating kinetics have been assumed to exist in a
finite number of discrete states, where the transition rate con-
stant among the states is independent of time, which can be
defined as a time-homogeneous Markov chain model. The
evidence, however, is clear for these cases where ionic chan-
nel current has been empirically demonstrated to be non-
Markovian �32�. It is also well known that the spontaneous
fluctuations in the conformation of proteins involve many
different processes that occur over many different time scales
�55,56�. As we constructed our model taking into account the
large barrier height derived from our analysis in the preced-
ing section, and the conclusions made in �54�, it follows that
memory effects cannot be ignored and we use GLE by taking
into account an admixture of non-Markovian and Markovian
processes. The generalization to the PNP model requiring
that the non-Markovian process be included results in two
time scales to take into account the distinct features of the
diffusion and drift processes in ion channels. So in this case
the generalized Langevin equation �57� for n=N interacting
ions is given by

v̇i = − �
t0

t

dt�
�q,t − t��v�t�� − V��q� + f i + dW ,

i = 1, . . . ,N , �10�

where W and f are random and systematic forces acting on
the ions and �W�t�
=0 and �W�t1�W�t2�
=min�t1 , t2�. The
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Wiener process W is the 3D Gaussian process of which
the first moment is a zero vector and the second moment
is a diagonal matrix whose element is the minimum
time between two Wiener processes. The memory kernel

�q , t− t�� describes the generalized viscosity. The Brownian
motion triggers a Wiener process that distinguishes the SDE
�stochastic differential equation� from the ODE �ordinary
differential equation�, so the second term is referred to as the
diffusion term. We have integrated Eq. �1� numerically using
the Euler scheme. In Eq. �8� the frictional force depends on
the previous velocities through the integral over the kernel

�q , t− t��, which is quantified by the fluctuation dissipation
theorem as �Wi�t��Wj�t�
=�kT
�q , t− t���ij, where �= 6�a�

m
for an ion with mass m and with a spherical shape of radius
a, and � is the coefficient of viscosity of the surrounding
water, k is the Boltzman constant, and T is the absolute tem-
perature. In short, we are attempting to construct a classical
description of the invariant measures of a 2D Navier Stokes
equation including the stochastic effects. The existence of an
invariant measure may be used to represent the asymptotic
behavior of the system. If this invariant measure is unique,
the process solution will converge to it and de facto, de-
scribes the equilibrium to which the system tends. It is al-
ready known that a unique invariant measure exists �58� and
the convergence takes place when the 2D Navier-Stokes
equations are perturbed by a time-white noise, not degener-
ate in space, but with no limitations on the way it affects the
modes of the phase space. In general, without constraints on
the Reynolds number, the deterministic Navier-Stokes equa-
tions have many stationary solutions. No information about
the long-time behavior is directly related to them. They, in
fact, may be taken as invariant measures for the Navier-
Stokes equations without the noise.

Hence, our result means that, when a sufficiently distrib-
uted random perturbation is added, just one invariant mea-
sure exists. The effect of the noise is to combine the system
allowing a unique asymptotic behavior. At low flow rate, the
diffusion term introduces the fluctuation into the ensemble
averaged stress tensor, which appears as unwanted noise.
This noise severely limits our ability to calculate low flow
rate viscosity, where the signal to noise ratio becomes very
small. This undesirable noise can be reduced by a variance
reduction method. In simple shear flow, the velocity field is
time dependent along with the dependence on shear rate and
the fluctuating viscosity. At inception of shear flow, the sys-
tem is initially at equilibrium and the stress tensor vanishes.
For time t�0, a constant shear rate is applied and the
stresses grow until they reach their steady state values, at
which point the elongation rate is indeed time dependent.

It should also be mentioned here that we make no ap-
proximations about the relative strength of the solvent mol-
ecules in comparison to the ions, and consequently simplifi-
cation cannot be made. The crux of the story, however, is that
we assume that the memory kernel 
�q , t− t�� can be written
as


�q,t − t�� = a0��t − t�� +
a1


1
e−��t−t��/
1� −

a2


2
e−��t−t��/
2�,

�11�

that contains both Markovian and non-Markovian contribu-
tions. This fact allows a continuous change from Markovian

to non-Markovian dynamics and enables identification of
both the terms. The non-Markovian process has two time
scales whose contributions are dominated by the parameters
a1 and a2, respectively. It is also clear from of the form of the
kernel that in the limit of the weak non-Markovian process
�a1,2�a0�

�vi�t0�v j�t�
 = kTe�−a0t�, �12�

with a relaxation time constant a0
−1, which can be deter-

mined from experimental diffusion coefficients using the
Einstein relation. Similarly, in the limit of weak non-
Markovian �NM� noise the spectral density can be evaluated
as

S��� =
2kBT�2

�1 + 
1
2�2��1 + 
2

2�2�
. �13�

Here it is worthwhile to point out that the power spectrum in
the weak NM limit has a memoryless property in contrast to
the 1 / f flicker noise property characteristic of long tail cor-
relations �59,60�. Our results at least do not contradict the
fact as we expect that the weak limit of the NM process does
indeed give rise to a Markovian process in the selectivity
filter whereas the deviation from Markovianity occurs in the
region containing the water basket. We obtain the spectrum
limits for 
1,2→0, which give us a combination of the color
noise.

Concerning the gluelike water viscosity in the channel
lumen �61�, this property makes the dynamics of such water
quite different from that of external water. In addition, ex-
perimental characterization of the strong electron density
peak by Doyle et al. �28� demonstrated that only one water
molecule can be present between two K ions in the selectiv-
ity filter. Moreover, Saparov and Pohl �62� claimed that the
two ions in the selectivity filter do not leave enough room to
accommodate a vaporized water molecule �within the frame-
work of the water-vapor oscillation hypothesis�. In fact, it
has been shown that the distance between two such water
molecules exceeds the filter length �63�. While the selectivity
filter is about 12 Å long, and thin, the remainder of the pore
is wider and contains water molecules constrained within the
hydrophobic lining of such a pore segment. In this situation,
it is justifiable to consider the selectivity filter as almost de-
void of water molecules. We propose that, with the exception
of the selectivity filter, water attains gluelike viscosity within
the channel pore. This change of property is due to the nano-
scale physical restriction to water movement giving rise to
shear viscosity and thus to non-Markovian water dynamics
with memory. Experimental evidence further indicates that,
in addition to the size restriction, the viscosity of water is
further modified by the water avidity of the pore lining wall.
In conditions where such lining is hydrophilic, viscosity is
substantially increased, but decreases with hydrophobic lin-
ing �61�. In ionic channels the hydrophobic lining in the
water basket serves, then, to maintain a certain degree of
water mobility despite the gluelike properties of its bulk.
This issue has been addressed by Siwy and Fulinski �35�
who cited strong evidence supporting the importance of
channel wall properties in the generation of flicker noise, i.e.,
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1
f� noise, as originally proposed by Bezrukov �64�. It should
be noted that the power spectrum in the weak NM limit has
a memoryless property in contrast to the 1 / f flicker noise
property characteristic of long tail correlations �59,60�. Our
results do not contradict our expectations that at the weak
NM limit, Markovian dynamics occur at the selectivity filter.
This event will then give rise, by interactions with water
dynamics in the water basket, to deviations in Markovianity
generating a spectral limit for 
1,2→0, which generates the
proposed combination of color noise. Here, from a purely
physical perspective, we have added the viscous term to the
simulations. We would also like to point out some results
�65,66�. The most challenging aspect of the simulation of ion
channels has been the implementation of particle coupling
and boundary conditions. In BD simulations it is particularly
difficult to maintain the correct particle concentrations and
behavior that occur under extreme conditions such as that in
channel simulations. Here we use a simple algorithm. The
GLE can be written as a set of 3 LE’s,

z̈ = − a0V��z� + �1 + �2,

�1,2
˙ = −

− �1,2


1,2
−

a1,2


1,2
ż + ri + f i. �14�

The distribution functions from our simulations are shown
below, which show a specific correlation. In Fig. 1 we have
plotted the velocity profile with no correlation.

The velocity profiles are shown in Fig. 2 for weak viscos-
ity and for strong viscosity in Fig. 3 and for various time
scales in Fig. 4.

When we did large iterations, the plot is shown in Fig. 5.
We can use the second order Runge-Kutta method by dis-

cretizing Eq. �14� and approximating the potential as
�t

t+�tV(x�s�)ds=V(x�t��t). We need n Gaussian random num-
bers to be picked at each step for the algorithm. Integrations
of noise can be simulated by linear combinations of three
normal Gaussian random numbers and the matrix elements
of the coefficients are evaluated by the self- and cross corre-
lations of the integrations of noise. Finally, it should be men-
tioned that some interesting results have been obtained by
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FIG. 1. �Color online� Velocity plots with no correlation.
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FIG. 2. �Color online� Velocity plots at length scales where the
viscosity is weak.
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FIG. 3. �Color online� Velocity plots at length scales where the
viscosity is dominant.
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FIG. 4. �Color online� Plots of velocity profiles from simula-
tions that indicate the role of viscosity at different time scales.
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considering a Gillespie algorithm in the context of BD simu-
lation �53�, which has not been considered here.

VI. DISCUSSION

We have applied a set of algorithms that allow a compari-
son between the time scales of diffusion and drift performed
along a selectivity filter in a model K+ channel. The model
describes two time scales for atomic ionic movement along
the filter’s length. This results in an oscillatory flow where
the velocity autocorrelations exhibit an exponential decay.
The Brownian simulation for GLE has been performed by
subdividing the charge of the particle and increasing the
number of particles by the same factor. We have obtained the
velocity distributions corresponding to different limits of the
processes and it is explicit that oscillations dominate at the
limit of the weak non-Markovian process �shown in Fig. 6�.

We have shown here the results from a non-Markovian
process that gives rise to a memory function along with the
two time scales in the BD behavior and determined the stan-
dard deviations of the results.

The results of the simulations clearly show that the BD
approach can be used to describe the Coulomb interaction
and different time scales. It is also clear that the single bar-
rier model with a threshold for the barrier plays an important
role for charge transport through ion channels and advocates

the use of particle based simulation models. But the most
striking feature of the model is that it is possible to model
both the memory effects of gating and the oscillatory behav-
ior of flow by a GLE, which contains an admixture of Mar-
kovian and non-Markovian processes.

Both the admixture of the time evolution kernel and the
viscosity terms and the correlation function make it clear that
a phase transition of the shear viscosity within the channels
may give an important clue to the rise of memory effects and
the evolution of flip flop motion within the selectivity filter
of potassium channels. The exact stochastic simulation using
nonlinear 3D Navier needs to be shown. It is to be noted that
water plays an important role in describing the dynamics of
the ion channel. The water in the region of the channel con-
taining a water basket behaves like glue with a larger viscos-
ity than that outside the channel. However, the activity of
water in the pore is supposed to be higher than that in the
external solution even in the absence of a pressure differ-
ence. This is similar to the idea of expanded, stretched, vis-
cous water, which is strongly hydrogen bonded and selects a
K+ ion �67�.
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