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Genetic circuits with feedback such as the toggle switch often exhibit bistability, namely, two stable states
with rare spontaneous transitions between them. These systems can be characterized by the average time
between such transitions �referred to as the switching time�. However, commonly used deterministic models,
based on rate equations, do not account for these fluctuation-induced transitions. Stochastic methods, such as
the direct integration of the master equation, do account for the transitions. However, they cannot be used to
evaluate the switching time. In order to obtain the switching time, one needs to use Monte Carlo simulations.
These methods require the accumulation of statistical data, which limits their accuracy. They may become
infeasible when the switching time is long. Here we present an accurate and efficient method for the calculation
of the switching time. The method consists of coupled recursion equations for the transition times between
microscopic states of the system. Using a suitable definition of the two macroscopic bistable states �in terms of
the microscopic states� and the probabilities obtained from the master equation, the method provides the
switching time between the two states of the system. The method is demonstrated for the genetic toggle switch.
It can be used to evaluate the switching times in a broad range of bistable and multistable systems. We also
show that it is suitable for the evaluation of the oscillation periods in oscillatory systems such as the
repressilator.
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I. INTRODUCTION

Multistability is common in nonlinear systems with feed-
back loops, particularly those in which the overall feedback
throughout the loop is positive. A multistable system exhibits
several macroscopic states in which it may remain for a long
time. It may switch between these states either spontaneously
or as a result of an external trigger. The typical time between
spontaneous transitions is one of the essential features that
characterize a multistable system. Examples of bistable sys-
tems appear in the context of genetic regulatory networks,
which describe the interactions between genes and their
products in living cells �1�. These genes regulate each other’s
expression using a combination of transcriptional, post-
transcriptional and post-translational regulation mechanisms.
Here we focus on transcriptional regulation networks, where
transcription factor proteins bind to specific promoter sites
on the DNA and regulate the transcription of adjacent genes
�2�. In the case of positive regulation, the bound transcription
factor activates the transcription while in the case of negative
regulation the transcription is suppressed. Genetic networks
are complex and typically include thousands of genes. In
order to understand the functionality of the network in the
cell, it is useful to identify functional modules and analyze
each one of them separately �3–5�. Such network modules
are commonly simulated using rate equations which are
simple and efficient �6–9�. They consist of coupled ordinary
differential equations, which account for the temporal varia-
tions in the concentrations of molecules such as messenger
RNA �mRNA� and proteins. For fixed environmental condi-
tions, these equations often approach a single steady state
solution. When some control parameter is varied, a bifurca-
tion may take place, where two distinct stable solutions
emerge. Beyond the bifurcation point, the system thus exhib-
its bistability �10–13�. Within the rate equation approach,

these two solutions are completely stable. Thus, the rate
equations do not account for spontaneous transitions, which
result from stochastic fluctuations. Such fluctuations are im-
portant in genetic circuits due to the fact that transcription
factors and their binding sites may appear in low copy num-
bers �14–18�.

In order to account for the spontaneous switching events
one needs to use stochastic methods. These methods can be
implemented either by direct integration of the master equa-
tion �19–21� or by Monte Carlo �MC� simulations �22–25�.
An advantage of the direct integration of the master equation
is that it provides the complete probability distribution over
the microscopic states of the system. From the moments of
this distribution one can obtain the averages and standard
deviations of the molecular concentrations as well as the
rates of biochemical reactions. However, the solution of the
master equation does not provide dynamical features such as
the switching times. In order to obtain the switching times
one must perform MC simulations and collect a sufficient
amount of statistical data. This is a difficult task because the
required simulation time increases with the switching time.

The recently proposed forward flux sampling technique
provides a dramatic reduction in the simulation time required
for sampling these rare switching events �26�. This technique
is based on a ratchetlike mechanism. The transition path be-
tween the stable states is divided into sections and the simu-
lation is advanced across each of these sections. The statis-
tical information is then analyzed to obtain the average
switching time.

In this paper we present a different method for the calcu-
lation of the switching times in bistable and multistable sys-
tems. The method is based on a set of coupled recursion
equations, which includes one equation for each microscopic
state of the system. The equation associated with each of the
microscopic states provides the average time it takes the sys-
tem to get from this state to a predefined target state. The
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target state is chosen as one of the multistable states, which
consists of a suitable set of microscopic states. The switching
time from one of the multistable states to another is obtained
using a suitable weighted average, with weights obtained
from the master equation.

Unlike MC simulations, this method does not require a
stochastic implementation which involves the collection and
analysis of statistical data. The number of equations is deter-
mined by the size of the state space, with a suitable trunca-
tion. Thus, unlike MC simulations, the computational re-
sources required by this method do not scale with the
switching time. Furthermore, the results are exact. We dem-
onstrate the method for the calculation of the switching time
in the genetic toggle switch. This method can be easily
adapted to other bistable and multistable systems. We show
that it can also be used to calculate the oscillation periods of
oscillatory systems.

This paper is organized as follows. In Sec. II we introduce
the genetic toggle switch. In Sec. III we show how to calcu-
late the average switching time using the recursion equation
method and compare the results to those obtained from MC
simulations. In Sec. IV we apply the method to the calcula-
tion of the oscillation period of the repressilator circuit. The
results are summarized and discussed in Sec. V.

II. THE GENETIC SWITCH

The genetic toggle switch consists of two genes x1 and x2,
which negatively regulate each other’s expression by tran-
scriptional regulation. Gene xi transcribes mRNA molecules
mi, which are translated into repressor proteins Xi, i=1,2.
For simplicity, in the model used here, the rates of transcrip-
tion and translation are combined together into a protein syn-
thesis rate gi �s−1�. The degradation rates of these proteins
are denoted by di �s−1�. The binding rate of X1 �X2� proteins
to the promoter site that regulates the expression of x2 �x1� is
b1 �b2�. When a repressor protein X1 is bound to the pro-
moter site of x2, the synthesis of X2 proteins is suppressed
�and vice versa�. Finally, a bound Xi protein may unbind at a
rate ui �s−1�. For simplicity we focus on the symmetric case
in which the parameters of the two genes are identical,
namely gi=g, di=d, bi=b, and ui=u, where i=1,2.

For a certain range of parameters such genetic systems
feature two distinct stable states. One state is reached when
the X1 proteins become dominant. As a result, the promoter
site regulating the gene x2 is more likely to be occupied by
an X1 repressor, causing the suppression of the X2 proteins.
The other possible state emerges when X2 proteins are domi-
nant and X1 is suppressed. In this paper we use the following
parameter values: g=0.05, d=0.005, b=0.1, and u=0.005
�s−1�. These are typical values for bacteria such as Escheri-
chia coli �3�. The protein formation rate represents typical
synthesis times of proteins which are of the order of
10 to 20 s. The degradation rate is consistent with typical
half-life times of proteins, which are of the order of several
minutes. The binding rate represents the time scale of diffu-
sion across the cell and a specific binding to the promoter
site on the DNA. The unbinding rate represents the residence
time of the transcription factors on the promoter site, of the
order of several minutes.

An example of a genetic switch appears in the � phage,
which infects E. coli and other bacteria �1�. It can exist in
two exclusive states, one called lysogeny and the other called
lysis. When the phage enters its host, it integrates itself into
the host’s DNA and is duplicated by cell division. It codes
for proteins that can identify stress in the host cell. In case of
stress, the phage transforms into the lysis state. In this state,
it kills the host cell, using its DNA to produce many copies
of the phage, which are released and later infect other cells.
Other switch circuits exist in the metabolic systems of cells
and determine, for example, which type of sugar the cell will
digest �27�. The genetic switch may also serve as a memory
unit of the cell, and help determine its fate during cell dif-
ferentiation �28�.

Recent advances in synthetic biology enable the construc-
tion of genetic circuits with desired properties, that are de-
termined by the network architecture. These networks are
constructed from available components, namely, genes and
promoters. They do not require the manipulation of the struc-
ture of proteins and other regulatory elements at the molecu-
lar level. These genes and promoters are often inserted into
plasmids rather than on the chromosome. A synthetic toggle
switch, that consists of two repressible promoters with mu-
tual negative regulation, was constructed in E. coli and the
conditions for bistability were examined �6�. The switching
between its two states was demonstrated using chemical and
thermal induction.

Several variants of the genetic switch have been studied
theoretically in recent years using deterministic and stochas-
tic methods. The basic circuit described above is called the
general switch �10,11�. A closely related circuit is the exclu-
sive switch in which there is some overlap between the pro-
moter sites of the two genes. As a result, the X1 and X2
repressors cannot be bound simultaneously. In yet another
variant, the regulation is performed when several proteins
bind simultaneously to the promoter. This property is termed
cooperative binding �1�. Deterministic analysis of the general
switch and the exclusive switch, using rate equations,
showed that they exhibit bistability only in presence of co-
operative binding �6,7,10–12�. However, stochastic analysis
of the exclusive switch showed that it exhibits bistability
even without cooperative binding �29,30�. Here we focus on
the case of the exclusive switch without cooperative binding,
namely, the regulation is performed by single repressor pro-
teins.

A graphic representation of the exclusive switch appears
in Fig. 1. We denote the average copy number of Xi proteins
per cell in a population of genetically identical cells by Ni.
The average number of bound Xi proteins is denoted by r̄i.

Clearly, in this formulation N̄i and r̄i are real, positive num-
bers and 0� r̄i�1. The rate equations that describe the ex-
clusive switch are

dN1

dt
= g1�1 − r̄2� − d1N1 − b1�1 − r̄1 − r̄2�N1 + u1r̄1, �1a�

dN2

dt
= g2�1 − r̄1� − d2N2 − b2�1 − r̄1 − r̄2�N2 + u2r̄2,

�1b�
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dr̄1

dt
= b1�1 − r̄1 − r̄2�N1 − u1r̄1, �1c�

dr̄2

dt
= b2�1 − r̄1 − r̄2�N2 − u2r̄2. �1d�

In Eqs. �1a� and �1b� the first terms describe the synthesis of
proteins, which takes place only when the corresponding
promoter site is vacant. The second terms describe protein
degradation. The third terms describe the binding of free
proteins to the promoter sites. These sites may hold at most
one protein each, and only one of them may be occupied at
any given time. Thus the binding process takes place only
when both sites are vacant. The fourth terms describe the
unbinding of proteins from the promoters. In Eqs. �1c� and
�1d� the first and second terms describe the effect of binding
and unbinding, respectively, on the number of bound repres-
sors. Under steady state conditions, these equations turn out
to exhibit a single steady state solution �30�. Thus, within the
rate equation formulation the exclusive switch does not ex-
hibit bistability.

In order to show that the exclusive switch without coop-
erative binding does exhibit bistability, stochastic methods
based on the master equation are required. The instantaneous

state of the switch at time t is given by N� �t�
= �N1 ,N2 ,r1 ,r2�, where Ni=0,1 ,2 , . . . �i=1,2� is the copy
number of free proteins of type Xi, and ri=0,1 is the copy
number of bound proteins of this type. In the exclusive
switch, either r1=1 or r2=1, but not both of them at the same
time. The master equation is expressed in terms of the prob-
abilities P�N1 ,N2 ,r1 ,r2� for the system to be in each one of

the states N� = �N1 ,N2 ,r1 ,r2�. It takes the form

Ṗ�N� � = �
i=1

2

�gi��1 − rj�P�. . . ,Ni − 1, . . . �

− �1 − rj�P�N1,N2,r1,r2��

+ di��Ni + 1�P�. . . ,Ni + 1, . . . � − NiP�N1,N2,r1,r2��

+ bi��Ni + 1�ri�1 − rj�P�. . . ,Ni + 1, . . . ,ri − 1, . . . �

− Ni�1 − ri��1 − rj�P�N1,N2,r1,r2��

+ ui��1 − ri��1 − rj�P�. . . ,Ni − 1, . . . ,ri + 1, . . . �

− ri�1 − rj�P�N1,N2,r1,r2��� , �2�

where j=3− i. The first term accounts for the transcription
and translation processes resulting in the formation of X1 and
X2 proteins. The second term accounts for protein degrada-
tion. The last two terms describe the processes of binding
and unbinding of the repressors to/from the promoter site.
Note that the formation of X1 �X2� proteins takes place only
when r2=0 �r1=0�. In numerical simulations the master
equation is truncated such that Ni=0,1 ,2 , . . . ,Ni

max. The cut-
offs Ni

max, i=1,2, are chosen such that the probability of the
system to occupy states beyond the cutoffs is negligible. Di-
rect integration of the master equation provides the complete
probability distribution at steady state. We also define the
marginal probability distribution

P�N1,N2� = �
r1=0

1

�
r2=0

1

P�N1,N2,r1,r2� . �3�

This distribution, under steady state conditions, is shown in
Fig. 2. It exhibits two peaks, one dominated by X1 proteins
and the other dominated by X2 proteins. In the domain be-
tween these peaks the probability nearly vanishes. This indi-
cates that under these conditions the system is bistable. How-
ever, the switching time between the two states cannot be
extracted directly from the solution of the master equation.

In the master equation the bistable states are not uniquely
defined. Each bistable state is a macroscopic state which con-
sists of a bunch of microscopic states of high probability.
The two bistable states are separated from each other by a
corridor in which all states are of low probability. In a sym-
metric system such as the genetic switch, it is possible to
divide the state space symmetrically. Using such division, we

define the macroscopic states S1= �N� = �N1 ,N2 ,r1 ,r2� �N1

�N2 ,r1=1� and S2= �N� = �N1 ,N2 ,r1 ,r2� �N2�N1 ,r2=1� as
the two bistable states of the switch, dominated by X1 and X2
proteins, respectively.

III. CALCULATION OF SWITCHING TIMES

The commonly used method to obtain the switching times
is MC simulations. In MC simulations of the switch system,
the instantaneous state of the system is represented by a site

on the four-dimensional lattice N� = �N1 ,N2 ,r1 ,r2�. In each

MC step the state of the system is updated from N� to some

N� �, where one of the following processes takes place: forma-
tion of a new protein, degradation of an existing protein,
binding of a free protein or unbinding of a bound protein.
Each process is characterized by a suitable rate. The synthe-

sis rate of protein X1 is R�N� →N� ��=g1�1−r2� where N� �
= �N1+1 ,N2 ,r1 ,r2�. The degradation rate of protein X1 is

R�N� →N� ��=d1N1, where N� �= �N1−1 ,N2 ,r1 ,r2�. The binding

rate of protein X1 is R�N� →N� ��=b1N1�1−r1−r2�, where N� �

FIG. 1. The exclusive switch consists of two genes, from which
the repressor proteins X1 and X2 are synthesized. The binding of X1

to the promoter site represses the production of X2 and vice versa.
The binding is exclusive, namely only one of the repressors may be
bound at any given time.
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= �N1−1 ,N2 ,r1+1 ,r2�. The unbinding rate of protein X1 is

R�N� →N� ��=u1r1�1−r2�, where N� �= �N1+1 ,N2 ,r1−1 ,r2�.
The rates of processes involving X2 proteins can be ex-
pressed in a similar way. When the MC step is executed, one
of these processes is chosen, with a probability proportional

to its rate. The probability that the move N� →N� � will be
chosen is

P�N� → N� �� =
R�N� → N� ��

�
N� �

R�N� → N� ��
. �4�

The rate of exiting the state N� is equal to the sum of the rates
of the individual processes. Therefore, the average time it

takes the system to exit the state N� is given by

��N� � = 	�
N� �

R�N� → N� ��
−1
. �5�

However, the process of exiting the state N� is stochastic and
Markovian. Therefore, the elapsed time t should be advanced
by �t, drawn from the distribution �22,23�

P��t� =
1

��N� �
e−�t/��N� �. �6�

In Fig. 3 we present the copy numbers of the free and
bound proteins vs time as obtained from a MC simulation.
Clearly, the system behaves as a switch with two distinct
stable states. One state is dominated by X1 proteins �and r1
=1�, while the other state is dominated by X2 proteins �and
r2=1�. Once in a while, a spontaneous and abrupt transition
between the two states takes place. To understand the transi-
tion process, consider the case in which the switch is in the
state S1. In this case the X1 proteins are abundant �N1�1�,

one of them is bound to the x2 promoter �r1=1� and the X2
proteins are suppressed �N2�N1�. When the bound X1 pro-
tein unbinds, it is most likely to be replaced by another X1
protein rather than an X2 protein. However, in some rare
cases �with probability �N2 /N1� an X2 protein may bind. As
a result, the synthesis of X2 proteins will be enabled while
the production of X1 proteins will be suppressed. On average,
the X2 protein stays bound for a period of 1 /u2 s. The expec-
tation value for the number of X2 proteins synthesized during
this time is g2 /u2. In order for the transition to take place,
after the bound X2 protein will unbind, it must be replaced by

0

5

10

15

20

0

5

10

15

200

0.02

0.04

0.06

N
1

N
2

P
(N

1
,N

2
)

FIG. 2. �Color online� The
probability distribution P�N1 ,N2�
as obtained from the master equa-
tion for the exclusive switch. Two
distinct peaks are observed, one
dominated by X1 proteins and the
other is dominated by X2 proteins.
The probability density in the
range between these peaks is very
low, indicating that the system is
bistable.
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another X2 rather than an X1 protein. The likelihood of this
course of events depends on the ratio between the copy num-
bers of the two proteins at that time. Using this argument, it
was shown that the switching time of the exclusive switch,
namely, the average time between spontaneous transitions,
can be approximated by bg / �ud2� �30�.

The time evolution of the switch can be described by a
generalized random walk in the four-dimensional space

spanned by N� = �N1 ,N2 ,r1 ,r2�. In Fig. 4 we show an example
of a single transition of the exclusive switch projected on the
�N1 ,N2� plane. In each step, the random walk may hop from

its current state N� to one of several adjacent states N� � which
can be reached by the synthesis, degradation, binding, or
unbinding of a single X1 or X2 protein. The probability of
each one of these moves to be chosen is given by Eq. �4�.

For each microscopic state N� , we define by T�N� �=T�N�
→S2� the average time it takes the system, starting from the

state N� , to reach for the first time, one of the microscopic

states included in S2. Clearly, for states that satisfy N� �S2,

the time T�N� �=0. We construct a set of coupled recursion

equations which relate the times T�N� � between adjacent mi-

croscopic states. For all the states that satisfy N� �S2 the
equations take the form

T�N� � = ��N� � + �
N� �

P�N� → N� ��T�N� �� , �7�

where P�N� →N� �� is given by Eq. �4� and ��N� � is given by

Eq. �5�. For the states that satisfy N� �S2 the equations are
simply

T�N� � = 0. �8�

The recursion equations are linear algebraic equations—one
equation for each microscopic state of the system. These
equations can also be expressed in a matrix form

MT� = �� , �9�

where T� is a vector which consists of the elements T�N� � for
all the microscopic states of the system. The vector �� is a

vector that consists of all the values ��N� � for N� �S2, and has

a value of zero for states that satisfy N� �S2. The elements of

the matrix M for N� �S2, are MN� ,N� �=	N� ,N� �− P�N� →N� ��, and

for N� �S2, MN� ,N� �=	N� ,N� �, where 	N� ,N� �=1 if N� =N� � and 0, oth-
erwise.

The solution of this set of equations provides the average
time required to reach the macroscopic state S2 from any

microscopic state N� of the system. These average transition
times, obtained from Eq. �9�, are shown in Fig. 5. The cal-
culation of the switching time from state S1 to state S2 re-
quires a combination of the results obtained from Eq. �9�
with the steady state solution of the master equation. This
switching time is obtained as the weighted average

T�S1 → S2� = �
N� �S1

P�N� �N� � S1�T�N� � , �10�

where P�N� �N� �S1� is the probability of the system to be in

the microscopic state N� given that it is in the macroscopic
state S1.

The switching times obtained from the recursion equa-
tions �9� and �10� are shown in Fig. 6. The switching times
are presented as a function of the binding strength k=b /u
�Fig. 6�a�� and of the parameter q=g /d2 �Fig. 6�b��. The
results obtained from the recursion equation method �circles�
are in perfect agreement with those obtained from MC simu-
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FIG. 4. The transition path from an initial state dominated by X1
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viewed as a generalized random walk in the �N1 ,N2� plane.
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lations �dashed line�. In Fig. 6�a� the parameter u is varied
keeping b=0.1 �s−1�. In Fig. 6�b� the parameters g and d are
varied keeping the ratio g /d=10 and k=20.

The recursion equations method is not limited to bistable
systems. It is also applicable to multistable systems with any
number of macroscopic states. Consider, for example, a
tristable system with macroscopic states S1, S2, and S3. To
apply the method, one should first define each macroscopic
state in terms of the microscopic states of the system. The
next step is to evaluate the average residence time of the
system in each one of these states using the recursion equa-
tions �9�. For example, in order to calculate the residence
time in the state S1, we define the union of S2 and S3 as the
target state. The residence time is then obtained as the
weighted average over all microscopic states in S1, where the
weights are obtained from the master equation.

IV. CALCULATION OF CYCLE PERIODS

Another application of the recursion equations method is
for the evaluation of the average cycle periods of stochastic
oscillatory systems. In the context of genetic regulatory net-
works, oscillators are known to be of great importance. A
notable example is the circadian clocks, which exhibit oscil-
lations with an average period of about 24 h. To demonstrate
how the recursion equations are applied to oscillatory sys-
tems we consider the repressilator circuit �9�. The repressila-
tor is a genetic regulatory module consisting of three proteins
X1, X2, and X3, which negatively regulate each other’s syn-
thesis by transcriptional regulation in a cyclic fashion. More
specifically, X1 regulates X2, X2 regulates X3, and X3 regu-

lates X1 �Fig. 7�. The production rate of the Xi protein is
denoted by gi �s−1� and its degradation rate is di �s−1�. The
binding and unbinding rates are bi and ui �s−1�, respectively.
Here we assume that bound proteins degrade at a rate dri
�s−1�. For simplicity, we consider the symmetric case in
which the parameters of all the genes are identical, namely,
gi=g, di=d, bi=b, ui=u, and dri

=dr for i=1, 2, and 3. More
specifically, the values of the parameter are g=0.03, d=dr
=0.003, b=0.5, and u=0.01 �s−1�.

The repressilator was found to exhibit oscillations be-
tween three different states, where each state is dominated by
one of the proteins. Consider a situation in which the number
of X1 proteins is large. The negative regulation leads to a
reduction in the number of X2 proteins. As the number of X2
proteins is reduced, the synthesis of X3 proteins is enhanced.
As a result, the synthesis of X1 proteins will be repressed,
resulting in a cyclic behavior. Deterministic simulations of
the repressilator using rate equations show periodic oscilla-
tions �9�. However, comparison of the deterministic analysis
with the results of stochastic simulations shows that the
former does not accurately predict the average period of
these oscillations �31�. In order to obtain accurate results for
the average oscillation period, one needs to perform MC
simulations and collect a sufficient amount of statistical data.
The microscopic states of the repressilator system are given

by N� �t�= �N1 ,N2 ,N3 ,r1 ,r2 ,r3�, where Ni=1, . . . ,Ni
max is the

number of free Xi proteins and ri=0,1 is the number of
bound Xi proteins �i=1,2 ,3�. The repressilator cycles be-
tween the three macroscopic states, dominated by X1, X3, X2,
and X1 again. In the transition between the X1 and X3 domi-
nated states, the repressilator passes through the transition

state S1→3= �N� = �N1 ,N2 ,N3 ,r1 ,r2 ,r3� �N1=N3 ,N1�N2�.
Similarly, in the transition between the X3 and X2 dominated

states, it passes via S3→2= �N� = �N1 ,N2 ,N3 ,r1 ,r2 ,r3� �N3
=N2 ,N3�N1�, and in the transition between the X2 and X1

dominated states, it passes via S2→1= �N�
= �N1 ,N2 ,N3 ,r1 ,r2 ,r3� �N2=N1 ,N2�N3�.

Consider the average transition time �t needed for the
repressilator to advance from S1→3 to the successive transi-
tion state S3→2. In the symmetric case considered here, the
average period of a complete cycle of the repressilator will
be T=3�t. In the MC simulations, the transition probabilities

P�N� →N� �� are defined as in Eq. �4�, and the exit time from

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

k

10
3

10
4

10
5

10
6

T
ra

ns
iti

on
T

im
e

(s
)

10
3

10
4

q (s-1)

10
4

10
5

T
ra

ns
iti

on
T

im
e

(s
)

MC Simulation
Recursion Eqs.

(a)

(b)

(a)

(b)

FIG. 6. The switching time for the exclusive switch vs the bind-
ing strength k �a� and vs the parameter q=g /d2 �b�, as obtained
from the recursion equations �circles�. The results are in perfect
agreement with those obtained from MC simulations �dashed lines�.

FIG. 7. Schematic plot of the repressilator circuit. It consists of
three proteins X1, X2, and X3, which negatively regulate each other
in a cyclic manner. The flat-headed arrows denote negative tran-
scriptional regulation.
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the state N� is defined as in Eq. �5�. The period T is obtained
by averaging over a large number of cycles.

In Fig. 8�a� we show the copy numbers of the X1 �solid
line�, X2 �dashed line�, and X3 �dotted line� proteins vs time
as obtained from the rate equations for the repressilator cir-
cuit. Periodic oscillation are observed. The period of these
oscillations is T�1740 s. In Fig. 8�b� we show the copy
numbers of the X1, X2, and X3 proteins vs time as obtained
from MC simulations. Here the average oscillation period is
higher, and equals to T�2860 s.

To apply the recursion equation method we solve Eq. �9�,
where the target state is given by the set of microscopic

states that satisfy N� �S3→2. Here we assigned the cutoff for
the free proteins to be Ni

max=19, leading to a total of �20

2�3=64 000 linear algebraic equations. The result of Eq.

�9� is T�N� →S3→2�, which is the average time it takes the

repressilator to reach S3→2 starting from an initial state N� .
The average time the repressilator spends in a state domi-

nated by the X3 protein is �t=�N� �S1→3
T�N� →S3→2�P�N� �N�

�S1→3�. Here, P�N� � is the probability distribution obtained

from the master equation and P�N� �N� �S1→3� is the probabil-

ity for the repressilator to be at the state N� , given that it is at
the macroscopic state S1→3. For the parameters used here, the
result obtained from the recursion equations is �t=912 �s�,
leading to a cycle period of T=2736 �s�. This result is in
good agreement �within 5%� with the cycle period of T
�2860 �s� obtained from the MC simulations.

V. SUMMARY AND DISCUSSION

We have presented a method for the calculation of the
switching times in bistable and multistable systems. The
method is based on a set of coupled recursion equations,
which includes one equation for each microscopic state of
the system. These equations provide the average time it takes
the system to get from each microscopic state to the target
state, chosen as one of the multistable states of the system.
The switching time from one multistable state to another is
obtained using a suitable weighted average, with weights ob-
tained from the master equation. The method is demonstrated
for the calculation of the switching time in the genetic toggle
switch. The results are found to be in perfect agreement with
those obtained from MC simulations. The method is not lim-
ited to multistable systems and can be applied to oscillatory
systems as well. To demonstrate its applicability, we have
also used the method to obtain the oscillation period of the
repressilator. The results were found to be in good agreement
with those obtained from MC simulations.

Bistable and multistable systems typically exhibit very
long switching times. As a result, Monte Carlo methods in
which the running time scales with the switching time of the
system may become infeasible. The recursion equations
method is advantageous because it does not scale with the
switching time. Instead, the complexity of the recursion
equations method scales with the number of microscopic
states of the system. The method involves the solution of two
sets of equations. One set consists of the master equation and
the other is the set of recursion equations for the transition
times from each microscopic state to the target state. The
number of equations in each of the two sets is equal to the
number of microscopic states in the system. This number
quickly increases with the complexity of the circuit which is
analyzed, limiting the applicability of the method for large
circuits. However, desktop computers nowadays are capable
of solving up to several millions of such coupled linear equa-
tions easily, making the method applicable to a broad range
of systems. In summary, the recursion equation method and
MC simulations complement each other. For the analysis of
large circuits with short switching times, MC simulations are
more efficient, while for small circuits which exhibit long
switching times the recursion equations method is preferable.

An interesting question is whether the method can be gen-
eralized to the calculation of the entire probability distribu-
tion of switching times. In discrete time systems, such as
random walkers, the distributions of first passage times can
be calculated using methods that resemble the approach we
applied here. This is done by writing down recursion equa-
tions for the probabilities PN� �t�, t=1,2 , . . ., to reach the tar-

get state after exactly t steps, starting from state N� . In this
approach, each microscopic state of the system requires to
evaluate a vector PN� �t� instead of a single number 
t�N� when
only the average is calculated. However, the problem consid-
ered here is of continuous time. In this case, the recursion
equations become integral equations, which are extremely
difficult to solve.
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FIG. 8. �Color online� �a� The populations of free proteins from
X1 �solid line�, X2 �dashed line�, and X3 �dotted line� vs time, as
obtained from the rate equations, for the repressilator circuit. The
system performs regular oscillations with a period of T�1740 �s�.
�b� The results of a Monte Carlo simulation for the reressillator
circuit. Here, stochasticity is taken into account and the oscillations
are not regular. The average period of oscillation is T�2860 �s�,
which is significantly larger than the period predicted by the deter-
ministic approach �rate equations�.
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