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Beating patterns of filaments in viscoelastic fluids
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Many swimming microorganisms, such as bacteria and sperm, use flexible flagella to move through vis-
coelastic media in their natural environments. In this paper we address the effects a viscoelastic fluid has on the
motion and beating patterns of elastic filaments. We treat both a passive filament which is actuated at one end
and an active filament with bending forces arising from internal motors distributed along its length. We
describe how viscoelasticity modifies the hydrodynamic forces exerted on the filaments, and how these modi-
fied forces affect the beating patterns. We show how high viscosity of purely viscous or viscoelastic solutions
can lead to the experimentally observed beating patterns of sperm flagella, in which motion is concentrated at

the distal end of the flagella.
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I. INTRODUCTION

Eukaryotes use beating cilia and flagella to transport fluid
and swim [1]. Cilia and flagella share a common structure,
consisting of a core axoneme of nine doublet microtubules
arranged around two inner microtubules. Molecular motors
slide the microtubule doublets back and forth to generate the
observed beating patterns. Cilia typically have an asymmet-
ric beating pattern, with a power stoke in which the extended
cilium pivots about its base, and a recovery stroke in which
the cilium bends sharply as it returns to its position at the
beginning of the cycle [2]. This stroke pattern is effective for
moving fluid past the body of the cell, such as the epithelial
cells of the airway or the surface of a swimming Parame-
cium. On the other hand, flagella typically have a symmetric
planar or helical wave form [2], such as the flagellum of bull
sperm which exhibits a traveling wave with an amplitude
that increases with distance from the head of the sperm [3].
The shape of the centerline of a beating filament determines
the rate of transport or swimming. Many studies show that
this shape depends on the properties of the medium. For
example, the flagella of human sperm have a slightly helical
wave form in water. As viscosity increases via the addition of
polymers, the wave form becomes less helical and the am-
plitude flattens along most of the flagellum, with all the de-
flection taking place at the free end [4] (Fig. 1). Similar
effects are observed in cervical mucus and other viscoelastic
solutions [3,5].

In this paper, we calculate the shape of a beating filament
as a function of the properties of the medium. Since the size
scale for the filaments is tens of microns, and since typical
swimming speeds are tens to hundreds of microns per sec-
ond, the Reynolds number is very small, and inertia is unim-
portant. The medium is modeled with a single-relaxation
time fading-memory model for a polymer solution [6]. We
consider two different models for the filament. First, we con-
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sider the passive case, in which one end of a flexible filament
is waved up and down [7-10]. We also consider a more
realistic active model in which undulations arise from inter-
nal sliding forces distributed all along the length of the fila-
ment [11,12]. Although active filaments are a closer repre-
sentation of eukaryotic flagella, we show that many of the
important features of swimming filaments in viscoelastic me-
dia are also present in the simple passive filament. Further-
more, passive filaments may be more amenable to experi-
ment and quantitative comparison with theory. Our main
results are qualitative explanations for some of the beating
shapes observed in sperm in high-viscosity and viscoelastic
solutions [3-5,13,14]. These results indicate that the ob-
served shape change with increasing viscosity is a physical
rather than a behavioral response. We reported some of our
results for the case of an active filament in a viscoelastic
medium with zero solvent viscosity in a previous publication
[15]. In addition to presenting interesting results for the pas-
sive filament in a viscoelastic medium, in the present paper
we also systematically study the dependence of the shape of
an active filament on solvent viscosity.

To make the analysis as simple as possible, we work to
linear order in the deflection of the filament away from a
straight configuration. Although the power dissipated by a
beating filament is second order in deflection, it is sufficient
to calculate the shape to first order in deflection to accurately
compute the power to second order. We calculate how this
power varies as the beating pattern changes with increasing
relaxation time. There are also important changes in the
swimming velocity due to shape change. Even in a linearly

FIG. 1. The wave form of a human sperm observed by Ishijima
et al. [4] in a solution with very high viscosity (400 cP). The sperm
head, on the left side of the image, is held in place with a micropi-
pette tip. The contour length of the flagellum is approximately
40 pm.
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viscoelastic fluid, for which the swimming speed of a fila-
ment with prescribed beating pattern is the same as in a
Newtonian fluid [16], changes to the beating patterns due to
the viscoelastic response can lead to changes in swimming
velocities. However, as has been previously emphasized
[15,17], in viscoelastic fluids the swimming velocity also
receives corrections from the nonlinearity of the fluid consti-
tutive relation at second order, and both these nonlinear cor-
rections and the changes to the beating patterns must be
taken into account to correctly calculate the swimming ve-
locity [15].

We begin our analysis by reviewing commonly used theo-
ries for the internal forces acting on passive and active fila-
ments. Then we introduce the Oldroyd-B fluid, the fading-
memory model we will use throughout this paper. After
providing context with a brief discussion of resistive force
theory for Newtonian viscous fluids, we discuss resistive
force theory for small amplitude motions of a slender fila-
ment in an Oldroyd-B fluid. Using the balance of internal
and external forces, we calculate the shape of a beating fila-
ment for both the passive and active cases. We close the
main text with a discussion of the limitations of our analysis
and the implications of our results. In the Appendix, we dis-
cuss further the subtleties of applying linear viscoelasticity to
the swimming problem. There we show that linear viscoelas-
tic constitutive relations lead to incorrect predictions for the
case of an active filament in a rotating viscoelastic medium.

II. MODELS
A. Internal forces acting on flexible filaments

The internal forces acting on a filament may be specified
either by the energy as a function of the curvature or a con-
stitutive relation for the moment acting on a cross section of
the filament. The two approaches are equivalent, and in this
paper we use the moment on a cross section.

1. Passive filament

We first consider the passive elastic filament. Let r(s)
denote the path of the centerline of an inextensible filament
of length L. Then the moment M due to internal stresses
acting on the cross section of a bent filament is

M=Ar' Xr”", (1)

where A is the bending modulus and primes denote differen-
tiation with respect to s [18]. Since we only consider planar
filaments in this paper, it is convenient to introduce the right-
handed orthonormal frame {€;,é,,€.}, where & =r’ is the
tangent vector of r(s), and €, is normal to the plane of the
filament. Thus x=¢,-€] is the curvature of the the curve r(s).
Note that the sign of « is meaningful since €, does not flip at
inflection points. Throughout this paper, we use a coordinate
system for which the straight filament lies in the €, direction,
and consider only planar motion of the filament in the &,-¢,
plane. Further, we restrict ourselves to small displacements
of the filament, so that r(s)=~sé +h(s)é,. For such small
displacements, we may approximate x=/h" and M~¢&.Ah".
The elastic force per unit length on the filament is found by
moment balance,
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FIG. 2. Sliding filament model. The dotted line is the centerline
of the flagellum when it is straight; the circles divide it in quarters.
The solid lines represent the bent centerline and r. ; the dots divide
each line in quarters as measured along the respective contours. All
three curves have length L.

M +é XF=0, (2)

where F is the force acting on a cross section at s. For small
displacements, the force per unit length due to internal
stresses is therefore f, =F'~-Ah""¢,. Equation (2) also al-
lows a tangential force that may be identified as a tension.
For small displacements, the tension force is higher order in
displacements than the normal forces, and so we ignore it in
this work [19]. In the small Reynolds number flows associ-
ated with swimming cells, the total force on each element of
the filament must be zero, f.,+f;,,=0. As we shall see below,
the leading order shape of the filament is determined by ex-
ternal forces which are linear in the velocity of the filament
elements, even in nonlinearly viscoelastic fluids. Therefore
force balance yields a fourth order linear differential equa-
tion to be solved for the time-dependent filament shape.
The differential equation must be supplemented with ap-
propriate boundary conditions. For the free end, we have

-AR"(L)=0, (3)

AR'(L) =0, (4)

corresponding to zero force and torque, respectively. For the
driven end, we may consider prescribed angle,

h'(0) = € cos(wt), (5)
h(0) =0, (6)
or prescribed force
—AR"(0) = € cos(wi), (7)
h(0)=0. (8)

2. Active filament

For a simple model of a sperm flagellum which incorpo-
rates active bending forces, we consider a swimmer consist-
ing of a flagellum which always lies in the plane, and disre-
gard the presence of a head. We model the flagellum as two
inextensible filaments of length L which are parallel and
have a fixed, uniform separation a. The filaments can slide
past each other, which causes the flagellum to bend (Fig. 2).
Define the paths of the two filaments as

r.=r = (a/2)é,, 9)

where the frame {€,,€,,€_} again applies to the centerline
r(s) of the filament (Fig. 2). Equation (9) implies ds,—ds_
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=—akds, where s.(s) is the arclength of r.(s). For example,
k<0 in the interval 0 <s<<L/2 of the curve r in Fig. 2. Thus
the arclength s,(L/2) of r,(s) is longer than L/2; likewise,
the arclength s_(L/2) is shorter than L/2. In the region 0
<s<L/2, the material points of r, have slid backwards rela-
tive to the material points of r_. Integrating ds,—ds_, we find
that the distance filament r_ slides past filament r, at s is

A(s)=- J‘S ax(s)ds=—al6(s) — 6(0)], (10)

0

where 6 is the angle between €, and €,. Note that Eq. (10) is
exact, although from here on we assume ak<<1.

The composite filament is actuated by molecular motors
that slide r. back and forth past each other. Let f,, denote
the force per unit length in the &, direction that the upper
filament r, exerts on the lower filament r_ through the mo-
tors. To first order in deflection, the total moment acting
across the cross section at s is therefore given by

L
M, =AN"(s) + af fm(s)ds. (11)

In this model, the bending modulus A is an effective modulus
representing the stiffness of the entire flagellar structure. We
note that there are additional forces that may be included in
modeling eukaryotic flagella, such as those arising from link-
ing proteins that resist the sliding of filaments past each
other. In this work we leave those out for simplicity; we have
found that for reasonable magnitudes of these forces they do
not change our results qualitatively. Moment balance, Eq.
(2), applies as before, leading to a force on the cross section
at s of F=(-Ah"+af,,)é,, or an internal force per unit length
of f,,=(=Ah""+af; )&,.

The boundary conditions for the active filament involve
extra terms from the sliding force. At the free end, zero force
and moment give

—AR"(L) + af,(L) =0, (12)

AR"(L)=0. (13)

At the attachment to the head we may consider a variety of
situations. For a fixed head, we may consider clamped and
hinged boundary conditions. For clamped boundary condi-
tions,

h(0)=0, (14)

1'(0)=0. (15)

For hinged boundary conditions where the total moment van-
ishes,

L
Ah"(0) + aJ fm(s)ds =0, (16)
0

h(0)=0. (17)
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B. Linearly and nonlinearly viscoelastic fluids

In the limit of zero Reynolds number, the equation of
motion of an incompressible medium is given by force bal-
ance, —Vp+V.-7=0, where p is the pressure enforcing in-
compressibility, V-v=0; v is the velocity; and 7 is the devia-
toric stress tensor.

The material properties of the medium are given by the
constitutive relation, which specifies the stress in the medium
as a function of the strain and strain history of the material.
In a Newtonian fluid with viscous forces, the stress tensor is
proportional to the rate of strain. In contrast, in a viscoelastic
fluid, there is an additional elastic component to the response
of the medium. This effect is incorporated by fading-memory
models, in which the stress relaxes over time to the viscous
stress. We will focus on a particular fading-memory model,
the Oldroyd-B fluid, which has the constitutive relation

\Y
THNT= DY+ ALY (18)

. . . . . . v

In this equation, \ is the single relaxation time, 7=9,7
+v-V7—=(Vv)T- 7= 7-Vv is the upper-convected time deriva-
tive of 7, v is the velocity, # is the polymer viscosity, ¥

=Vv+(Vv)T is the strain rate, and 7 is the upper-convected
time derivative of the strain rate. In this paper we will use a
dot to denote time differentiation. The total viscosity 7= 17,
+ 7, is the sum of polymer and solvent viscosities. The
Oldroyd-B fluid is one of the simpler nonlinear constitutive
relations for a viscoelastic fluid. The upper-convected time
derivative is the source of nonlinearities [6]. If the solvent
viscosity is ignored (7,=0), the Oldroyd-B fluid reduces to
the upper convected Maxwell fluid, and if there is no poly-
mer (7=7,) the Oldroyd-B fluid reduces to a Newtonian
fluid. The Oldroyd-B fluid is known to describe elastic and
first normal stress effects as long as elongational flows are
not large; however, it does not capture shear-thinning or
yield-stress behaviors observed in some non-Newtonian flu-
ids.

Although we have introduced the nonlinearly viscoelastic
fluid, in what follows we will only work to linear order in the
displacements of filaments. In that case, our results will be
the same as if we consider the same model with ordinary
time derivatives, which corresponds to a linear Maxwell-
Kelvin fluid.

III. FILAMENTS IN NEWTONIAN FLUIDS

The motion and swimming properties of filaments in
Newtonian fluids have been actively studied by many re-
searchers [7,8,10,11]. Here we briefly summarize results in
the Newtonian case which will be useful for comparison to
filaments in viscoelastic fluids.

A common approach to calculating the viscous forces act-
ing on a flagellum is resistive force theory, a local drag
theory in which the forces per unit length acting on a thin
filament are proportional to the fluid velocity relative to the
filament [20]. Although resistive force theory does not com-
pletely capture the effects of hydrodynamic interactions,
macroscopic-scale experiments have shown that it is surpris-
ingly accurate for single filaments [9,21,22]. For a purely
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viscous liquid, the force per unit length acting on a filament
moving in an otherwise quiescent fluid is given by

fvis=—§|\(é1'f')é1 _Q(éz'f’)éz, (19)

where the friction coefficients ¢, and {, depend weakly on
the filament radius, are proportional to the viscosity #, and
satisfy | =2(.

For simplicity, assume that there is only one frequency of
motion for the filament, so the displacement of the filament
can be written h(s,t)=Re{h(s,f)exp(=iwt)}. In this case, us-
ing the resistive force theory, the y component of the equa-
tion of motion for the passive and active filament are, respec-
tively,

—iwl h=-AR", (20)

—iwl h=—AR" +af’, (21)

where f,,=Re{f,,(s)exp(=iwt)}. The solutions of these can be
obtained in a manner similar to that described in Sec. V to
give h(s,1).

From h(s,t), we may calculate the power dissipated by
the filament and the swimming velocity of the filament. At
each material element of the filament, the power dissipated is
the inner product of the hydrodynamic force and the velocity.
The total time-averaged power dissipated is therefore

Lo (f -
(Py= 2= f ds|h(s)|?. (22)
2 0

The swimming velocity can be determined by the con-
straint under Stokes flow that the total force on the swimmer
is zero. To lowest order, the component of force in the éy
direction is zero as a result of the equation of motion for the
filament shape. The beating motion of the filament produces
a €, component of the time-averaged force that is second
order in the deflection, which is balanced by a drag force
from overall translation, i.e., swimming with velocity Urgr
in the €, direction:

_od-4) f g
URFT_ 2L§H Im . dsh'h B (23)

where h* is the complex conjugate of h. In this paper we
ignore the drag from the head, which would contribute an
additional factor in the expression for Urpr. Note that for
clamped boundary conditions, the torque exerted on the fila-
ment at s=0 has a reaction torque that causes the head and
ultimately the whole sperm to rotate [10]. Here we ignore
these effects for two reasons: (i) Experiments looking at the
shape of beating filaments can be performed with an immo-
bilized head. (ii) For swimming, calculations ignoring the
head are simpler and can be easily compared to previous
work, e.g., [11], and also are more easily extended and com-
pared to the calculations we will perform in the viscoelastic
fluid.

It is important to note that it is only necessary to solve for
the beating motion to first order in deflection amplitude to
obtain the correct leading order results for the power and the
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swimming speed, even though these quantities are of second
order in deflection.

IV. FILAMENTS IN VISCOELASTIC FLUIDS

Having seen how to analyze filaments in Newtonian flu-
ids, we turn to viscoelastic fluids. In a viscoelastic fluid, the
hydrodynamic force felt by the filament is no longer given
by Eq. (19). Due to the change in forces, the equations of
motion for the filament are changed, so that the beating pat-
terns change. Since both the beating patterns and forces af-
fect the power dissipated and swimming velocity, we expect
both of those to change as well. To calculate the power dis-
sipated by a filament beating in a viscoelastic medium to
leading order in the deflection, we only need the velocity and
the force to first order. Thus it is sufficient to find the shape
to first order. From Eq. (23) we expect that a change in the
first-order shape i will change the swimming velocity; how-
ever, there are additional second order corrections that are
present even for a waveform of prescribed shape [15,17].
Consistency requires including both of these second order
corrections [15]. In this paper we concentrate on the effects
of viscoelasticity on beating patterns and power dissipated.

The calculation of the force per unit length acting on a
slender filament undergoing large deflections in a viscoelas-
tic fluid is a daunting challenge. Since we consider small
deflections, we may consider the simpler problem of the
forces per unit length acting on a slightly perturbed infinitely
long cylinder with a prescribed lateral or longitudinal travel-
ing wave. Elsewhere we solve for the flow induced by these
motions using the Oldroyd-B fluid and calculate the forces
acting on the deformed cylinder [23]. We find that the force
per unit length f,4;0yq Obeys

. ’77‘? .
fordroya + N iforaroya = fuis + ;)\fvis- (24)

In the limit of zero solvent viscosity, 7,=0, Eq. (24) is the
same as the resistive force theory proposed by Fulford, Katz,
and Powell for the linear Maxwell model [16]. Equation (24)
is valid for slender filaments and to first order in small de-
flections.

Application to passive and active filaments

To apply the above results to the passive and active fila-
ment models, we use the hydrodynamic force fggroyq in the
equations of motion. For the passive filament with a single
frequency of motion, we find

l—iDez ~ ~
—io——2¢ h=— AR, 25
O iDe ¢ @)

where the Deborah numbers De=w\ and De,=De7,/ 7. For
the active filament we must include the motor forcing:

1- iD62
w
1—iDe

—i L h=—AN"" +af. (26)

The beating pattern is determined by solving these equations
of motion, and once the beating pattern is known, the power
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dissipated and swimming velocity can be calculated.

The power dissipated is calculated in the same way as for
a Newtonian fluid, except that now the force per unit length
is specified by Eq. (24), leading to

{Lw21+DeD62J‘L

— 7 2
(Py= 0ds|h(s)|. (27)

As noted above, the beating pattern affects the swimming
velocity. However, there is an additional correction to the
swimming velocity in the nonlinearly viscoelastic Oldroyd-B
fluid. Instead of Eq. (23), the correct expression for the
swimming speed is [15,23]

1+DeDe,/ (* .
U=——-+ dsh' (s,t)h(s,t 28
(2D <f0 s (s)(s)> (28)

_1+DeDe,

[+De URFT (29)

where the second line follows from the ratio ¢, /{;=2. This
result applies to an infinite cylinder moving with beating
pattern h(s,?)=Re{h(s)exp(~iwr)}. To apply this result to the
finite filament, we imagine periodically replicating the calcu-
lated beating pattern of the filament so that it becomes infi-
nitely long. Although this construction generally leads to an
infinite filament with discontinuities in /(s ,z) with spacing L,
the swimming speed of such an infinite filament may be
calculated using the Fourier-space version of Eq. (28), or,
equivalently, by invoking the periodicity and performing the
real-space integral from O to L. This result ignores end ef-
fects from the flow around the end of the finite filament. We
have mentioned the effects of beating patterns on swimming
velocity here for completeness. In the rest of the paper we
focus on the changes to beating patterns themselves and
power dissipation rather than swimming velocity.

V. RESULTS
A. Nondimensionalization

We can nondimensionalize the filament equations of mo-
tion and boundary conditions by measuring lengths in terms
of L, f., in terms of A/(aL?), and time in terms of w™'.
Velocities are measured in terms of Lw and angular veloci-
ties in terms of w. For notational simplicity, after scaling we
use the same symbols for the new quantities. The nondimen-
sional equation of motion for the passive filament with a
single frequency is

1- iDez ~ ~
—iSp*———h+h" =0, 30
P iDe (30
with boundary conditions
-h"(1)=0, (31
h'(1)=0, (32)
h(0)=0, (33)

and either of
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h'(0)=ecos(t) (prescribed angle), (34)

1" (0) = ecos(t) (prescribed force). (35)

The dimensionless parameter Sp=L(w(,/A)"* known as
the sperm number, involves the ratio of the bending relax-
ation time of the filament to the period of the traveling wave.
In what follows the forcing € is chosen small enough so that
we remain safely in the linear regime.

The nondimensional equation of motion for the active
filament with a fixed head and single frequency becomes

|-iDey~ ~ -
- iSp41;ezh LT =0, (36)

—iDe

where f,,=Re{f,,(s)exp(~ir)}. The boundary conditions for
Eq. (36) are

_h,,’(1)+fm(1):09 (37)
h'(1)=0, (38)
h(0) =0, (39)
and either of

h'(0)=0 (clamped), (40)

1
h"(0) +f fum(s)ds =0 (hinged). (41)

0

B. Passive filament

For the passive filament with harmonic time dependence,
we examine the solutions to Eq. (30) which are

4
hy(s) = 2, Cjexp(rys), (42)
j=1

where the r solve

| -iD
e S ) (43)
1-iDe '/

—iSp

The four coefficients C; are determined by the boundary con-
ditions, and the full time-dependent solution is then given by

h(s,t) =Re{e "h,(s)}. (44)

From the form of &, in Eq. (42), we can already make a
general comment about the expected form of beating pat-
terns. The exponentials in Eq. (42) will lead to traveling or
standing waves. Standing waves can only form if there are
pairs of r; that are complex conjugates, which happens only
in the elastic limit (De — ), where the r; are proportional to
+(1={). Therefore in the viscous case the beating pattern
will always have the form of a traveling wave, but as De
increases the beating pattern takes on more characteristics of
a standing wave.

Representative plots of these solutions for prescribed at-
tachment angles and forces are presented in Fig. 3. Solutions
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FIG. 3. (Color online) Shapes of beating patterns for passive
filaments driven by prescribed angle at the left end (s=0). A half
cycle of the pattern is shown for viscous (De=0) and viscoelastic
(De=100) cases, and sperm number 2, 7, and 20. Time sequence:
solid (red), short dash (orange), long dash (green), long dash-short
dash (blue), dash-dot (purple). The ratio of solvent viscosity to the
total viscosity is 7,/ 7=De,/De=10"*. At the top of each plot, we
print the (dimensionless) angular magnitude € required to produce
motion with amplitude 0.1L, and the (dimensionless) power dissi-
pated by the motion.

for the viscous (De=0) and viscoelastic (De=100) limits are
plotted side by side. As expected, changing the viscoelastic
character of the fluid by varying the Deborah number in-
duces changes in the shapes of the beating patterns. An im-
portant feature of these solutions is the presence of a bending
length scale & &/ L=|r;|"'=Sp™'|(1-iDe,)/(1-iDe)|~""*. For
De=0, the purely viscous case, £ is set by the sperm number
alone; a stiff filament with small sperm number has large &
and acts as a rigid rod, while a flexible filament with large
sperm number has small & and can bend in response to vis-
cous forces. Increasing the Deborah number acts to increase
& In Fig. 3, the amplitude of the prescribed driving angle is
selected so that the maximum displacement of the filament is
L/10, and then printed above each figure. The beating pat-
tern is linear in the amplitude of the driving angle. Due to
larger bending lengths, &, in viscoelastic fluids, smaller driv-
ing angles are typically required to produce the same ampli-
tude motion.

The beating patterns in Fig. 3 also demonstrate that vis-
coelastic effects alter the nature of the beating patterns as
expected from the form of Eq. (42): for De=0, we obtain
traveling wave beating patterns, while for large De, in the
elastic limit, we obtain standing wave beating patterns.

From Eq. (27) we find the time-averaged power dissipated

—iDe,

(P )—g—LRe desw2|i7|2l— (45)
M= 0 1 -iDe

PHYSICAL REVIEW E 78, 041913 (2008)

1.0
0.7

P(De)/P(0)

FIG. 4. Time-averaged power dissipated by passive filaments
driven by prescribed angle, as a function of De=w\ (dashed curve).
Power is normalized to the power dissipated in the viscous case
De=0. The black curve corresponds to the power dissipated if the
beating pattern does not change from the viscous case, but the fila-
ment is placed in a viscoelastic medium. In both cases, Sp=7. The
driving amplitude is chosen so that the maximum amplitude of the
beating pattern is L/10 in the viscous case. The ratio of solvent
viscosity to the total viscosity is 7,/ 7=De,/De=107%.

,1+DeDe, (*
P R
2(1+De?) J,

=, ds|hl?. (46)
The power dissipated by each beating pattern is printed
above the images in Fig. 3. Note that the power dissipated is
proportional to the beating amplitude squared, and hence
also proportional to €. Figure 4 shows the power dissipation
versus Deborah number (dashed curve) for Sp=7 and con-
stant driving amplitude. We also display the power dissipa-
tion, Eq. (46), evaluated with the purely viscous (De=0)
shape & (solid curve). Note that the difference in shape /i
between the viscous and viscoelastic cases has little effect.
The power is mainly governed by the explicit factors of De
in the relation between fogroyq and .

C. Active filaments
1. Fixed head

Examining Eq. (36), we find that it only differs from the
passive case at the boundary conditions and by the presence
of an inhomogeneous term. Therefore we may use the homo-
geneous solution from the previous subsection,

4

hy(s) = E C; exp(r;s), (47)
j=1

and add to it a particular solution. As in the passive case,
beating patterns with traveling waves are expected in the
viscous limit, and increasing the Deborah number leads to
beating patterns with characteristics of standing waves.

To find the particular solution, let us assume that the in-
ternal sliding force takes the form of a traveling wave

Fiu(s) =Re{f,, exp(iks — it)}. (48)
In that case, we can write the particular solution
hy = ikfne™/[-iSp*(1 - iDe,)/(1 — iDe) + k*].  (49)

Again the four boundary conditions set the four unknown
coefficients, and the full time-dependent solution is

h(s,t) = Re{e [ hy(s) + hyl}. (50)
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FIG. 5. (Color online) Shapes of beating patterns for filaments with internal sliding forces and fixed head position, with Sp=7. A half
cycle of the pattern is shown for viscous (De=0) and viscoelastic (De=100) cases, and for internal sliding forces given by Eq. (48) with k/L
varying from 0 (uniform force) to 877, as indicated. Time sequence: solid (red), short dash (orange), long dash (green), long dash-short dash

(blue), dash-dot (purple). At the top of each figure, we print the (dimensionless) magnitude f,, required to produce motion with amplitude
0.1L, and the (dimensionless) power dissipated by the motion. The ratio of solvent viscosity to the total viscosity is 7,/ 7=De,/De=107%,

The beating shapes of the active flagellum and a fixed
head are shown in Fig. 5, for De=0 (viscous case) and De
=100 (viscoelastic case), and for various spatial dependen-
cies of the internal sliding force. Similarly to the passive
case, the beating amplitude is proportional to the driving

force f,,. The forces required to produce beating with ampli-
tude 0.1L are larger in the viscous cases than the viscoelastic
cases, again since the bending length ¢ is longer in the vis-
coelastic case than the viscous case. Just as in the case of the
passive filament, the effect of the length scale & can be seen
by comparing the viscous and viscoelastic cases. However,
the wavelength 27/k of the sliding force introduces another
length scale. The combined presence of two different length
scales can be seen, for example, in the shape of the hinged
filament with De=0, and (dimensional) k=87/L. In this ex-
ample, ¢ is longer (and is the same as that seen for all the
De=0 shapes of Fig. 5), while the shorter scale 27/k leads to
ripples on top of the longer deformation. Comparing the vis-
cous to viscoelastic case, one can also see a decrease in the
visible effects of the shorter lengthscale arising from the in-
ternal forces as & increases and the shape is dominated by
drag forces. For example, consider Fig. 6, which shows the
effect of varying the Sperm number for an internal sliding

force with (dimensional) k=8r/L. As the Sperm number in-
creases, & decreases and smaller length-scale motions be-
come more visible. One implication of the presence of these
two length scales is that the observed “wavelength” of a
beating pattern does not necessarily give direct information
about either length scale.

The time-averaged power dissipated by the clamped and
hinged internally driven filaments can be calculated as in the

previous section, and is proportional to ffn The power versus
De for a constant driving force, normalized by viscous power
with A=0, is shown in Figs. 7(a) and 7(b). Also shown for
comparison is the power dissipated assuming that the beating
shape of the viscous case is prescribed for the viscoelastic
cases. For both prescribed forces and velocities, the growing
imaginary component of the viscosity shifts the drag force to
be out of phase with the velocity, decreasing the power dis-
sipated. However, for large De the power dissipated for pre-
scribed forces is always greater than that dissipated for pre-
scribed velocities, because as De increases, the real part of
the drag decreases in amplitude. Thus prescribed forces lead
to motion with larger amplitude and velocity, and therefore
more power dissipated relative to the case with prescribed
velocities.
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FIG. 6. (Color online) Shapes of beating patterns for hinged
filaments with internal sliding forces, with varying Sp. A half cycle
of the pattern is shown for viscous (De=0) and viscoelastic (De
=100) cases, and for internal sliding forces given by Eq. (48) with
k/L=8r. Time sequence: solid (red), short dash (orange), long dash
(green), long dash-short dash (blue), dash-dot (purple). At the top of
each figure, we print the (dimensionless) magnitude f,, required to
produce motion with amplitude 0.1L, and the (dimensionless)
power dissipated by the motion. The ratio of solvent viscosity to the
total viscosity is 7,/ 7=De,/De=107*,

2. Comparison to experimental beating patterns

The equation of motion for the active filament, Eq. (36),
allows us to understand some of the qualitative changes in
the shapes of beating patterns of sperm flagella in different
media. There have been several studies observing the differ-
ent beating patterns of sperm in media with increased viscos-
ity and viscoelasticity [3-5]. Of these, we focus on the paper
of Ishijima et al., because it combines a systematic study of
beating patterns in different media with measurements of vis-
cosity using a falling-ball rheometer, and because its use of a
pipette to hold the heads of observed sperm still makes its
results amenable for modeling. In Fig. 8(a), the beating pat-
terns of human sperm in Hanks’ medium with viscosity of
1 cp, 35 cp, 4000 cp, and cervical mucus with viscosity
4360 cp are shown. The 35 cP and 4000 cP viscosity media
are made by adding polyvinylpyrrolidone and methylcellu-
lose, respectively, to Hanks’ medium (a Newtonian solution
of salts and glucose in water). As viscosity increases, motion
is concentrated at the distal end, and motion in the proximal
and middle portions of the flagella is damped out. Similar
behavior was observed in Refs. [3,5].

At very high viscosity, asymptotic analysis of the equation
of motion Eq. (36) demonstrates that most of the beating
motion occurs at the end of the flagellum. For concreteness,
because the beating patterns in Fig. 8(a) were obtained while
the sperm head was held in place by a pipette, we use
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P(De)/P(0)

P(De)/P(0)

FIG. 7. Time-averaged power dissipated by filaments with ac-
tive internal sliding forces, as a function of De=w\. Power is nor-
malized to the power dissipated in the viscous case De=0, with
force amplitude such that maximum filament displacement in the
viscous case De=0 is 0.1L. Different curves correspond to sliding
forces given by Eq. (48) with different values of k: dashes, k=0;
long dashes, k=m/L; long dash-short dash, k=3m/L. The solid
curve is the power dissipated by a filament with a beating shape
corresponding to the viscous case (De=0). In all cases, Sp=7. The
ratio of solvent viscosity to the total viscosity is 7,/ 7=De,/De
=107 (a) Fixed head with clamped attachment point. (b) Fixed
head with hinged attachment point.

clamped boundary conditions to model the motion. Further-
more, since wavelengths of 26—28 um were observed in the
low viscosity media for flagella of overall length =40 um,
we assume a sliding force with (nondimensional) k=37 and
the form of a traveling wave,

fm() =Re{fre ). (51)

Then the inhomogeneous part of Eq. (36) has the particular
solution

h, = ikfne™/[- iSp*(1 - iDe,)/(1 — iDe) + k*].  (52)
while the homogeneous part /,(s) obeys
1- iD62
—iSp*———h,+h]" =0, 53
1Sp 1—iDe ™' (53)

with boundary conditions

By (1) = (1) = By (1), (54)
hy(1) == hy(1), (55)
hy(0) = = h,(0), (56)
hy(0) = = 1y (0). (57)

We analyze the homogeneous solution by asymptotically
matching solutions appropriate for the middle of the flagel-

041913-8



BEATING PATTERNS OF FILAMENTS IN VISCOELASTIC ...

Y

fn=119.4 L= 13.6

a)

b) fn= 179 L/é= 5.6
0.1

0.0

-0.1

PHYSICAL REVIEW E 78, 041913 (2008)

fn=8534.0 L= 37.7 fn=13385 L/i= 17.0

0.1 0.1
0.0}« _ 0.0
i
~041 ~041
0 1 0 1

FIG. 8. (Color online) (a) Beating patterns of human sperm observed by Ishijima et al. [4] in (from left to right) 1 ¢cP Hanks’ solution,
35 cP Hanks’ solution, 4000 cP Hanks’ solution, 4360 cP cervical mucus. The sperm heads (on the left side of images) are held in place with
a micropipette tip. The contour lengths of the flagella are approximately 40 um. The thick (blue) line on the third panel indicates the
maximum deflection angle 6(s). (b) Shapes of beating patterns for filaments with internal sliding forces, fixed head position, and clamped
boundary conditions. A half cycle of the pattern is shown for internal sliding forces given by Eq. (51) with k/L=37. Time sequence: solid
(red), short dash (orange), long dash (green), long dash-short dash (blue), dash-dot (purple). From left to right, the sperm numbers are 5.6,
13.6, 37.7, and 45, corresponding to viscosities of 1 cP, 35 cP, 4000 cP, and 4360 cP. In the first two plots, the medium is purely viscous,
while in the third plot, De=0.5 and De,=0.5/4000. In the fourth plot, De=50 and De,=50/4360. At the top of each figure, we print the

(dimensionless) magnitude f,, required to produce motion with amplitude 0.1L, and the length scale £.

lum with solutions appropriate for “boundary layers™ at the
ends of the flagellum. At high viscosity, the sperm number is
large, and therefore the term involving the fourth power of
the sperm number in Eq. (53) dominates. Throwing out the
other terms, we find that the homogeneous solution vanishes.
This balance is valid for the middle of the flagellum. But in
a boundary layer near the ends of the flagellum, the homo-
geneous solution may vary rapidly, making the term with
derivatives important. The size of this boundary layer can be
expected to be of order é=L|(1-iDe)/(1-iDe,)|"*/Sp. Mea-
suring lengths by ¢, i.e., x=s/& for the proximal region, x
=(L-s)/¢ for the distal region, we obtain the equation of
motion,

0=—ey +d'h, (58)
. 1-iDe, | 1-iD
ol =j— 2| 2T (59)
1—-iDe | 1 -iDe,
At the proximal end, the boundary conditions are
hh(x = 0) == hp(o)s (60)
dhy(x=0)=- 0xhp(x =0), (61)
hy(x — ) =0, (62)
while at the distal end, the boundary conditions are
Tihy(x=0) == Ef,,(1) = Fhy(x=0), (63)
Fehy(x=0) == Fhy(x=0), (64)
hy(x — ) =0. (65)

In the boundary conditions, the last constraint comes from
the requirement that the solution in the boundary layers as-

ymptotically matches the solution in the middle of the fla-
gellum. The solution to these equations is a linear combina-
tion of four exponential functions:

mx) = X c,exp(p,), (66)
n=0,1,2,3
p,=exp(i0/4 + inm/2). (67)

The p, have real and imaginary parts of similar order, so that
the solutions decay or increase and have spatial oscillations
on a similar length scale, which is approximately £ in dimen-
sional units. Due to the asymptotic matching conditions, only
the exponentials that decrease as x increase are allowed, cor-
responding to p; and p, if 0<6<2m.

At the proximal end, due to the clamped boundary condi-
tions the homogeneous solution must cancel the inhomoge-
neous solution at the attachment to the head. The homoge-
neous solution is specified by

- pyh,(0) + ikh (O
¢ = P2 p( ) l p( )’ (68)
pP2=P1
h,(0) —ikh (O
o, = PI(0) = ik (0) ()
P2 = P1

which has an amplitude of order f,,(£/L)*, the same as the
inhomogeneous solution. At the distal end, the largest term in
the boundary conditions comes from balancing the sliding
force. The homogeneous solution is specified by

_- po(ik)*h,(1) + [Efm(1) + (ik)*hy(1)]
pi(p2—p1)

Cq . (70)
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_ pi(ik)?hy(1) = [En(1) + (K) Ry(1)]
pa(p2=p1)

which has amplitude of order f,,(¢/L)3. For high viscosities
and low to moderate Deborah number this amplitude can be
much larger than the amplitude of the proximal and inhomo-
geneous solutions. In the viscous case, with De=0, and high
viscosity, the ratio between the amplitude of the homoge-
neous and inhomogeneous solution in the distal portion of
the flagellum is of order k/Sp.

To summarize, in the middle of the flagellum the homo-
geneous solution vanishes and the beating shape is domi-
nated by the inhomogeneous solution, which has a magni-
tude which decreases as viscosity increases, and is small for
high viscosity. At the proximal end of the flagellum, the ho-
mogeneous solution is of the same order as the inhomoge-
neous solution due to the clamped boundary conditions. On
the other hand, the motion at the distal end is dominated by
the homogeneous solution, has larger amplitude than the
middle portion, decays exponentially with a length scale &,
and can have oscillations with wavelengths up to a few times
smaller than & Thus in high viscosity solutions the motion of
flagellar beating patterns are constrained to the distal tip.
Although we assume only a single mode of the sliding force,
the asymptotic analysis is generally valid, and should also
apply to more realistic sliding forces.

In Fig. 8(b) we plot flagellar beating patterns for a sliding
force of k=37/L. We constrain the motion to lie in a two-
dimensional plane for simplicity, although the observed beat-
ing patterns are three dimensional. These beating patterns are
obtained by solving the linear Eq. (36) exactly, i.e., not using
the asymptotic analysis. In this modeling we assume the pure
Hanks’ solution and Hanks’ solution with polyvinylpyrroli-
done to be Newtonian. For the Hanks’ solution with methyl-
cellulose we assume a Deborah number of 0.5, correspond-
ing to a beating frequency of 7 Hz [4] and a relaxation time
constant of about 1072 s [24]. For the cervical mucus we
assume a Deborah number of 50, corresponding to a beating
frequency of 12 Hz [4] and a relaxation time constant of a
little less than a second [25]. To determine De, we use the
ratio 7,/ n=1 cP/4360 cP. The sperm numbers are deter-
mined from L=40 um, /, =275, A=4X 10722 Nm? [11], vis-
cosities from Fig. 8 and frequencies of 12 Hz for the 1 cP
and 35 cP media, 7 Hz for the 4000 cP media, and 12 Hz for
cervical mucus [4].

In the plots, the amplitude of the beating pattern is pro-

Cy . (71)

portional to the driving force fun- The amplitude in the middle
sections is therefore nearly completely suppressed as viscos-
ity increases as compared to the amplitude in the 1 cP case.
At the same time, the motion near the end of the flagellum is
relatively unsuppressed. In addition, the observed beating
pattern in cervical mucus has motion extending farther away
from the distal end than the beating pattern in 4000 cP
Hanks’ solution, in both the experimental [Fig. 8(a)] and
modeled [Fig. 8(b)] beating patterns. This agrees with the
fact that the length scale & decreases as viscoelastic effects
become important.

Finally, in Fig. 9, we plot the result from the asymptotic
analysis for parameters corresponding to the third case of
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FIG. 9. (Color online) Shape of beating pattern for filament with
internal sliding forces, fixed head position, and clamped boundary
conditions obtained from asymptotic analysis. A half cycle of the
pattern is shown for internal sliding forces given by Eq. (51) with
k/L=3. Time sequence: solid (red), short dash (orange), long dash
(green), long dash-short dash (blue), dash-dot (purple). The sperm
number is 37.7, corresponding to a viscosity of 4000 cP, and De
=0.5, while De,=0.5/4000. At the top of the figure, we print the
(dimensionless) magnitude f,, required to produce motion with am-
plitude 0.1L, and the lengthscale &.

Fig. 8 (4000 cP Hanks’ solution). The asymptotic solution
matches the exact solution quite well.

VI. DISCUSSION

In a viscoelastic medium the forces exerted on a flexible
swimmer are different from those exerted by a Newtonian
medium. We have calculated the viscoelastic forces for a
medium with fading memory using resistive force theory.
The effects of hydrodynamic forces on flexible swimmers
can be seen in the passive filament model we have described.
We have also used a simple model of an active filament to
shed some light on the motion of sperm flagella in different
media.

In agreement with experimental observations, the sliding
filament model shows that the beating is confined to the dis-
tal tip for the high viscosity Hanks’ solution. While the ex-
perimental beating patterns are qualitatively explained by the
high-viscosity asymptotic analysis, and the solutions in Fig.
8(b) show the same qualitative trends, our model is not quan-
titatively accurate. For example, in the cervical mucus, our
model shows much less confinement of motion to the distal
tip than the observed beating patterns. In particular, we note
that according to our model, only the third panel of Fig. 8(b)
is in the strongly asymptotic regime, in contrast to the beat-
ing patterns of Ishijima ef al., in which the motion in cervical
mucus also seems to be in the asymptotic regime. The dis-
crepancy between our models and the observed beating pat-
terns may be due to an overestimation of the Deborah num-
ber, or our approximation of small amplitudes. The actual
beating patterns show large amplitudes and curvatures; for
example, the maximum deflection angle shown in Fig. 8(a)
corresponds to a sliding amplitude A(s)=-3aw/4~-2.4a.
Another source of discrepancy is our use of a simple form of
the sliding force. Ishijima et al. observe varying beating fre-
quencies in different media, indicating that the sliding force
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itself is changing in response to the different drag forces
exerted in different media. Changes in the active force due to
changes in the media have been modeled by various workers
[12,26,27]. We have specified a fixed force; however, our
analysis might be useful in extending studies of the sliding
mechanism such as in Ref. [12] to high viscosity and vis-
coelastic situations. Finally, our simple model does not take
into account the possibility of non-Newtonian behavior
which extends beyond viscoelasticity in Hanks’ medium with
added polymers. We note that in the case of methylcellulose
solutions, the swimming of bacteria with helical flagella has
been analyzed by introducing different viscosities for parallel
and perpendicular drag coefficients [28]. This type of treat-
ment would not affect our results, since at first order the
shape is determined solely by the perpendicular drag compo-
nent in our model. However, the work of Ref. [28] points out
that care should be taken to measure appropriate viscosities
for flagellar movements, especially as the viscosity of me-
thycellulose solutions is known to be shear-rate dependent.

Our work is a first step to understanding how swimming
is modified in a complex medium. There is scope to expand
these studies, probably numerically, in addressing questions
such as the role of end effects and associated elongational
flows, the role of drag from a head and the role of large
amplitude motion in viscolastic fluids. In addition, many bio-
logical media, including mucus in the reproductive tract, are
gels, which may be expected to have different effects on the
swimming than fluids.
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APPENDIX: PROBLEMS WITH APPLYING LINEAR
VISCOELASTIC CONSTITUTIVE RELATIONS
TO SWIMMING VELOCITY

We have seen that both the leading-order shape of a beat-
ing filament and the power dissipated by a filament are de-
termined by the linearized form of the nonlinear constitutive
relation (18),

THNT= Y+ Y. (A1)

We have also noted that for the linear constitutive relation
(A1) with 7,=0, the swimming speed of a filament with
prescribed shape is the same as the speed for a filament in a
Newtonian fluid [16]. Finally, we have emphasized that since
the leading-order form of the swimming velocity is quadratic
in the deflection of the filament, the use of Eq. (Al) to cal-
culate swimming velocity fails to capture leading-order
terms arising from the full nonlinear constitutive relation
[15,17]. In this Appendix, we show that the use of Eq. (Al)
to calculate a swimming speed not only misses important
leading-order contributions, but also leads to inconsistent re-
sults.
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FIG. 10. (Color online) Infinite filament in a viscoelastic me-
dium on a table rotating with angular speed (). The coordinates
{x,y} rotate with the table; {x’,y’} are space fixed.

The origin of the inconsistency is the fact that linear vis-
coelastic models are inapplicable when displacement gradi-
ents become large. The classic illustration is the case of a
shear flow in a channel on a slowly rotating table [6]. If the
rotation rate is small enough that fictitious forces such as the
centrifugal and Coriolis forces are negligible compared to
the viscous forces acting on the polymers in solution, then
the zero-frequency shear modulus 7, must be independent of
the rotation speed (). A short calculation shows that Eq. (A1)
predicts that 7, calculated in the rotating frame, depends on
Q, an unphysical result [6].

Now consider a swimmer in a medium governed by Eq.
(A1). To simplify the algebra, we consider an infinitely long
active filament with no resistance to bending, A=0, or Sp
— ., The sliding force has the traveling wave form of Eq.
(48). The swimmer and the medium are on a table that ro-
tates with angular speed () (Fig. 10). Since () is small
enough to make fictitious forces negligible, the swimming
speed U in the body-fixed frame {&,,é&,} cannot depend on ()
and must be the same as the swimming speed in the absence
of rotation.

The resistive force theory corresponding to Eq. (Al) is
Eq. (24). The components of the forces in the body-fixed
frame obey

M= Qf) + foi== U= (L = §)dhah,  (A2)

Ny + QF) +fy= 1. (A3)
Just as in our analysis in the main text, the force f from the
medium balances the internal force on the filament: f+f;
=0. In the limit of vanishing bending stiffness,

fim == aaxfmé_v'

(A4)
Examination of the spatial average of Eq. (A2) shows that
the swimming velocity vanishes to first order in deflection,
UM=0. To second order, Eq. (A2) implies
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44 (AS)

Thus, to find the swimming velocity, we must solve Egs.
(A2) and (A3) for the first order deflection,

(1 -iDe)? + N2Q? akf,,
1-iDe Lo

h=- (A6)

Using this expression in Eq. (A5) leads to

PHYSICAL REVIEW E 78, 041913 (2008)

ko, = § (1+NQ% - De?)* +4De” ok [f
2 §|| 1+ D62 é«i (1)2

U® =

(A7)

Linear resistive force theory predicts that the swimming ve-
locity of an active filament on a rotating turntable depends
on the rate of rotation of the turntable. This result is unphysi-
cal, and leads to the conclusion that linearly viscoelastic con-
stitutive relations should not be applied to the swimming
problem.
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