
Standard and nonstandard nematic electrohydrodynamic convection
in the presence of asymmetric ac electric fields

Jonathan Low* and S. John Hogan
Department of Engineering Mathematics, University of Bristol, Queen’s Building, Bristol BS8 1TR, United Kingdom

�Received 23 April 2008; published 16 October 2008�

In planar nematic electrohydrodynamic convection �EHC�, a microscopic liquid crystal cell is driven by a
homogeneous ac electric field, which, if strong enough, causes the fluid to destabilize into a regular pattern-
forming state. We consider asymmetric electric fields E�t�=E�t+T��−E�t+T /2�, which leads to the possibility
of three different types of instabilities at onset: conductive, dielectric, and subharmonic. The first two are
already well known as they are easily produced when the system is driven by symmetric electric fields; the
third can only occur when the electric field symmetry is broken. We present theoretical results on EHC using
linear stability analysis and Floquet theory. We consider rigid and free boundary conditions, extending the
model to two Fourier modes in the vertical plane, the inclusion of flexoelectricity, and using standard �nematic
electric conductivity �a�0 and dielectric anisotorpy �a�0� and nonstandard ��a�0� material parameters. We
make full use of a three-dimensional linear model where two mutually perpendicular planar wave numbers q
and p can be varied. Our results show that there is a qualitative difference between the boundary conditions
used, which is also dependent on how many vertical Fourier modes were used in the model. We have obtained
threshold values favoring oblique rolls in subharmonic and dielectric regimes in parameter space. For the
nonstandard EHC parameter values, both conduction and subharmonic regimes disappear and only the dielec-
tric threshold exists.
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I. INTRODUCTION

Planar nematic electrohydrodynamic convection �EHC� is
an example of a pattern-forming system where a nematic
liquid crystal confined in a cell of microscopic thickness is
driven out of equilibrium by a vertically applied electric
field. Above a certain electric field amplitude, the basic state
of the liquid crystal destabilizes into regular roll patterns.
These will be dynamic in nature under an ac electric field.
Such a system is popular with experimentalists because of
the ease of control of the external parameters and the obser-
vation of the transition between pattern states. Examples of
such parameters are liquid crystal temperature and the fre-
quency and type of applied electric field. An in-depth intro-
duction and review into pattern formation in liquid crystals
can be found in Buka and Kramer �1� and Buka et al. �2,3�.

For standard nematic EHC, a liquid crystal must have its
conductive anisotropy �a positve and its dielectric anisotropy
�a negative. This has been the de facto standard for EHC
studies and has been extensively covered in both theoretical
and experimental studies where the Carr-Helfrich mechanism
�4,5� for instability is employed. The first such studies under
time-dependent electric fields go back to de Gennes, Dubois-
Violette, and Parodi �6� where two types of instabilities, con-
ductive and dielectric, were discovered depending on the fre-
quency of the ac field. The transition from conductive to
dielectric patterns occurs at a particular frequency value fc.
Dubois-Violette carried out a further study under square-
wave and sinusoidal fields �7� and a more analytical study
was done for the symmetric field case �8�. Krekhov et al.
have recently looked at the situation where the value of �a

changes sign �9�. In the standard theoretical model, no insta-
bility occurs unless flexoelectricity is included in the model,
which then becomes the main mechanism for instability.

In this paper we focus on results obtained when applying
an asymmetric electric field to the cell. John and Stannarius
�10� were the first to demonstrate that an electric field which
did not have the symmetric property E�t�=−E�t+T /2� can
cause the first pattern transition to consist of T-antiperiodic
pattern dynamics in certain areas of parameter space, rather
than the usual T-periodic conductive and dielectric regimes.
More interesting was the fact that such an electric field turns
out to be a necessary but not a sufficient condition for the
bifurcation to be of this type �10,11�; conductive and dielec-
tric dynamic instabilities are possible with such asymmetric
fields. From a mathematical perspective, a linear stability
analysis can determine the type of onset pattern by calculat-
ing the Floquet multipliers of the linearized system. If the
largest multiplier passes +1, the onset pattern is conductive
or dielectric. Passing through −1 gives a subharmonic bifur-
cation.

In this paper we extend the work of John and Stannarius
�10�. The next section presents the equations on which the
theoretical analysis is based, which includes extending the
two-dimensional �2D� linear model that they have used. Here
we move to the 3D model, using rigid boundary conditions
and the inclusion of flexoelectricity. Section III covers the
results of our theoretical analysis. In the first part, we show
the qualitative and quantitative difference between free and
rigid boundary conditions, the 2D and 3D models, and using
one and two vertical Fourier modes. The second part of Sec.
III deals with the threshold curves and dynamics in the non-
standard electroconvection scenario, using both symmetric
square-wave and asymmetric piecewise constant electric
fields. Section IV summarizes the results, together with a
conclusion.*j.low@bristol.ac.uk
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II. GOVERNING EQUATIONS

A nematic cell is modeled by an infinitely extended hori-
zontal plane parallel to the x-y axes with boundaries equidis-
tant from the plane at z=0 with a thickness d in order of
micrometres. The homogeneous applied electric field E�t�
acts parallel to the z axis. The governing equations are the
Ericksen-Leslie1 dynamic equations �12�, which describe the
linear and angular momentum of the nematic director field
n�x ,z , t�, the poloidal and toroidal velocity potentials
f�x ,z , t� and g�x ,z , t�, respectively, together with the quasi-
static Maxwell’s equations describing the electric potential
��x ,z , t�. Here, x= �x ,y� describes the Cartesian plane paral-
lel to the electrode plates. The full linear equations are given
in Appendix B.

Rather than writing out the detailed derivation leading to
the linearized system of equations, we focus on the math-
ematical approach we take here in comparison to the theo-
retical models used by Stannarius and co-workers and Pesch
and co-workers.

A. Adiabatic approximation

Physically, the adiabatic approximation assumes that the
inertia of the system is negligible compared to the viscous
forces. Hence the equations are derived in the viscous limit
of hydrodynamics where the nondimensionalized mass den-
sity term is set to zero and this allows further simplification
of the system by eliminating both velocity variables and end-
ing up with a set of ordinary differential equations �ODEs�
implicit in f and g. This approximation is very good for two
reasons. The first is that the difference of the resulting Flo-
quet multipliers of the linearized system is negligible, of the
order of 10−3. The second is of practical importance in cal-
culating the Floquet multipliers and the periodic solutions at
onset with the current numerical code we have. Without this
approximation, one is left with an ODE system where the
velocity potentials f and g jump sharply at the points where
the applied ac electric field changes value. As a consequence,
MATLAB’s built-in ode45 solver fails to compute a numeri-
cal solution. This approximation gets around this difficulty. It
is worth mentioning that several published papers use this
approximation where this leads to the derivation of a 2�2
system of ODEs �6,8,10,11,13,14� consisting of the charge
density2 �e and the nz director deflection in a 2D setting.

B. Nondimensionalization

We apply the nondimensionalization scheme �9,15,16� to
the set of linearized equations, resulting in two nondimen-
sionalized parameters of the system,

R = �Vapp

V0
�2

, Q =
�0	0d2

�0K0
2 , �1�

where R is a measure of the amplitude of the applied electric
field on the system. Referring to Fig. 1, the asymmetric field

is a superposition of a low-frequency square wave with am-
plitude Rl and another which has 4 times its frequency and an
amplitude Rh. This frequency ratio of 1:4 remains fixed
throughout this paper. The voltages are related by V�l/h�
=V0

�R�l/h�, and Vapp takes Vl or Vh as appropriate. The values
R1 and R2 are given as

R1 = Rl + Rh + 2�RlRh, �2�

R2 = Rl + Rh − 2�RlRh. �3�

When we use these asymmetric fields in our calculations,
both Rl and Rh are the parameters we vary. For calculations
involving symmetric fields, amplitude R and field frequency
are the changing parameters. The other nondimensional num-
ber Q is a measure of the charge relaxation time to director
relaxation time ratio. The time variable is nondimensional-
ized using �DD which is the director-diffusion time �15�.

C. Vertical fourier modes and boundary conditions

In this paper, we present results which use both free and
rigid boundary conditions. The former is numerically easy to
implement, but are unrealistic since the no slip condition
does not hold. The latter requires the governing equations for
the poloidal velocity potential f to be coupled with Chan-
drasekhar functions �17�. In both cases, we use the “planar”
alignment configuration where the nematic director n is
strongly anchored parallel to the boundaries.

The free boundary conditions are given, in nondimen-
sional form, as

n�z = � 
/2� = �1,0,0� ,

��z = � 
/2� = g�z = � 
/2� = 0,

f�z = � 
/2� = �z
2f�z = � 
/2� = 0.

They can be satisfied by using the sine ansatz for all vari-
ables: namely,

S1�z� = sin�z + 
/2� for the first z mode, �4�

1Some papers refer to it as the Navier-Stokes equations along with
the stress tensor for nematic liquid crystals containing the Leslie
viscosities 	i.

2Electric potential � and charge density �e and related via Max-
well’s equations �Eq. �B5�� with Eq. �B12�.
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FIG. 1. �Color online� One full period of the nondimensional-
ized wave form of E�t�=V�t� /d= �Vapp /d�Eac�t�= �V0 /d��REac�t�,
where Vapp is the amplitude of the applied voltage. The nondimen-
sional time period is T=1 / �fq�DD�, where fq is the frequency of
E�t�.
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S2�z� = sin�2�z + 
/2�� for the second z mode. �5�

For the rigid boundary conditions

n�z = � 
/2� = �1,0,0� ,

��z = � 
/2� = g�z = � 
/2� = 0,

f�z = � 
/2� = �zf�z = � 
/2� = 0,

the first derivative of the velocity potential f can be satisfied
by using the orthogonal Chandrasekhar basis functions
which form a vector space. The first mode is the leading even
function

C1�z� =
1
�2� cosh�
1z�

cosh�


2

1� −

cos�
1z�

cos�


2

1�	 , �6�

and the second mode is the leading odd function

C2�z� =
1
�2� sinh��1z�

sinh�


2
�1� −

sin��1z�

sin�


2
�1�	 , �7�

where 
1=1.505 62 and �1=2.499 75, which satisfy the con-
dition �zC1��
 /2�=�zS1��
 /2�=0. Here the functions are
normalized such that

2






−
/2


/2

C1�z�C1�z� = 1,

2






−
/2


/2

C1�z�C2�z� = 0.

One of our models uses the first two modes for each variable.
The leading mode approximation is also used in this paper
for the purpose of showing the quantitative difference be-
tween free and rigid boundary conditions for one set of re-
sults. Examples of threshold curves using both types of
boundary conditions separately under a sinusoidal driving
electric field can be found in Bodenschatz et al. �18�.

D. ODE system

Using two z modes and representing the planar fluctua-
tions as horizontal complex Fourier modes, the perturbations
to the basic state take the form

f�x,z,t� = f1�t�exp�iq · x�S1�z� + f2�t�exp�iq · x�S2�z� �8�

for each of the variables where q= �q , p� is the wave-number
vector. For rigid boundary conditions, the velocity f takes the
alternative form

f�x,z,t� = f1�t�exp�iq · x�C1�z� + f2�t�exp�iq · x�C2�z� ,

�9�

while the remaining variables take the form of Eq. �8�. Sub-
stituting the ansatz into the governing equations, linearizing
about the basic state, and applying the adiabatic approxima-

tion results in a 6�6 ODE matrix system, which takes the
canonical form

B0�t;R��tV0�t� = LR�t;R,Q�V0�t� , �10�

where V0�t�= ��1�t� ,�2�t� ,ny1�t� ,ny2�t� ,nz1�t� ,nz2�t�� and
some of the matrix coefficients depend on time. For the
one-z-mode model, the system reduces to 3�3 with V0�t�
= ��1�t� ,ny1�t� ,nz1�t��. The one-mode 2�2 1D and 2D ver-
sions have been studied before �6,10,13�. The coefficients of
B0�t ;R� and LR�t ;R ,Q� contain numerical values as a result
of projecting the equations onto the z modes. For free bound-
ary conditions, they either take the value 1 or −1 after nor-
malization, whereas for rigid boundary conditions they take
various numerical values since the sine and Chandrasekhar
functions are not orthogonal: i.e.,



−
/2


/2

C1�z�S1�z�dz � 0. �11�

The explicit form of Eq. �10� can be found in the Appendix
of papers by Kaiser and Pesch �16� and Krekhov et al. �9�.
However, for completeness, the full linear equations are re-
produced in Appendix B, which includes the finer details
such as viscosity combination terms, the explicit values
when the ODEs are projected onto the z modes, and the
differences between the one- and two-z-mode models.

Notice that we do not break the time dependence into its
Fourier modes. An example where Fourier modes in time are
used in EHC can be found in Bodenschatz et al. �18�, but
here we solve the ODE system forward in time over one or
two periods of the electric field cycle. For the purpose of
finding the Floquet multipliers, we take advantage of the
piecewise constant form of the electric field and calculate the
eigenvalues of the resulting chain of matrix exponentials. For
square waves it is

V0�nT� = �S� �−�P� �−�S� �+�P� �+��nV0�0� , �12�

and for the asymmetric electric wave forms it is

V0�nT� = PnV0�0� , �13�

where

P = S� EA� 2S� MA� 1, �14�

with

A� 1 = P� �+−�S� �++�P� �++�S� �+−�P� �+−�S� �++�P� �++� �15�

and

A� 2 = P� �−−�S� �−+�P� �−+�S� �−−�P� �−−�S� �−+�P� �−+�. �16�

The S� matrices relate to the fact that the electric potential �
is discontinuous as a result of the jumps in the electric field
and the P� matrices are the calculated matrix exponentials.
These can be worked out in Appendix C, including the terms
S� M and S� E, which just involve Eac changing sign in the
middle and at the end of the time period T, respectively.

E. Scenario settings

There are already calculated threshold curves in the asym-
metric electric field case in two dimensions �excluding the y
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coordinate� using one z mode without flexoelectricity �10�
which we repeat here for completeness. First we calculate the
threshold curves using rigid boundary conditions and the
same Mischung V material parameters under the following
conditions separately: �a� 2D using one z mode without
flexoelectricity, �b� 3D �wave number p can vary� using one
z mode without flexoelectricity, �c� 3D using using one z
mode with flexoelectricity, �d� 3D using two z modes without
flexoelectricity, and �e� 3D using two z modes with flexo-
electricity.

The asymmetric electric field used in the scenarios above
is a superposition of two square waves, one with 80 Hz fre-
quency and amplitude Rl and the other is a 320-Hz wave
with amplitude Rh. The results of these calculations are pre-
sented and compared in Sec. III A. For nonstandard EHC,
the first thing we did was to repeat the threshold results �15�
using 4–methoxybenzylidene-4’-butylaniline �MBBA� pa-
rameters and show the differences between our results and
theirs. We would expect some differences since we are using
a square-wave rather than a sinusoidal electric field and, as
mentioned before, we do not solve the system using a Fou-
rier series in time and we limit our model to two z modes.
The main point here is that we are on the lookout for the
existence of threshold curves when �a�0 using our model.
From there on, we calculate the threshold curves using the
asymmetric field, varying �a in the same way as we did for
the symmetric field case. In addition, we look at the cases
with and without flexoelectricity separately to see if electro-
hydrodynamic instability can be achieved purely by the
asymmetric field influence. We construct the asymmetric
electric field by superimposing two square waves with 20
and 80 Hz frequencies and use this for calculations involving
MBBA parameters, in order to capture the possible subhar-
monic behavior.

III. RESULTS

A. Standard EHC with Mischung V using free
and rigid boundary conditions

Figure 2�a� shows the calculated threshold using the lead-
ing z-mode approximation, and Fig. 2�b� shows the corre-
sponding wave numbers. The results for free boundary con-
ditions are exactly the values found by John and Stannarius
�10�. As expected, this shows the quantitative difference be-
tween the free and rigid boundary conditions, but we were
surprised at first that the threshold boundary moved away
from the experimental data �10� �not shown here but very
close to the free boundary curve�. The rigid boundary thresh-
old curve would be the starting point in attempting to match
the theoretical and experimental results. The calculation was
repeated, this time allowing for the wave number p to vary.
The optimal wave-number vector q= �qc , pc� turns out to be
normal roll formation with pc=0 everywhere. To check this
was true, the calculations were repeated, this time with the
second z Fourier mode included. The resulting curves for

rigid boundary conditions with and without flexoelectricity3

are shown in Figs. 3–5. Here we see that, with or without
flexoelectricity, the conductive and dielectric areas do indeed
favour normal rolls, but the subharmonic regime favors pat-
terns with a nonzero pc wave number. The critical threshold
plots suggest that flexoelectricity is not a crucial factor in
triggering conductive and subharmonic instabilities as their
respective curves are very close to each other. But we see
that it does significantly affect the dielectric regime, where
we believe the director fluctuations amplify the flexoeffect
through Eq. �B12�. Looking at the critical wave numbers in
Figs. 4 and 5, their magnitudes appear similar in each insta-
bility regime; however, the angle 	=arctan�pc /qc� becomes
nonzero �approximately 10° on average� in the subharmonic
regime. This would seem to confirm the normal rolls ob-
served in John and Stannarius’s experiment �10�, but looking

3For the calculation with the flexoeffect, e1 and e3 were simply
given the same values as MBBA as a first try.
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FIG. 2. �Color online� �a� Threshold curves and �b� correspond-
ing critical qc wave numbers for Mischung V under the one-z-mode
model using both free �solid line� and rigid �dashed line� boundary
conditions.
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at Fig. 2�d� in that paper, the rolls do appear to be slightly out
of alignment with the y axis. In Fig. 5, if one extended the
nonzero 	 dotted line �the subharmonic case� towards the
Vh=50–60 V range, there exists a crossover point from ob-
lique to normal rolls in the case with flexoelectricity, which
happens at around Vh=52 V, but will not happen practically
since this parameter area would be covered by the dielectric
instability which would be observed instead.

Time-periodic solutions

Here we show two examples of the time-periodic solu-
tions at onset in the subharmonic regime. These are exactly
the eigenvectors associated with the Floquet multipler −1.
Figures 6 and 7 show individually the solutions for the six
variables at one particular value of Vh. All subharmonic so-

lutions are T antiperiodic with respect to the driving electric
field because the Floquet multiplier is real and hence obeys
the odd symmetry of the form ��t+T�=−��t�. All variables
including the electric potential � and director deflections
change sign after one period of the driving field and have
zero average across two periods. To compare them with Fig.
1, the time period is T=1 / �fq�DD�=0.3027.

B. Nonstandard electroconvection under symmetric
square-wave driving

Figures 8–10 show the thresholds and their optimal wave
numbers for the case of a planar-aligned nematic cell driven
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FIG. 3. �Color online� Threshold curves for Mischung V using
the full two-z-mode 3D model. The solid lines are the calculated
values without flexoelectricity; the dashed lines are those with
flexoelectricity.
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by a symmetric square-wave field. These have been calcu-
lated using the 3D linear model using two z modes with the
MBBA parameters �9,19�, while the conductive anisotropy
�a varies. These are similar to the results of Krekhov et al.
�9� since they used a pure sinusoidal driving field and used
many more z modes as well as decomposing the Fourier
expansions in time as well. However, our calculations serve
two purposes here. First is a check of numerical codes. Sec-
ond, these results show that it is possible to obtain the non-
standard electroconvection thresholds by the inclusion of just
two z modes. One difference the reader may notice straight
away is the conduction regime is suppressed sooner as one
ramps through the conductive anisotropy value �a towards
the negative end; the conductive regime area size is already
smaller for �a=0.5 and 0.3. It is already suppressed when
�a=0.1.

C. Nonstandard electroconvection under asymmetric
electric fields

Having obtained critical thresholds for nonstandard EHC
using two z modes, we then proceed to replace the symmetric
driving field with the asymmetric one. For positive �a=0.5
�dashed lines� and 0.3 �dotted lines� in Fig. 11, we obtain the
usual shape of the threshold curves across the range of varia-
tion of the amplitude voltage of the higher frequency electric
field. All three types of instabilities are present, including the
subharmonic region. But as �a varies from 0.3 to −0.1, both
conductive and subharmonic regions disappear and the di-
electric instability dominates with much higher threshold
values which become independent of the variation of Vh; at
these higher values, the asymmetric field nearly becomes a
square wave with small fluctuations. Figure 12 shows the
critical wave numbers obtained. For �a values 0.5 and 0.3,
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the system at Rh=302. All individual modes are now nonzero, but
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in magnitude. The legend is shown in the bottom right-hand corner.
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the curves are qualitatively similar to those for Mischung V
in Fig. 4. Towards negative �a values, the magnitude in-
creases and becomes independent of the amplitude of Vh.
The corresponding wave-number angles in Fig. 13 deserve
comment. For �a taking the values 0.5 and 0.3, the conduc-
tion regime consists of normal roll formation, but for both
subharmonic and dielectric instabilities, oblique rolls are
formed. This is in contrast to Mischung V with flexoelectric-
ity in Fig. 5 where the dielectric regime favors normal rolls.
In addition, the crossover from normal to oblique rolls in the
subharmonic regime for MBBA changes from one �a value
to another. Hence it is possible to influence where the cross-
over happens by altering the material parameters. When �a
moves towards negative values, the same qualitative behav-
ior follows in that the wave-number magnitude becomes
larger and becomes independent of Vh. With a negative or
slightly positive �a, a nonzero pc occurs everywhere
throughout the voltage range Vh with flexoelectricity coming

into play in creating the �dielectric� instability. We performed
stability threshold calculations with no flexoeffect �e1=e3
=0�. Unfortunately, instability was not found in this case.
Krekhov et al. explained that if the body force in the Navier-
Stokes �or Ericksen-Leslie� equations was out of phase with
the driving electric field, then this dampens or suppresses the
torque acting on the nematic director, therefore not creating
the conditions suitable for electrohydrodynamic convection
�9�. This explanation leads to the conclusion that the shape of
the field cannot trigger an instability since the body force is
itself proportional to the electric field and the sign is gov-
erned by the charge density variable �e.

The onset solutions shown in Figs. 14–16 serve to illus-
trate the consequence of breaking the electric field symmetry
E�t�=−E�t+T /2� and their variation at different values of �a.
As a consequence, this eliminates the possible mirror and
rotational symmetries in the solutions found previously of
the form ��t�= ���t+T /2� for symmetric electric fields, but
introduces a new type of solution, subharmonic in nature,
where all the variables flip to their negative initial condition
values after one period of the driving ac voltage and return-
ing to their original values after another period. Starting at
�a=0.5, the solutions show no symmetry between t=0 and
t=T �=1 / �20�DD�=0.3085�. As �a becomes negative, the di-
electric instability dominates. The symmetry of the form
��t�= ���t+T /2� is not found exactly, though it does be-
come close as the asymmetric electric field becomes more
symmetric at higher values of Vl. Notice that the electric
potentials �1 and �2 rapidly become negligible as �a /��

become more negative and the instability becomes dielectric.
The results here show that no subharmonic regime has

been found with negative �a values. We did try to see if it
was possible to obtain instability at negative �a values with-
out the flexoeffect and just using the asymmetric field. How-
ever, we were unable to get subharmonic solutions with
negative �a. Hence the subharmonic regime suffers the same
fate as the conduction regime where the instability area in
the Rl-q plane shrinks in favor of the dielectric regime.
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IV. CONCLUSION AND SUMMARY

The results of standard EHC for Mischung V highlights
the differences depending on the detail of the model used.

Using the 2D one-z-mode linearized system, the critical
threshold lines quantitatively change between using free and
rigid boundary conditions as expected; the largest difference
is in the subharmonic and dielectric areas of the stability
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FIG. 14. �Color online� Onset solutions at Rl=102 for varying �a values over two cycles of the driving electric field. The first two are in
the conduction regime; the rest are dielectric instabilities. The individual modes �1�t�, �2�t�, etc., are shown separately in each diagram. The
legend is shown in �a�.
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diagram. Extending the model to 3D �varying p wave num-
ber� but keeping one z mode did not change the critical
threshold value and normal roll orientation is still preferred.
A qualitative difference emerged when the linearized system
included the second z Fourier mode in the model. Without

flexoelectricity, the result was a nonzero angle formation in
the subharmonic regime. When the flexoeffect was included,
a crossover point from oblique to normal roll formation
emerged in the subharmonic region. It is worth mentioning
that the inclusion of the flexoeffect makes little difference in
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FIG. 15. �Color online� Onset solutions at Rl=302 for varying �a values over two cycles of the driving electric field. The first two are in
the subharmonic regime; the rest are dielectric instabilities. The legend is shown in �a�.
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the critical thresholds and wave-number magnitudes. Finally,
these results would confirm the normal rolls observed in ex-
periments in the conductive and dielectric regimes, but the
theory predicts rolls formed at a small tilt angle, 10° on
average.

In the scenario of nonstandard EHC with symmetric
square-wave driving on MBBA, the results are similar to the
calculations by Krekhov et al. �9� for a sinusoidal field. This
result points out that we still can obtain instability thresholds
with the linearized model that only includes the first two
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FIG. 16. �Color online� Onset solutions at Rl=502 for varying �a values over two cycles of the driving electric field. All instabilities are
in the dielectric regime. The legend is shown in �a�.
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z Fourier modes, albeit with slightly less accuracy compared
to a model that includes ten or more. One minor difference is
the disappearance of the conductive instability even when �a
is still positive at the value of 0.1.

The results for nonstandard EHC under an asymmetric
driving field reveal the rapid disappearance of the conductive
and subharmonic instabilities in favor of the dielectric mode
at higher Vh values. From our calculations, the two regions
vanish when �a=0.1 or less and the dielectic instability then
becomes the only possibility. The calculated wave numbers
in Figs. 5 and 12 show that for standard EHC where �a�0,
the crossover point from oblique to normal rolls is influenced
by the material parameters, including �a. As �a decreases
and becomes negative, both the wave-number magnitude and
angle become nearly independent of varying the Vh
parameter.4 The onset solutions of the individual modes
��1�t�, �2�t�, etc.� have been looked at to observe the sym-
metry broken as a result of using a field such that E�t�=E�t
+T��−E�t+T /2�. All modes are T periodic, but T antiperi-
odic for subharmonic instability. As �a decreases toward
negative values, the modes start to exhibit some regular pat-
tern in the two halves of the electric field cycle, though no
symmetry of the form ��t�= ���t+T /2� has been found ex-
actly. We have tested the scenario of nonstandard EHC insta-
bility with asymmetric driving without the flexoeffect, but
were unable to find such an instability with our parameter
variation. One possible reason for this is that no matter what
the shape of the driving field is, the body force in the linear
momentum of the Ericksen-Leslie equations tells us that it
will always be out of phase with the driving field, therefore
not reinforcing the director fluctuation so no instability hap-
pens.

We summarize by saying the a wider variety of observ-
able patterns is possible in light of the nonzero pc wave
numbers that have been calculated for standard EHC for
Mischung V and the dielectric instability found in nonstand-
ard EHC under an asymmetric driving field. Finally, some
suggestions for future research include using other asymmet-
ric wave forms such as sawtooth excitation along with any
influence they might have and a more analytical study on
why the dielectric instability only occurs in nonstandard
EHC, even though we have director fluctuations both in the
subharmonic and dielectric regimes. It would be attractive to
find analytical conditions than can cause these conditions to
occur or not, similar to the ones found for the simplified 2D
model for standard EHC �11�.
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APPENDIX A: MATERIAL PARAMETERS USED

The material parameters for nematics MBBA and Mis-
chung V used in this paper are in Table I, referenced from

previous works �10,19–21�. Table II shows the scalings used
in order to nondimensionalize the equations.

APPENDIX B: FULL LINEAR EQUATIONS

The linear equations are derived from the full Ericksen-
Leslie dynamic equations �given here in summation notation�
�12,22�

4The asymmetric field nearly becomes a square wave at very high
Vl or Vh values.

TABLE I. Parameters and quantities used in the calculation of
the stability diagram. Values are nondimensional except for the cell
thickness. When using Mischung V with flexoelectricity, we use the
MBBA values as a first try.

Quantity Mischung V values MBBA values

�� 5.6 4.72

�� 6 5.25

�a=�� −�� −0.4 −0.53

�a
a 0.963 0.500

�� 1.926 1.000

	1 20 −18.1

	2 −367 −110.4

	3 0 −1.1

	4 151 82.6

	5 282 77.9

	6 −71 −33.6

�1
b 367 109.3

�2=−�1 −367 −109

�3=−1 /2�	3+	6� 35.5 17.35

�4=1 /2�	5−	2� 324.5 94.15

�5=1 /2�	3+	6� −35.5 −17.35

K1 14.9 6.66

K2 6.48 4.2

K3 13.76 8.61

Cell thickness d 20.2 
m 40 
m

e1 −3.25

e3 −4.59

aWhen �a is not varied in Sec. III, these values are used.
bThe Helfrich notation is used here, as opposed to that used by
Stewart which would be �2 in his book.

TABLE II. Scalings used for nondimensionalization.

Quantity �units� Mischung V MBBA

�0 �F m−1� 8.854�10−12 8.854�10−12

	0 �Pa s� 10−3 10−3

K0 �N� 10−12 10−12

�0 ��−1 m−1� 10−12 10−12

Mass density 	0
2 /K0 �kg m−3� 10−6 10−6

Typical length=d /
 �m� 6.43�10−6 12.73�10−6

�DD=
	0d2

K0
2 �s�
0.0413 0.1621

V0=
�K0 /�0 �V� 1.0558 1.0558
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�m
Dvi

Dt̂
= �Fi − �p + wF�,i + g̃jnj,i + Gjnj,i + t̃i j,j , �B1�

� �wF

�ni,j
�

,j
−

�wF

�ni
+ g̃i + Gi = �ni, �B2�

together with the constraint on the director field,

n · n = 1, �B3�

the equation for continuity,

� · v = 0, �B4�

the quasistatic Maxwell’s equations

� · D = �e, � � E = 0 , �B5�

and an equation describing the dynamics of the current den-
sity,

D�e

Dt̂
+ � · J = 0, �B6�

where t̂ is normal dimensional time in seconds. This gets
nondimensionalized such that t̂=�DDt.

The nematic energy density wF is

wF =
1

2
K1�� · n�2 +

1

2
K2�n · � � n�2 +

1

2
K3�n � � � n�2

−
1

2
�0�a�n · E�2 − E · �e1n�� · n� + e3�n · ��n� , �B7�

where the first three terms make up the Frank-Oseen elastic
energy expression, the last two terms due to the dielectric
and flexoelectric effects. The velocity vector v can be ex-
pressed in terms of the poloidal and toroidal velocity poten-
tials f and g �23� by applying the vector operators

� �2

�z�x
,

�2

�z�y
,−

�2

�x2 −
�2

�y2
 and � �

�y
,−

�

�x
,0
 �B8�

to Eq. �B1�, eliminating the pressure term. So v becomes

v = � �2

�z�x
,

�2

�z�y
,−

�2

�x2 −
�2

�y2
 f + � �

�y
,−

�

�x
,0
g . �B9�

The stress tensor t̃i j,j takes the form of Eq. �2.12� in Plaut and
Ribetta’s paper �24�. This comes from the stress tensor ex-
pression with all six Leslie viscosities, applying the Parodi
relation

	6 − 	5 = 	2 + 	3 �B10�

and substituting in the viscosities �3, �4, and �5. The electric
field is related to the electric potential � by

E = E0 − �� , �B11�

where E0= �0,0 ,E�t�� is the applied electric field. The dis-
placement and current fields D and J, respectively, are given
by the relations

D = �0��E + e1n�� · n� + e3�n · ��n , �B12�

J = �0�� E , �B13�

where e1 and e3 are the flexoelectric coefficients and the
conductivity and dielectric tensors, �� and �� , respectively, are
of the nematic uniaxial form

�ij = ���ij + �aninj . �B14�

One substitutes the variables of the form in Eqs. �8� and �9�
into the equations here and linearize around the basic state:

n = �1,0,0�, v = 0 . �B15�

Each linearized equation needs to be multiplied by the ap-
propriate z mode—S1�z� for the equation containing �1�t�,
for example—along with a 2 /
 factor and integrated from
z=−
 /2 to 
 /2. This should result in a 10�10 ODE matrix
system of the form D0�t ;R��tU0�t�=L�t ;R ,Q�U0�t�, where

U0�t� = ��1�t�,�2�t�,ny1�t�,ny2�t�,nz1�t�,nz2�t�, f1�t�,

f2�t�,g1�t�,g2�t��T. �B16�

The nonzero components of D0 are

�D0�1,1 = ���q2 + p2 + 1� + �aq2, �B17�

�D0�1,3 = −
1

�R
qp�e1 + e3� , �B18�

�D0�1,5 = iq�aEac�t� , �B19�

�D0�1,6 = −
1

�R

8

3

iq�e1 + e3� , �B20�

�D0�2,2 = ���q2 + p2 + 4� + �aq2, �B21�

�D0�2,4 = −
1

�R
qp�e1 + e3� , �B22�

�D0�2,5 =
1

�R

8

3

iq�e1 + e3� , �B23�

�D0�2,6 = iq�aEac�t� , �B24�

�D0�3,3 = �D0�4,4 = �D0�5,5 = �D0�6,6 = �1, �B25�

�D0�7,4 = qp�	2 + 	3�I7ab, �B26�

�D0�7,5 = − iq�	2�q2 + p2�I6aa + 	3I8aa� , �B27�

�D0�7,7 = �m��q2 + p2�2 − �q2 + p2�I3aa� , �B28�

�D0�8,3 = qp�	2 + 	3�I7ba, �B29�

�D0�8,6 = − iq�	2�q2 + p2�I6bb + 	3I8bb� , �B30�

�D0�8,8 = �m��q2 + p2�2 − �q2 + p2�I3bb� , �B31�
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�D0�9,3 = �	3p2 − 	2q2� , �B32�

�D0�9,6 =
8

3

ip	3, �B33�

�D0�9,9 = − �m�q2 + p2� , �B34�

�D0�10,4 = �	3p2 − 	2q2� , �B35�

�D0�10,5 = −
8

3

ip	3, �B36�

�D0�10,10 = − �m�q2 + p2� , �B37�

and the non-zero entries for the matrix L are

�L�1,1 = − Q����q2 + p2 + 1� + �aq2� , �B38�

�L�1,5 = − iQ�aqEac�t� , �B39�

�L�2,2 = − Q����q2 + p2 + 4� + �aq2� , �B40�

�L�2,6 = − iQ�aqEac�t� , �B41�

�L�3,1 = − �Rqp�e1 + e3� , �B42�

�L�3,3 = − �K1p2 + K3q2 + K2� , �B43�

�L�3,5 = − i�REac�t�p�e1 − e3� , �B44�

�L�3,6 = −
8

3

ip�K1 − K2� , �B45�

�L�3,8 = qp�	2 + 	3�I2ab, �B46�

�L�3,9 = 	3p2 − 	2q2, �B47�

�L�4,2 = − �Rqp�e1 + e3� , �B48�

�L�4,4 = − �K1p2 + K3q2 + 4K2� , �B49�

�L�4,5 =
8

3

ip�K1 − K2� , �B50�

�L�4,6 = − i�REac�t�p�e1 − e3� , �B51�

�L�4,7 = qp�	2 + 	3�I2ba, �B52�

�L�4,10 = 	3p2 − 	2q2, �B53�

�L�5,1 = − iq�aREac�t� , �B54�

�L�5,2 = −
8

3

iq�R�e1 + e3� , �B55�

�L�5,3 = ip�REac�t��e1 − e3� , �B56�

�L�5,4 = −
8

3

ip�K1 − K2� , �B57�

�L�5,5 = �aREac
2 �t� − K2p2 − K3q2 − K1, �B58�

�L�5,7 = − iq�	2�q2 + p2�I6aa + 	3I8aa� , �B59�

�L�5,10 =
8

3

i	3p , �B60�

�L�6,1 =
8

3

iq�R�e1 + e3� , �B61�

�L�6,2 = − iq�aREac�t� , �B62�

�L�6,3 =
8

3

ip�K1 − K2� , �B63�

�L�6,4 = ip�REac�t��e1 − e3� , �B64�

�L�6,6 = �aREac
2 �t� − K2p2 − K3q2 − 4K1, �B65�

�L�6,8 = − iq�	2�q2 + p2�I6bb + 	3I8bb� , �B66�

�L�6,9 = −
8

3

i	3p , �B67�

�L�7,1 = REac�t�����q2 + p2�2 + �aq2�q2 + p2��I6aa

− REac�t����q2 + p2�I8aa, �B68�

�L�7,3 = − �REac�t�qp�e1 + e3��q2 + p2�I6aa, �B69�

�L�7,5 = iqREac
2 �t��a�q2 + p2�I6aa, �B70�
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2
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+ �	1q4 + 	4�q2 + p2�2 + ��4 − �3�q2�q2 + p2��I3aa

+ ��3q2 −
1

2
	4�q2 + p2��I5aa, �B72�

�L�7,10 = qp�	1q2 − �3�q2 + p2��I7ab + qp�3I9ab,

�B73�

�L�8,2 = REac�t������q2 + p2�2 + �aq2�q2 + p2��I6bb

− ���q2 + p2�I8bb� , �B74�

�L�8,4 = − �REac�t�qp�e1 + e3��q2 + p2�I6bb, �B75�
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�L�8,5 = iq�REac�t��e1 + e3��q2 + p2�I7ba, �B76�

�L�8,6 = iqREac
2 �t��a�q2 + p2�I6bb, �B77�

�L�8,8 = − �1

2
	4�q2 + p2� + �4q2��q2 + p2�2

+ �	1q4 + 	4�q2 + p2�2 + ��4 − �3�q2�q2 + p2��I3bb

+ ��3q2 −
1

2
	4�q2 + p2��I5bb, �B78�

�L�8,9 = qp�	1q2 − �3�q2 + p2��I7ba + qp�3I9ba, �B79�

�L�9,8 = − qp��− 	1q2 + �3�q2 + p2��I2ab − �3I4ab� ,

�B80�

�L�9,9 = �1

2
	4�q2 + p2 + 1� + �4q2 − �3p2
�q2 + p2�

+ 	1q2p2 − �3p2, �B81�

�L�10,7 = − qp�− 	1q2 + �3�q2 + p2��I2ba + qp�3I4ba,

�B82�

�L�10,10 = �1

2
	4�q2 + p2 + 4� + �4q2 − �3p2
�q2 + p2�

+ 	1q2p2 − 4�3p2, �B83�

where the I’s are the numerical coefficients of the inner prod-
ucts of the form

�h�ĥ� =
2






z=−
/2

z=
/2

h�z�ĥ�z�dz , �B84�

given in Table III. Here, there is no �tEac term in the matrices
since they are zero for a piecewise constant field such as Fig.
1. Equation �10� can be obtained by setting �m=0 and there-
fore eliminating f and g.

APPENDIX C: THE SWITCHING MATRICES

For the simple linear model with a piecewise constant
electric field Eac�t� used by John and Stannarius �10�, the
evolution of the variables in time can be calculated by a
series of matrix exponentials acting on the initial conditions.
We do the same, as shown by Eqs. �12� and �13�; however,
since we use the electric potential � rather than the charge
density �e, we need to insert these “switching” matrices into
the chain since � jumps discontinuously at the points where
the piecewise-constant field Eac�t� jumps as well. These
switching matrices are calculated where all the variables ex-
cept � are the same at either side of the jump so that �for a
3�3 system�

G� after��after

ny

nz
	 = ��before

ny

nz
	G� before, �C1�

i.e.,

��after

ny

nz
� = G� after

−1 G� before

S�
��before

ny

nz
� ,

�C2�

where the subscript “after” is associated with the value
of the electric field after the jump and vice versa. The
G� matrices can be derived from the charge equation �Eq.
�B5��.

TABLE III. Values for the various I terms in matrices D0 and L
as a result of projecting the linear equations onto the z modes.

Coefficient Inner Product Numerical value

I2ab �S1�z� �
d

dz
C2�z��

0.73984

I2ba �S2�z� �
d

dz
C1�z��

1.11187

I3aa �C1�z� �
d2

dz2C1�z��
−1.24652

I3bb �C2�z� �
d2

dz2C2�z��
−4.66589

I4ab �S1�z� �
d3

dz3C2�z��
−0.73984

I4ba �S2�z� �
d3

dz3C1�z��
−4.44750

I5aa �C1�z� �
d4

dz4C1�z��
5.13877

I5bb �C2�z� �
d4

dz4C2�z��
39.04725

I6aa �C1�z� �S1�z�� 0.98624

I6bb �C2�z� �S2�z�� −0.97642

I7ab �C1�z� �
d

dz
S2�z��

−1.11187

I7ba �C2�z� �
d

dz
S1�z��

−0.73984

I8aa �C1�z� �
d2

dz2S1�z��
−0.98624

I8bb �C2�z� �
d2

dz2S2�z��
3.90568

I9ab �C1�z� �
d3

dz3S2�z��
4.44748

I9ba �C2�z� �
d3

dz3S1�z�� 0.73984
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