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We investigate the transport mechanism of a small hydrophobic solute molecule across two types of fluid
interfaces, �i� an interface between two immiscible liquids and �ii� a surfactant-covered liquid-liquid interface.
These systems are modeled by coarse-grained molecular dynamics simulations. It is demonstrated that the
dynamics of the solute molecule near the interface significantly deviates from Markovian Brownian motion.
Specifically, the correlation time of the random force acting on the solute strongly depends on the distance
between the solute and the interface and increases by two orders of magnitude within a very narrow �less than
1 nm wide� region near the interface. The slow fluctuations of the random force in this narrow region are
caused by capillary waves. The region location and width are determined by interface protrusions caused by
attraction between the solute and the hydrophobic phase. We use results of molecular dynamics simulations to
develop a stochastic model for the coupled solute-interface dynamics and estimate the rate of the solute
transport across the interface. The observed phenomenon appears to be a general feature of mass transport
across fluid or flexible membranes. The coupling between the solute transport and the interface fluctuations is
the strongest in areas corresponding to a large free energy gradient or near a free energy barrier for the solute
transport. This suggests a strong influence of the coupled solute-interface dynamics on the rate of mass transfer
across interfaces.
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I. INTRODUCTION

The process of mass transfer across an interface between
two immiscible liquids or a flexible membrane of molecular
thickness, such as a surfactant-covered liquid-liquid inter-
face, plays a key role in numerous applications, including
separations, reactions, and drug delivery �1–4�. Molecular
transport across an interface of two immiscible fluids is a
subject of active experimental �5–8�, computational �9–18�,
and theoretical �19–21� studies.

It may seem intuitive that transport of a simple solute,
such as a spherical molecule or an ion, can be reduced to
dynamics of a single degree of freedom, namely the distance
z between the solute and the interface. In this case, the role
of the solvents in the solute transport would reduce to that of
�i� mean force F�z� which depends only on z and acts on the
solute as it traverses the interface and �ii� thermal collisions
between the solute and solvent molecules resulting in a Mar-
kovian random force acting on the solute. However, starting
with the pioneering work of Benjamin and co-workers
�9,11�, it has become apparent that, at least in the case of an
ion transport across a fluid-fluid interface, solvents actively
participate in the transport process and their role cannot be
reduced to that of the mean force F�z� and the thermal noise.
Molecular dynamics �MD� simulations �9,11� of an ion trans-
fer across a water/1,2-dichloroethane interface demonstrated
formation of short-lived �with lifetime on the order of tens of
picoseconds� capillary fingers of solvent protruding toward
the solute when the latter is located close to the dividing
surface. Formation of such protrusions during transport of an
ion across an interface between two immiscible liquids has
been confirmed by MD simulations for multiple ion-solvent
systems �15–17,22–24�. Evidence of importance of capillary
waves in transport across an interface has also been observed
experimentally �6�.

Based on these observations, several models of the
coupled solute-solvent dynamics have been proposed. In one
of the early models �19�, ion transport across an interface is
assumed to be initiated by a solute capture by an interface
protrusion and proceeds through a sequence of activated ex-
changes of molecules inside the solute solvation shell. Ko-
rnyshev et al. �20� extended this idea and proposed a model
which, in addition to effects of the fluctuation-induced inter-
face protrusion on the solute transport, captures the feedback
effect of the solute on the protrusion formation. In this model
for the coupled solute-interface dynamics the interface is de-
scribed by a single degree of freedom, namely the height of
the protrusion, and other degrees of freedom of the interface
are neglected. Despite this approximation, it allows one to
qualitatively assess effects of the coupled surface-solute dy-
namics on the solute transport. It is demonstrated that, in the
case of a relatively small energy barrier for transport across
the interface, the capillary fluctuations slow down the solute
transport. A further extension of this model which explicitly
accounts for all modes of the interface fluctuations was pro-
posed by Daikhin et al. �21�. Since the main focus of the
latter work was to assess the interface fluctuations in the
presence of ions, the authors did not present estimates of the
ion transport rate based on this improved model.

The above observations and models for the coupled
solute-interface dynamics were made for a charged solute in
a system containing at least one polar or electrolyte solvent.
In the current paper, we demonstrate that the solute transport
may be coupled to the interface fluctuations even in the ab-
sence of long-range electrostatic interactions. We use coarse-
grained MD simulations to investigate transport of a small
nonionic solute across �i� an oil-water interface and �ii� a
monolayer of nonionic surfactants adsorbed at an oil-water
interface. In both considered systems, the solute-interface
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coupling leads to a locally non-Markovian stochastic force
acting on the solute. The correlation time of the stochastic
force significantly increases �by as much as two orders of
magnitude� when the solute is located near a free energy
barrier or in a region corresponding to a large free energy
gradient. Therefore, detailed understanding of the origin of
this position dependence of the fluctuation time scales is nec-
essary to correctly predict rates of mass transfer across inter-
faces. We show that coupling of the solute motion with rela-
tively slow hydrodynamic and, if applicable, elastic interface
fluctuations is facilitated by a local deformation of the inter-
face caused by the presence of the solute. We use MD results
to develop a stochastic model for the coupled interface-
solute dynamics and show that it is similar to the phenom-
enological model for ion transport proposed by Daikhin et al.
�21�. Finally, we discuss effects of this coupling on the solute
transport rate and discuss implications of the slow fluctua-
tions on the analysis of MD simulations of interfacial
systems.

II. MODEL AND SIMULATION DETAILS

The studies are performed using a coarse-grained molecu-
lar dynamics �CGMD� model proposed by Marrink et al.
�25�. This model is shown to yield good agreement with
experiments and atomistically detailed simulations for a wide
range of molecular systems and, in particular, can accurately
reproduce densities and mutual solubilities of water and al-
kanes �25�, as well as the interfacial tension at an oil-water
interface �26�. In our recent work �26,27� we extended this
model to include a model for nonionic ethoxylated surfac-
tants CiEO j. For the sake of completeness, below we briefly
review salient features of the model.

All molecules in the systems considered in the current
work are modeled using two types of beads: Hydrophobic
tail bead �denoted here as T� and hydrophilic head bead �de-
noted as H�. A single tail bead approximates four methyl or
methylene groups in alkane chains and a single head bead
approximates four water molecules �25� or two ethoxy

groups �26,27�. Interactions between nonbonded beads are
modeled by the Lennard-Jones �LJ� potential. All beads have
the same LJ diameter, �=0.47 nm, and the hydrophobic or
hydrophilic nature of a bead is modeled by the strength � of
the LJ potential. In the current work, we consider transport
of a small spherical solute modeled by a tail bead T across �i�
water-hexadecane interface and �ii� water-hexadecane inter-
face covered by H3T3 ��C12EO6� surfactants.

MD simulations are performed using the GROMACS pack-
age �28�. The Verlet integration scheme is used with a time
step of 0.04 ps. The temperature and pressure are kept con-
stant at 300 K and 1 bar. Unless stated otherwise, we use
Berendsen temperature and isotropic pressure coupling
schemes �29� with time constant 1 ps and compressibility
10−5 bar−1 in the pressure coupling scheme.

The simulations are performed in a cubic cell with a side
of 10 nm. The interfaces are prepared by simulations of self-
assembly of mixtures of oil, water, and, if applicable, surfac-
tant molecules with nearly equal mass fractions of oil and
water �26�. Density profiles of equilibrated interfaces are
shown in Fig. 1. The system of coordinates is oriented so that
the z axis is normal to the interface, the positive direction of
the z axis points to the water phase, and the x-y plane corre-
sponds to the dividing surface of the interface in the absence
of the solute. In the remainder of this paper, this surface will
be referred to as the neutral surface �or plane� in order to
distinguish it from dividing surfaces perturbed by interac-
tions with the solute.

In order to analyze interface fluctuations, it is necessary to
define a procedure to obtain space- and time-dependent di-
viding surfaces from molecular-level information. This can
be accomplished, for example, by a generalization of the
Gibbs dividing surface based on local averaging of fluid den-
sity profiles �30�. However, this approach does not provide
sufficient separation between the interface and bulk degrees
of freedom at small length scales �31,32�. Therefore, we fol-
low Refs. �31–33� and use a definition of the position-
dependent instantaneous dividing surface tied directly with
locations of molecules at the interface. The location of the
neutral plane is then obtained by averaging of the instanta-
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FIG. 1. Density profiles of �a� surfactant-free hexadecane-water interface and �b� hexadecane-water interface covered by H3T3 surfactants
�26�.
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neous dividing surfaces in the absence of the solute.
The instantaneous dividing surface z=h�x ,y ; t� at time t is

determined from a set of pivot points �xj ,yj ,zj� obtained
from the molecular configuration at time t. For the
surfactant-covered interfaces, the pivot points correspond to
midpoints of bonds connecting the tail and head groups of
surfactant molecules. The pivot points for the surfactant-free
oil-water interface are determined following an approach
similar to that used in Refs. �31–33�. For each water bead,
we define a pivot point as a location of an oil bead closest to
it. The surface defined by these pivot points is referred to as
the oil surface. Similarly, we define pivot points of the water
surface as a collection of water beads closest to oil beads.
Properties of the oil and water surfaces relevant to the cur-
rent study are the same. Therefore, in this paper we report
results obtained for the water surface.

In what follows, we will need to analyze continuous ap-
proximations to and Fourier transforms of the instantaneous

dividing surfaces. Instantaneous Fourier harmonics ĥk�t� are
obtained by a least squares fit of the instantaneous dividing
surface to truncated Fourier series,

�
j

�zj�t� − h„xj�t�,yj�t�;t…�2 → min, �1�

where

h�x,y ;t� = �
�k��kcut

ĥk�t�ei�kxx+kyy� �2�

is the continuous instantaneous dividing surface defined by
the pivot points. In Eq. �2� k= �kx ,ky� is a wave vector and
kcut=2� nm−1 is the cutoff wave-vector magnitude which ap-
proximately corresponds to two diameters of the coarse-
grained beads.

III. GENERALIZED LANGEVIN MODEL FOR A SINGLE
REACTION COORDINATE

We assume that the solute transport can be described by a
generalized Langevin equation,

mz̈s + �
−�

t

��t − �;zs�żs���d� +
dG�zs�

dzs
= 	�t;zs� . �3�

In this equation, zs is the distance between the solute and the
neutral interface, m is the mass of the solute, G�zs� is the free
energy or the potential of mean force, ��t ;zs� is the memory
friction kernel, and 	�t ;zs� is the random force with Gauss-
ian distribution and zero mean. The autocorrelation function
�ACF� C�t ;zs� of 	�t ;zs� is related to the friction kernel
��t ;zs� by the fluctuation-dissipation theorem �34–36�,

C��;zs� 	 
	�t;zs�	�t + �;zs�� = kBT���;zs� . �4�

The gradient of the free energy G��zs� and the friction
kernel � are obtained using constrained MD simulations
�34,35�. A natural choice of a reaction coordinate is the sol-
ute coordinate zs, i.e., the distance between the solute and the
neutral dividing surface. However, this choice is not very
convenient for constrained MD simulations, since in this

case the constraint would involve a quantity averaged over
time, whereas algorithms for constrained simulations typi-
cally deal with instantaneous system configurations. There-
fore, in our simulations we constrain the distance 
s between
the solute and the instantaneous center of mass of a segment
of either the oil phase �for the surfactant-free interface� or the
surfactant monolayer �for the surfactant-covered interface�
contained in the simulation box. Since fluctuations of the
locations of these centers of mass are negligible, the results
obtained by constraining 
s are equivalent to those that
would have been obtained by constraining zs. Therefore, for
convenience, in the following discussion we will refer to zs
as the constrained variable.

Initial conditions for the constrained simulations were
prepared by pulling the solute molecule across the interface
by applying an artificial force. The solute was then con-
strained using the SHAKE algorithm �37� and the system was
equilibrated for 10 ns. This was followed by a 390 ns pro-
duction run for surfactant-free systems and a 490 ns produc-
tion run for systems containing H3T3 monolayers.

The mean of the constraining force Fz acting on the solute
corresponds to the gradient of the potential of mean force,


Fz� =
dG�zs�

dzs
, �5�

and the deviations of Fz from its mean correspond to the
random force acting on the solute,

	�t,zs� = Fz�t,zs� − 
Fz�zs�� . �6�

We observe that time scales of fluctuations of 	�t ,zs� are
extremely sensitive to the distance zs between the solute and
the neutral dividing surface, as illustrated by examples of the
force ACF C�t ;zs� shown in Fig. 2. The force fluctuations
have large correlation time when the solute is located at zs
=0.59 nm while in the other two shown examples the corre-
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FIG. 2. ACF of the random force 	�t ;zs� acting on the solute
near the surfactant-free oil-water interface. In this plot, ACF are
normalized so that C�t=0;zs�=1. The solute is constrained at �a�
zs=−1.06 nm �solid line�, �b� zs=0.59 nm �dashed line�, and �c� zs

=1.75 nm �dashed-dotted line�. The inset shows C�t ;zs� for small t.
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lation time is very small. In order to confirm that the ob-
served large correlation time of the random force represents
a real physical phenomenon and is not due to an artifact of a
particular method of constraining temperature, pressure, or
solute position used in MD simulations, we perform addi-
tional simulations with �1� weak Berendsen temperature and
pressure coupling �time constant 100 ps�, �2� a Nosé-Hoover
thermostat �38,39� with time constant 1 ps and a Parrinello-
Rahman barostat �40,41� with time constant 5 ps, and �3� a
constraint on the solute position implemented via assignment
of zero solute velocity in the zs direction at each MD step.
The considered alternative simulation methods produced the
same results, thus confirming that the slow random force
fluctuations are real.

Figure 2 indicates that, after fast initial oscillations �for
t�2 ps�, the decay of the force ACF follows either a single
or a double exponential law:

C�t;zs� = C1�zs�e−t/�1�zs� �7�

or

C�t;zs� = C1�zs�e−t/�1�zs� + C2�zs�e−t/�2�zs�, �1�zs� � �2�zs� ,

�8�

depending on the solute location. The fast decay time, �1, is
always small ��15 ps�, whereas the slow decay time, �2, is
extremely sensitive to the solute location, as can be seen
from Fig. 3�a�. In this figure, we plot � f�zs�, which is defined
as �1�zs� if Eq. �7� holds and �2�zs� if Eq. �8� holds for the
solute constrained at z=zs. The decay time � f�zs� varies by
two orders of magnitude in a narrow region near the inter-
face. From the free energy profiles shown in Fig. 3�b� it is
evident that the slow force fluctuations take place either in a
region with a steep free energy gradient �at the surfactant-
free interface� or near a free energy barrier �at the surfactant-
covered interface�. Therefore, the observed inhomogeneity in
the force correlation times is expected to impact the solute
transport across the interface.

The fluctuations of the force acting on the solute are di-
rectly related to fluctuations of the solvent and, if applicable,
surfactant density near the solute. The fast density fluctua-
tions correspond to diffusive motion of individual particles,
whereas the slow density fluctuations correspond to capillary
waves at the interface. Interestingly, the slow force fluctua-
tions are observed only on one side of the interface while the
interface fluctuations are expected to cause slow density fluc-
tuations on both sides of the dividing surface.

This asymmetry of the force fluctuations is caused by an
attractive interaction between the solute and the hydrophobic
phase. Effects of this attractive force on the surfactant-free
oil-water interface and H3T3 monolayer are illustrated in
Figs. 4�a� and 4�b�, respectively. The averaged dividing sur-
faces z=h�0��r ;zs� shown in these figures are obtained from
MD simulations with the solute constrained at z=zs. Here, r
denotes the distance between a point on the neutral plane and
the solute projection onto this plane.

Figures 4�a� and 4�b� show averaged dividing surfaces z
=h�0��r ,zs� corresponding to four representative solute posi-
tions, zs=zi, i=1, . . . ,4; z1�z2�z3�z4. The average divid-

ing surface remains unperturbed when the solute is located in
the oil-rich phase, even if the solute is relatively close to the
neutral surface, as illustrated by h�0��r ;zs=z1�. As the solute
approaches the neutral plane, it starts pushing the interface
toward the water-rich phase; see h�0��r ;zs=z2�. The interface
deforms in order to maximize wetting of the solute by hy-
drophobic groups and to minimize the solute interactions
with hydrophilic groups. As the solute crosses the dividing
surface and moves into the water-rich phase, the protrusion
into this phase grows due to attraction between the solute
and hydrophobic groups located on the opposite side of the
interface. The protrusion height reaches its maximum when
zs�z3. Further solute displacement into the water-rich phase
requires a larger interface deformation to ensure that the hy-
drophobic groups are within the interaction range of the sol-
ute. Eventually, an increase of the interfacial energy due to
such deformations becomes too large to be compensated by
the favorable interactions of the solute with the hydrophobic
groups. Therefore, once the solute passes through the point
corresponding to the maximum protrusion height, the protru-
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sion disappears fairly quickly and the interface returns to its
unperturbed state when zs�z4.

The strong dependence of the average interface shape on
the solute position is a key factor leading to the slow fluc-
tuations of the random force 	�zs ; t�. To see this, consider a
solute-interface system with the solute constrained at some
zs=z0. In this system, the dividing surface fluctuates around
its average h�0��r ;z0�. Remove the constraint at time t0 and
consider the system configuration at time t1= t0+�t, where
�t is on the order of the time scale �1 of the fast fluctuations
of 	�zs ; t�. Assume that a small solute displacement in the z
direction which happened between t0 and t1 corresponds to a
substantial change of the average interface shape. In this
case, the instantaneous interface shape at time t1 will be dif-
ferent from the average shape h�0�(r ;zs�t1�), since the time
scale of the interface relaxation is much larger than the time
scale �1 of the fast fluctuations of 	�zs ; t�. The unfavorable
interface configuration caused by its delayed response will
lead to a strong restoring force pulling the solute back to-
ward z=z0. This force corresponds to the slow component of
the force 	�zs ; t� and its time scale corresponds to the inter-
face relaxation time. As will be demonstrated in the next
section, this relaxation time is on the order of hundreds of
picoseconds, which is consistent with the time scale of the
slow component of 	�zs ; t� in the region of the strong solute-
interface coupling.

This restoring force will be especially strong in regions
corresponding to the large gradient of h�0��r ;zs� with respect
to zs, such as the region between points z3 and z4 in Fig. 4. In
such regions, a small solute displacement causes a large
change in the average protrusion magnitude and hence a
strong restoring force. In the following section, we develop a
stochastic model for the coupled solute-interface dynamics
and demonstrate that the above qualitative arguments are
consistent with the predictions of this more detailed model.

IV. MODEL FOR COUPLED SOLUTE-INTERFACE
DYNAMICS

We assume that interactions between the solute and its

surroundings can be described by the potential G�zs ; �ĥk
� of
mean force acting between the solute located at z=zs and the
interface in the configuration defined by Fourier coefficients

�ĥk
. In this model we neglect details of the microstructure of
the interface and assume that this microstructure can be ad-
equately modeled by its contributions to �i� the potential of
mean force and �ii� Markovian random forces acting on the
solute and the interface. In what follows we use a moving
system of coordinates with the origin corresponding to the
solute projection on the neutral dividing surface.

In order to obtain information regarding the mean and

stochastic forces acting on the interface modes �ĥk
, we con-

sider dynamics of ĥk�t� when the solute is constrained at
various positions zs. Typical examples of ACF Ck�� ;zs� of

the interface modes ĥk�t� are shown in Fig. 5. For all con-
sidered solute positions zs, it is observed that Ck�� ;zs� can be
adequately approximated by exponentials and correlations
between different modes are negligible, i.e.,

�

k�t�
m
* �t + ����zs=const = �kmDk�zs�e−�/�k�zs�, k,m � 0.

�9�

Here,


k�t,zs� 	 ĥk�t� − ĥk
�0��zs� �10�

is a deviation of the interface mode ĥk from its average value

ĥk
�0��zs�.

Equation �9� implies that all 
k undergo independent Mar-
kovian Ornstein-Uhlenbeck processes �42�,
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FIG. 4. Average dividing surfaces z=h�0��r ;zs� corresponding to the solute constrained at different z=zs near the �a� surfactant-free
oil-water interface and �b� H3T3 monolayer. To emphasize rotational symmetry of the dividing surfaces, symmetric reflections of these
surfaces with respect to the z axis are also plotted. Dividing surfaces exhibiting significant deviations from the unperturbed planar interface
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�k�zs�
d
k

dt
= − �k�zs�
k + 	k�t�, k � 0, zs = const,

�11�

where

�k =
kBT


�
k�2�
� 0 and �k = �k�k � 0. �12�

The friction coefficient �k and the stochastic force 	k�t� sat-
isfy the fluctuation-dissipation theorem,

�
	k�t�	m
* �s���zs=const = 2kBT�k�zs��km��t − s�, k,m � 0.

�13�

The equation for ĥk follows directly from Eqs. �10� and
�11�:

�k�zs�
dĥk

dt
= − �k�zs��ĥk − ĥk

�0��zs�� + 	k�t�, k � 0.

�14�

The deterministic component of the right-hand side of Eq.
�11� corresponds to the negative derivative of the potential of

mean force G�zs ; �ĥk
� with respect to ĥ
k
*, which implies that

G�zs;�ĥk
� = G0�zs� +
1

2 �
k�0

�k�zs��ĥk − ĥk
�0��zs��2, �15�

where function G0�zs� is independent of the interface shape.
The sum in the right-hand side of Eq. �15� is finite due to
natural cutoff values for magnitudes of the wave vectors k;
due to gravity and/or failure of the linear capillary wave
model for long waves �i.e., small �k�� and due to finite mo-
lecular size for short waves �large �k��.

Although Eq. �14� was obtained for zs=const, this equa-
tion is likely to remain valid even if the solute is not con-

strained. To see this, assume that Eq. �14� contains an addi-
tional term which vanishes if zs is kept constant. If this term
contributes to the deterministic component of Eq. �14�, it
corresponds to a time derivative of some function f�zs� of zs,
i.e., it is proportional to the solute velocity żs. Since this term
would have to be contained in the derivative of the potential

of mean force with respect to ĥ
k
* and, according to our earlier

assumption, G�zs ; �ĥk
� is independent of żs, it follows that
f 	0 and the deterministic component of Eq. �14� remains
valid for an unconstrained solute. Moreover, it is unlikely
that the stochastic component of Eq. �14� contains any addi-
tional terms vanishing if zs=const, since it is unlikely that the
stochastic force acting on the interface depends on the solute
velocity żs. Therefore, in what follows we assume that the
interface modes satisfy Eq. �14� even if the solute is not
constrained.

From Eq. �15� it follows that the solute dynamics is de-
scribed by the following Langevin equation:

m
d2zs

dt2 + �s�zs�
dzs

dt

= − G0��zs� −
1

2

d

dzs
��

k�0
�k�zs��ĥk − ĥk

�0��zs��2� + 	s�t;zs� ,

�16�

where 	s�t ;zs� is the Markovian random force due to inter-
actions of the solute with individual solvent and surfactant
molecules. 	s�t ;zs� is independent from the random forces
	k�t� acting on the interface modes and satisfies the
fluctuation-dissipation theorem,


	s�t;zs�	s�s;zs�� = 2kBT�s�zs���t − s� . �17�

The second term on the right-hand side of Eq. �16� repre-
sents the contribution of the interface fluctuations to the
force acting on the solute. This contribution is significant if

�k�zs� or ĥk
�0��zs� exhibit strong dependence on zs. In this

case, the time scale of the force fluctuations is determined by
the time scales �k�zs� of the corresponding interface modes.

Dependence of ĥk
�0�, �k, and �k on zs for one of the interface

modes is shown in Fig. 6. As can be seen, ĥk
�0� exhibits strong

dependence on the solute position due to protrusions formed
at the interface in the presence of the solute. The gradient of

ĥk
�0��zs� is much larger on the hydrophilic side of the inter-

face, in agreement with the physical picture of attraction be-
tween the solute and the hydrophobic beads. Equation �16�
then implies that the contribution of the interface fluctuations
to the solute dynamics is significant only on the water side of
the interface, which is consistent with the observation that
the random force fluctuations are slow only on one side of

the interface �see Fig. 3�. Moreover, the gradient of ĥk
�0��zs� is

the largest for zs corresponding to the peaks of the force
correlation time � f�zs�.

The sharp decrease of ĥk
�0��zs� is caused by disappearance

of the interface protrusions once the energy of their attraction
to the solute becomes smaller than the increase of the inter-
facial tension caused by the protrusion formation. Therefore,
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H3T3 monolayer, |k| = 0.64 nm−1
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FIG. 5. Examples of ACF Ck�� ;zs� of the interface modes for
the surfactant-free oil-water interface �zs=0.59 nm� and H3T3

monolayer �zs=0.67 nm�. Thick gray lines show exponential fits to
Ck�� ;zs�. In this plot, ACF are normalized so that Ck��=0;zs�=1.
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Eq. �16� confirms the qualitative arguments presented in Sec.
III relating the slow force fluctuations with the strong depen-
dence of the interface shape on the solute location. The time
scale of the interface relaxation estimated from Fig. 6�c� is
consistent with the time scale of the slow component of the
random force acting on the solute, thus further supporting
these arguments. The location and the width of the region

with large � f�zs� and large gradient of ĥk
�0��zs� are primarily

determined by relative magnitudes of the interfacial energy
and the energy of attraction between the solute and the hy-
drophobic phase. As Figs. 6�b� and 6�c� indicate, presence of

the solute in the region of the large gradient of ĥk
�0��zs� also

lead to a small decrease of �k�zs� �i.e., an increase of the
fluctuation magnitude� and an increase of the correlation
time �k of the interface modes. The latter effect is especially
pronounced for the surfactant monolayer.

V. DISCUSSION

The obtained equations �14� and �16� for the coupled
solute-interface dynamics are similar to the model proposed
by Daikhin et al. �21� for coupling between an ion and an
electrolyte interface. In the current work, we demonstrated
that this model is valid for nonionic fluid-fluid and
surfactant-covered interfaces. Moreover, this model is di-
rectly verified by and its parameters are obtained from MD
simulations, which enables quantitative predictions of the
solute transport rates. In addition, it is observed that even a
small solute may significantly influence the time scale of
fluctuations of a surfactant monolayer; see Fig. 6�c�.

In conclusion, we discuss an impact of the solute-
interface coupling on analysis of constrained MD simula-
tions and the solute transport rate. Equations �14� and �16�
imply that in the regions of strong solute-interface coupling,
random force 	MD�t ;zs� obtained from constrained MD
simulations corresponds to a combination of a thermal Mar-
kovian force 	s�t ;zs� and a contribution from the interface
fluctuations. In these regions, the solute friction coefficient
�s�zs� should be computed from Eq. �4� using the ACF of 	s
and not that of 	MD. In Fig. 7, we show a comparison of the
friction coefficients �MD�zs� and �s�zs� obtained from the
ACF of 	MD and 	s, respectively. For the solute positions zs
corresponding to strong solute-interface coupling, the ACF
of 	s was estimated by removing the slowly decaying com-

ponent �i.e., the second exponential term in Eq. �8�� from the
ACF of 	MD. For all other zs, 	s�t ;zs� is assumed to be iden-
tical to 	MD�t ;zs�.

Figure 7 indicates that the solute-interface coupling is re-
sponsible for a sharp peak of the apparent friction coefficient
�MD�zs�. This peak is absent if contributions of the interface
modes to the random force are removed. Since the time scale
of the interface mode dynamics is comparable to or is larger
than the time scale of the solute dynamics near a free energy
barrier, it is necessary to consider dynamics of individual
interface modes in order to assess the effect of the interface
fluctuations on the solute transport. To accomplish this goal,
we investigate the free energy landscape of the solute-
interface system in more detail.

From Eq. �15� it follows that a minimum energy path

�MEP� on the free energy surface G�zs ; �ĥk
� is a path such

that ĥk= ĥk
�0��zs� for all k at every solute position zs along the

path. The system free energy on this path, GMEP�zs ; �ĥk
�
=G0�zs�, does not depend on the details of the coupling be-
tween the solute and the interface fluctuations and, in order
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to obtain the free energy change and/or barrier associated
with the solute transport, it is sufficient to obtain G0�zs�.

However, the potential of mean force obtained from con-
strained MD simulations may differ from G0�zs�. Equations
�12� and �15� yield the following expression for the mean
force acting on the solute when the latter is constrained at
z=zs:

�
Fz�zs���zs=const = − �� dG�zs;�ĥk
�
dzs

��
zs=const

= − G0��zs� −
kBT

2

d

dzs
�
k�0

ln �k�zs� .

�18�

If the dependence of �k�zs� on zs is weak, which is the case
for the systems considered in the current work, the potential
of mean force obtained from constrained MD simulations
closely approximates G0�zs� �up to an additive constant�.
However, dependence of �k on the solute position is ex-
pected to be stronger for larger and/or polar or charged sol-
utes and in these cases one may not be able to neglect the
correction to G0�zs�.

Although the potential of mean force G0�zs� along MEP
does not depend on the interface configuration, the interface
modes may significantly alter MEP geometry near point
zG,max corresponding to the maximum of G0�zs�. This situa-
tion is illustrated in Fig. 8, which shows projections of

G�zs ; �ĥk
� and MEP on a zs–ĥk plane in the region of the
strong solute-interface coupling. Once the solute passes point

zh,max corresponding to the maximum of ĥk
�0��zs�, MEP makes

a sharp turn toward ĥk
�0�=0. We expect that the observed

deviation of MEP from a straight line in an immediate neigh-
borhood of zG,max is a common feature of transport across
flexible interfaces. As discussed in Sec. III, the origin of the

sharp decrease of ĥk
�0��zs� is disappearance of the interface

protrusions once they become energetically unfavorable.
Moreover, zh,max is likely to directly precede the free energy
maximum because, once the protrusions disappear, the solute
energy is determined only by its interactions with the sur-
rounding unfavorable phase.

Before computing the solute transport rate, let us recall a
well-known result for a mean transport time of a particle
whose motion is described by a one-dimensional Langevin
equation in the high-friction limit �42�,

Ta→b��,G� =
1

kBT
�

a

b

��y�eG�y�/kBTdy�
a

y

e−G�z�/kBTdz .

�19�

Here, G�z� is the potential of mean force, ��z� is the friction
coefficient, and Ta→b�� ,G� is the mean transport time of the
particle from z=a to z=b.

Equation �19� is directly applicable if the coupling be-
tween the solute and interface dynamics is neglected. To take
this coupling into account, it is necessary to consider a gen-
eralization of Eq. �19� to a stochastic system with multiple
degrees of freedom. This can be accomplished, e.g., if the
system motion, on average, takes place along MEP. In this
case, the integrations are performed along MEP and the sys-
tem dynamics in directions transversal to MEP is captured by
factors corresponding to frequencies of oscillations in these
directions. The underlying assumption of this generalization
is that the time scale of approach to MEP is much faster than
the time scale of motion along MEP.

This assumption fails for the coupled solute-interface dy-
namics when the solute is located between points zh,max and
zG,max. Due to proximity of these points, the difference be-
tween the free energies, �G	G0�zG,max�−G0�zh,max�, along
MEP passing through these points, is small. Specifically, for
transport across the surfactant-free interface, �G
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FIG. 8. Projection of the free energy G�zs , �ĥk
� on the plane zs− ĥk with �k�=0.64 nm−1 for �a� surfactant-free oil-water interface and �b�
surfactant monolayer. Minimal energy paths are shown by thick solid lines and the paths assumed in the calculation of the mean transport

time T��s , G̃� are shown by dashed lines. Points zh,max corresponding to maxima of ĥk
�0��zs� are shown by circles and points zG,max corre-
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=6.3 kJ /mol and for transport across the H3T3 monolayer,
�G=2.5 kJ /mol. The average contribution of each interface
mode to the free energy is kBT=2.5 kJ /mol at T=300 K, i.e.,
the driving force for approach to MEP is comparable with
the driving force for motion along MEP between zh,max and
zG,max. In addition, the friction coefficients of the interface

modes, �k=�k�k=O�1014� kg / �mol s�, exceed the solute
friction coefficient �s shown in Fig. 7 by two orders of mag-
nitude. These two observations imply that near zG,max the
change of the interface configuration is much slower than the
solute transport. Therefore, the solute will pass through point
zG,max before the protrusion formed when the solute was at
zh,max disappears.

To estimate the effect of the slow interface relaxation on
the solute transport rate, we assume that the interface con-
figuration remains unchanged and the system follows the
path shown by the dashed line in Fig. 8 for zs�zh,max. The

change of ĥk
�0��zs� with increase of zs is much more gradual

when zs�zh,max, see Fig. 6�a�. Therefore, we assume that the
system moves along MEP when zs�zh,max. The free energy
along the assumed path is

G̃�zs� = �G0�zs� , zs � zh,max,

G0�zs� +
1

2 �
k�0

�k�zs��ĥk
�0��zh,max� − ĥk

�0��zs��2, zs � zh,max. � �20�

Weak dependence of �k�zs� on zs allows us to neglect
changes in frequencies � j of the system oscillations in the
directions transversal to MEP when zs�zh,max. The changes
in � j can be also neglected for zs�zh,max since the interface
is assumed to be frozen on the time scale of the solute mo-
tion in this region. These assumptions allow us to estimate
the mean time of the solute transport across the interface

using Eq. �19� with �=�s and G= G̃.

The obtained mean transport times T��s , G̃� across the
surfactant-free interface and H3T3 monolayer are listed in
Table I along with transport times obtained if some or all
aspects of the coupled solute-interface dynamics are ne-
glected. In the latter case, the system trajectory is assumed to
follow MEP, i.e., G=G0 and the solute friction is assumed to
be either �i� the apparent friction �MD obtained directly from
constrained MD simulations or �ii� friction �s obtained from
�MD by removing the contribution of the interface modes.

The mean transport time T��MD,G0� obtained if the
solute-interface coupling is completely neglected overesti-
mates the mean transport time due to an overestimate of the
friction coefficient. On the other hand, using the corrected

friction coefficient �s but still assuming motion along MEP
leads to an underestimate of the transport time.

In this paper, we considered a coarse-grained model for
transport of a small hydrophobic solute across an interface of
two immiscible fluids and across a surfactant monolayer. We
demonstrated that the main condition for the coupling be-
tween the solute and interface dynamics is attraction between
the solute and one of the phases separated by the interface.
This condition is satisfied in a large number of interfacial
systems and therefore the solute-interface coupling is ex-
pected to affect transport across most fluid and flexible mem-
branes. The implications of the dynamic solute-interface cou-
pling for transport across the interface are expected to be
significant for systems with a strong attraction between a
solute and one of the phases separated by the interface.

ACKNOWLEDGMENTS

This research was supported by the National Science
Foundation through Grant No. CTS-0500090. Computational
resources were in part provided by the University of Florida
High-Performance Computing Center.

�1� S. P. Moulik and B. K. Paul, Adv. Colloid Interface Sci. 78, 99
�1998�.

�2� R. P. Bagwe, J. R. Kanicky, B. J. Palla, P. K. Patanjali, and D.
O. Shah, Crit. Rev. Ther. Drug Carrier Syst. 18, 77 �2001�.

�3� Handbook of Microemulsion Science and Technology, edited

by P. Kumar and K. L. Mittal �Marcel Dekker, New York,
1999�.

�4� T. F. Vandamme, Prog. Retin Eye Res. 21, 15 �2002�.
�5� C. J. Slevin, J. A. Umbers, J. H. Atherton, and P. R. Unwin, J.

Chem. Soc., Faraday Trans. 92, 5177 �1996�.

TABLE I. Mean escape times T�� ,G� obtained from Eq. �19�
using different approximations to the friction coefficient ��zs� and
the potential of mean force G�zs�.

T��MD,G0� T��s ,G0� T��s , G̃�

Surfactant-free
interface

5.82�103 s 1.87�103 s 2.40�103 s

H3T3 monolayer 1.45�105 s 2.45�104 s 4.13�104 s

MOLECULAR TRANSPORT ACROSS FLUID INTERFACES:… PHYSICAL REVIEW E 78, 041605 �2008�

041605-9



�6� K. Nakatani, M. Sudo, and N. Kitamura, J. Phys. Chem. B
102, 2908 �1998�.

�7� T. Osakai, A. Ogata, and K. Ebina, J. Phys. Chem. B 101,
8341 �1997�.

�8� T. Sakai, Y. Takeda, F. Mafuné, M. Abe, and T. Kondow, J.
Phys. Chem. B 106, 5017 �2002�.

�9� I. Benjamin, Science 261, 1558 �1993�.
�10� M. Hayoun, M. Meyer, and P. Turq, J. Phys. Chem. 98, 6626

�1994�.
�11� K. J. Schweighofer and I. Benjamin, J. Phys. Chem. 99, 9974

�1995�.
�12� A. Pohorille and M. A. Wilson, J. Chem. Phys. 104, 3760

�1996�.
�13� T.-M. Chang and L. X. Dang, Chem. Phys. Lett. 263, 39

�1996�.
�14� T.-M. Chang and L. X. Dang, J. Chem. Phys. 108, 818 �1998�.
�15� P. A. Fernandes, M. N. D. S. Cordeiro, and J. A. N. F. Gomes,

J. Phys. Chem. B 103, 8930 �1999�.
�16� P. A. Fernandes, M. N. D. S. Cordeiro, and J. A. N. F. Gomes,

J. Phys. Chem. B 104, 2278 �2000�.
�17� M. Lauterbach, E. Engler, N. Muzet, L. Troxler, and G. Wipff,

J. Phys. Chem. B 102, 245 �1998�.
�18� H. A. Patel, E. B. Nauman, and S. Garde, J. Chem. Phys. 119,

9199 �2003�.
�19� R. A. Marcus, J. Chem. Phys. 113, 1618 �2000�.
�20� A. A. Kornyshev, A. M. Kuznetsov, and M. Urbakh, J. Chem.

Phys. 117, 6766 �2002�.
�21� L. I. Daikhin, A. A. Kornyshev, A. M. Kuznetsov, and M.

Urbakh, Chem. Phys. 319, 253 �2005�.
�22� K. J. Schweighofer and I. Benjamin, J. Phys. Chem. A 103,

10274 �1999�.
�23� L. X. Dang, J. Phys. Chem. B 103, 8195 �1999�.

�24� L. X. Dang, J. Phys. Chem. B 105, 804 �2001�.
�25� S. J. Marrink, A. H. de Vries, and A. E. Mark, J. Phys. Chem.

B 108, 750 �2004�.
�26� A. Gupta, A. Chauhan, and D. I. Kopelevich, J. Chem. Phys.

128, 234709 �2008�.
�27� G. Mohan and D. I. Kopelevich, J. Chem. Phys. 128, 044905

�2008�.
�28� D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E.

Mark, and H. J. C. Berendsen, J. Comput. Chem. 26, 1701
�2005�.

�29� H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A.
DiNola, and J. R. Haak, J. Chem. Phys. 81, 3684 �1984�.

�30� J. D. Weeks, J. Chem. Phys. 67, 3106 �1977�.
�31� E. Chacón and P. Tarazona, Phys. Rev. Lett. 91, 166103

�2003�.
�32� P. Tarazona and E. Chacón, Phys. Rev. B 70, 235407 �2004�.
�33� J. Chowdhary and B. M. Ladanyi, J. Phys. Chem. B 110,

15442 �2006�.
�34� B. Roux and M. Karplus, J. Phys. Chem. 95, 4856 �1991�.
�35� S. J. Marrink and H. J. C. Berendsen, J. Phys. Chem. 98, 4155

�1994�.
�36� G. R. Haynes, G. A. Voth, and E. Pollak, J. Chem. Phys. 101,

7811 �1994�.
�37� J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput.

Phys. 23, 327 �1977�.
�38� S. Nosé, Mol. Phys. 52, 255 �1984�.
�39� W. G. Hoover, Phys. Rev. A 31, 1695 �1985�.
�40� M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 �1981�.
�41� S. Nosé and M. L. Klein, Mol. Phys. 50, 1055 �1983�.
�42� G. W. Gardiner, Handbook of Stochastic Methods for Physics,

Chemistry, and the Natural Sciences �Springer-Verlag, Berlin,
1983�.

GUPTA, CHAUHAN, AND KOPELEVICH PHYSICAL REVIEW E 78, 041605 �2008�

041605-10


