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A theoretical model for self-dynamic response is developed using vibration-transit theory, and is applied to
liquid sodium at all wave vectors q from the hydrodynamic regime to the free particle limit. In this theory the
zeroth-order Hamiltonian describes the vibrational motion in a single random valley harmonically extended to
infinity. This Hamiltonian is tractable, is evaluated a priori for monatomic liquids, and the same Hamiltonian
�the same set of eigenvalues and eigenvectors� is used for equilibrium and nonequilibrium theory. Here, for the
self-intermediate scattering function Fs�q , t�, we find the vibrational contribution is in near perfect agreement
with molecular dynamics �MD� through short and intermediate times, at all q. This is direct confirmation that
normal mode vibrational correlations are present in the motion of the liquid state. The primary transit effect is
the diffusive motion of the vibrational equilibrium positions, as the liquid transits rapidly among random
valleys. This motion is modeled as a standard random walk, and the resulting theoretical Fs�q , t� is in excellent
agreement with MD results at all q and t. In the limit q→�, the theory automatically exhibits the correct
approach to the free-particle limit. Also, in the limit q→0, the hydrodynamic limit emerges as well. In contrast
to the benchmark theories of generalized hydrodynamics and mode coupling, the present theory is near a
priori, while achieving modestly better accuracy. Therefore, in our view, it constitutes an improvement over the
traditional theories.
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I. INTRODUCTION

Important advances have been made in the theory of equi-
librium thermodynamic properties of liquids �1,2�. These ad-
vances are characterized by the ability to calculate a priori
the measured properties of real liquids, to an accuracy ap-
proaching the experimental accuracy itself �3–5�. The a pri-
ori nature of the theory is based on the key physical property
of condensed matter, that the potential which governs the
nuclear motion is given by electronic structure theory, in the
form of the electronic ground-state energy as a function of
the nuclear positions. In applying these broad theoretical
foundations, two developments have been extremely helpful:
�a� the development of pseudopotential perturbation theory,
which gives effective internuclear potentials for nearly free-
electron metals in crystal and liquid phases �6�, and �b� the
development of molecular dynamics �MD� computations to
the point of providing highly accurate results, indeed capable
of substituting for experimental data, when a good internu-
clear potential is used �7�. Based on these principles, a priori
calculations have been made of binding energies of the ele-
ments �8�, thermodynamic properties of crystals �9� and liq-
uids �10�, and liquid static structure factors �11,12�. What is
important for the present work, is that MD has proven its
reliability for nonequilibrium properties, e.g., S�q ,�� for
crystals �13� and liquids �7,12,14�, liquid resistivity �15�, and
shear viscosity �16,17�.

Vibration-transit �V-T� theory was introduced when it was
found that a theory based on two components of the atomic
motion can account for the equilibrium thermodynamic data
of elemental liquids �18�: �a� normal-mode vibrations in one
�any� random valley, providing �90% of the thermal energy
and entropy, and �b� transits among a very large number of
macroscopically equivalent random valleys, providing the re-
maining 10%. This theory is useful because the dominant

vibrational motion is tractable, and its Hamiltonian can be
evaluated for real liquids from electronic structure theory
�19�. To test this theory beyond equilibrium properties, it was
applied to dynamic response in liquid sodium, where the
vibrational contribution alone was found to give an excellent
account of experimental results for the Brillouin peak disper-
sion curve �20�. A small correction for transits then produced
agreement with MD data for the entire S�q ,�� graphs �21�.
At this point we could see the possibility of a liquid theory
for both equilibrium and nonequilibrium properties based on
the same dominant �vibrational� component of the motion.
Such a theory could prove useful because traditional non-
equilibrium theories primarily describe the decay of fluctua-
tions, through processes encoded in, e.g., friction coefficients
and memory functions, and these are concepts not present in
equilibrium theories. Our point is not that the traditional de-
scription is wrong, but that a good part of it is already con-
tained in the same vibrational motion that underlies the equi-
librium theory. This view motivates the present application
of V-T theory to self-dynamic response. This application will
provide a serious test of our theory, since self-dynamic re-
sponse has been thoroughly analyzed by the traditional theo-
ries of generalized hydrodynamics �22� and mode coupling
�23�. These analyses are discussed in liquid theory mono-
graphs, and have become a benchmark in dynamic response
theories �24,25�.

The previous application of V-T theory to dynamic re-
sponse was evaluated in the one-mode scattering approxima-
tion �21�. Here, to work at larger q, it is necessary to use the
full vibrational theory, including normal-mode scattering in
all orders, i.e., keeping the displacement autocorrelation
functions in the exponent. This formulation has not been
studied previously, and what it reveals is remarkable to say
the least. The vibrational contribution alone, in a priori nu-
merical evaluation at all q, is in near perfect agreement with
MD calculations through short and intermediate times, and
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the vibrational contribution alone also converges to the cor-
rect theoretical free-particle behavior at large q. Then, ac-
counting for transit motion in leading approximation pro-
duces a theory in excellent agreement with MD calculations
at all q and t.

In Sec. II A, the vibrational contribution to the self-
intermediate scattering function is derived, and its short-time
behavior is examined, as well as its convergence to the free-
particle limit. In Sec. II B, the complete time dependence of
the vibrational contribution is analyzed, and in Sec. II C this
contribution is compared with MD data. The transit induced
correction to the vibrational contribution is derived and mod-
eled in Sec. II D. The hydrodynamic limit is derived in Sec.
II E. The complete theoretical results, vibrational plus transit,
are compared with MD in Sec. III A and the two-step process
by which theory approaches the free-particle limit is ana-
lyzed in Sec. III B. The salient theoretical features are sum-
marized and discussed in Secs. IV A and IV B, and V-T
theory is compared and contrasted with the classic bench-
mark theories in Sec. IV C. A brief sketch of the operational
procedure of V-T theory may be found in the Appendix.

II. THEORY

A. Vibrational contribution

We consider a system of N atoms in a cubic box at the
density of the liquid, with periodic boundary conditions ap-
plied to the atomic motion. The atoms are labeled K
=1, . . . ,N and their positions are rK�t� as functions of time t.
The self-component of the intermediate scattering function is
�24,25�

Fs�q,t� =
1

N��
K

e−iq·�rK�t�−rK�0��� , �1�

where the brackets indicate a motional average in an equilib-
rium state. The vibrational contribution expresses the motion
in a single harmonic random valley extended to infinity �18�.
In this motion each atom moves with displacement uK�t�
away from the fixed equilibrium position RK, so that

rK�t� = RK + uK�t� . �2�

Then the vibrational contribution to Eq. �1� becomes

Fvib
s �q,t� =

1

N��
K

e−iq·�uK�t�−uK�0���
vib

, �3�

where �. . .	vib indicates an average over the vibrational mo-
tion in one �any� random valley. This is simplified by Bloch’s
theorem to

Fvib
s �q,t� =

1

N
�
K

e−2WK�q�e�q · uK�t�q · uK�0�	vib. �4�

The displacement autocorrelation functions are expressed in
terms of the normal vibrational modes � �26�

�q · uK�t�q · uK�0�	vib =
kT

M
�
�

�q · wK��2cos ��t

��
2 , �5�

where T is the temperature, M is the atomic mass, wK� is the
Cartesian vector of the K component of eigenvector �, and
�� is the corresponding frequency. The Debye-Waller factors
are defined by

WK�q� =
1

2
��q · uK�0��2	vib, �6�

and are given by Eq. �5� evaluated at t=0. In addition to the
vibrational averages, the right sides of Eqs. �3� and �4� are to
be averaged over the allowed q vectors at each q magnitude,
making Fvib�q , t� a function only of q, as indicated.

Important properties of Fvib
s �q , t� are determined by its

short-time expansion. To find this behavior we write, from
Eqs. �4�–�6�,

�q · uK�t�q · uK�0�	vib − 2WK�q�

=
kT

M
�
�

�q · wK��2 1

��
2 �cos ��t − 1� . �7�

The expansion for ��t�1 is

Fvib
s �q,t� = e−a�q�t2 1

N
�
K

ebK�q�t4−¯. �8�

The value at t=0 is

Fvib
s �q,0� = 1, �9�

which is the exact theoretical result, as can be seen from Eq.
�1�. The coefficient of t2 is

a�q� = kTq2/2M , �10�

obtained with the aid of the eigenvector completeness rela-
tion �19�

�
�

wKi,�wLj,� = �KL�ij , �11�

where i , j are the Cartesian directions. In studying the time
dependence, it is advantageous to keep it in the exponent, as
in Eq. �8�, rather than to expand the exponential. The leading
factor in Eq. �8� is the free-particle result, defined by

Ffree
s �q,t� = e−a�q�t2. �12�

Finally, the coefficients of t4 in Eq. �8� are

bK�q� =
kTq2

24M
�
�

�q̂ · wK��2��
2 , �13�

where the unit vector q̂ has been introduced so as to factor
out q2. Without approximation, the K dependence of the
bK�q� cannot be ignored.

In dynamic response, free-particle motion becomes domi-
nant at short times and distances. Free-particle behavior is
contained in the self-dynamic response �24,25�, and should
emerge in the large-q limit of Eq. �4�. Since the right side of
Eq. �7� is negative and proportional to q2, as q increases
Fvib

s �q , t� will drop off more rapidly with increasing t. There-
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fore at high q only the lowest-order term in Eq. �7� will be
relevant, so that

lim
q→�

Fvib
s �q,t� = Ffree

s �q,t� . �14�

The process of the approach to this limit will be examined
below.

B. Free, intermediate, and convergence periods

We calculated Fvib
s �q , t� for the 17 q values listed in Table

I. Representative graphs are shown in Fig. 1. Each curve has
the same characteristic shape: it starts at 1, decreases on a
uniform �q-independent� time scale, then levels off and con-
verges to its long-time limit. The displacement autocorrela-
tion functions, Eq. �5�, decay to zero as time increases. This
decay is called the “natural” decorrelation, and is responsible
for the entire time dependence of Fvib

s �q , t�. Analysis reveals
three distinct periods in the curves.

In the initial period, the atomic motion is free. During this
period, Fvib

s �q , t� is dominated by the leading factor in Eq.
�8�, e−a�q�t2. To estimate the duration of this period, let us
average the right side of Eq. �13� over the atoms, and over
the star of q; then with the eigenvector orthonormality rela-
tion

�
Ki

wKi,�wKi,�� = ����, �15�

we find

1

N
�
K

��q̂ · wK��2	q =
1

3N
. �16�

Accordingly,

Fvib
s �q,t� 
 e−a�q�t2+b�q�t4−¯, �17�

where

b�q� =
kTq2

24M
���

2	 , �18�

and where ���
2	= �3N�−1����

2. The free motion period will
last until the t4 term in Eq. �17� begins to be felt; let us
therefore choose � f, the duration of this period, as the time
when b�q�t4=0.1a�q�t2, giving � f =�1.2 / ���

2	. Because of the
decoupling approximation used in deriving Eq. �17�, � f is
independent of q. ���

2	 is related to the characteristic tem-
perature 	2 by 5

3 ��
���2	= �k	2�2 �19�. For our liquid Na sys-
tem 	2=154.1 K �27�, and we find � f =0.070 ps. Our calcu-
lations show that Fvib

s �q , t� begins to depart from e−a�q�t2 at a
time near � f, specifically at around 0.08 ps at q=0.30a0

−1, and
decreasing to around 0.05 ps at q=3.50a0

−1.
The intermediate period in Fig. 1 follows the free period.

Here the strong decrease of Fvib
s �q , t� continues, but the func-

tion is not approximated by the e−a�q�t2 factor in Eq. �8�. In
terms of the power series expansion of the right side of Eq.
�7�, increasingly higher orders contribute while Fvib

s �q , t� re-
tains a smooth t dependence. This property is q independent.

TABLE I. Infinite time limit of Fvib
s �q , t� and decay factors ��q�

of the transit-induced decorrelation, according to Eq. �28�, for dif-
ferent values of the wave vector q.

q �a0
−1� Fvib

s �q ,�� ��q�

0.29711 0.94185 0.1733

0.70726 0.71699 0.9222

0.91575 0.57671 1.4676

1.0148 0.51138 1.7500

1.0917 0.46182 1.9753

1.1050 0.45332 2.0146

1.1443 0.42926 2.1312

1.2547 0.36482 2.4595

1.5052 0.24047 3.1805

1.7577 0.14876 3.8169

2.0041 0.08776 4.2975

2.2529 0.04903 4.6103

2.5064 0.02573 4.7423

2.8498 0.00985 4.6527

3.2000 0.00339 4.3396

3.5008 0.00126 3.9994

6.0013 0.00000 4.2271
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FIG. 1. Fvib
s �q , t� for a wide range of q, showing the initial

decrease on a q-independent time scale, and universal behavior
where the function converges to its t=� limit.
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At some point, the set of cos ��t dephase and begin to
cancel, starting from the highest frequency and continuing to
the lowest, which is the last to dephase. Since the highest
frequency in our system is �max=25.5 ps−1 �21�, the dephas-
ing will begin around 2� /�max=0.25 ps. From Fig. 1, this is
close to the uniform �q-independent� time when the initial
decrease ends and Fvib

s �q , t� begins to converge to its long-
time limit. Hence we associate the convergence period with
the normal-mode dephasing process.

The t→� limit is obtained by setting to zero the displace-
ment autocorrelation functions in Eq. �4�

Fvib
s �q,�� =

1

N
�
K

e−2WK�q�. �19�

In approaching this limit, when the displacement autocorre-
lation functions are sufficiently small, a first-order expansion
of the time dependent part is useful. With Eq. �5� this expan-
sion reads

Fvib
s �q,t� = Fvib

s �q,��

+
1

N
�
K

e−2WK�q�kTq2

M
�
�

�q̂ · wK��2cos ��t

��
2 .

�20�

From Eq. �19�, it is the Debye-Waller factors which set the
level to which Fvib

s �q , t� decreases in Fig. 1, and after that
decrease, Eq. �20� applies. Values of Fvib

s �q ,�� are listed in
Table I.

Figure 1 shows a remarkable similarity of the curves in
the convergence period. The main feature is a broad mini-
mum around 1 ps, where Fvib

s �q , t� lies below Fvib
s �q ,��, and

a final increase of Fvib
s �q , t� to arrive at Fvib

s �q ,�� by around
2 ps. These timings are accurately independent of q. Further-
more, superimposed on this broad shape is a set of small
oscillatory features whose timings are also accurately inde-
pendent of q. This property can be understood with the aid of
a small approximation in Eq. �20�. In a single random valley,
the atomic sites are all inequivalent, for the same reason that
different sites in a crystal unit cell are inequivalent. If we
neglect the coupling of this inequivalence between the eigen-
vectors and Debye-Waller factors, we can average the
�q̂ ·wK��2 as in Eq. �16� and transform Eq. �20� to

Fvib
s �q,t� 
 Fvib

s �q,���1 +
kTq2

M

1

3N�
�

cos ��t

��
2  . �21�

The function in brackets now exhibits uncoupled dependence
on the variables kTq2 /M and t, where the t dependence is
parametrized by the set ���� of normal mode frequencies.
Numerical tests verify that Eq. �21� is rather accurate in the
convergence period, and this explains the uniform
�q-independent� time dependence of the curves in Fig. 1.

The properties of Fvib
s �q , t� were also examined for several

different random valleys in our system, and only insignifi-
cant differences were found. Hence the uniformity of random
valleys previously found for equilibrium thermodynamic
functions �27� is extended to the time correlation function
studied here.

C. First comparison with MD

Figure 2 shows superimposed graphs of our MD results,
FMD

s �q , t�, and the vibrational contribution, Fvib
s �q , t�. At each

q, the MD and vibrational graphs are in near perfect agree-
ment up to an “initial departure” at around 0.2 ps. Beyond
the initial departure, Fvib

s �q , t� turns away from FMD
s �q , t� and

proceeds to converge to its long time limit. Figure 2 shows a
remarkable constancy of the initial departure for all q, and
even a remarkable constancy in the shapes of the curves in
the vicinity of the departure.

Let us consider what Fig. 2 means for our analysis.
Fvib

s �q , t� is based on pure vibrational motion in a single ran-
dom valley. On the other hand, FMD

s �q , t� is based on the real
liquid motion, which has both vibrational and transit contri-
butions. From Fig. 2, the vibrational motion completely
dominates FMD

s �q , t� up to the initial departure. After that, the
difference between FMD

s �q , t� and Fvib
s �q , t� is due to transits,

which are present in the MD data but not in the vibrational
calculation. However, even though transits are going on con-
tinuously in the MD system, at a very high rate because the
temperature is around Tm, the effect of transits does not ap-
pear immediately in FMD

s �q , t�, but only after the motion de-
parts from the pure vibrational motion. This observation will
be used to calibrate our decorrelation model in the next sec-
tion.
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1.0

0 0.1 0.2 0.3 0.4
time (ps)

F
S (q

,t)

q=0.30a
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-1

q=1.01a
0

-1

q=1.25a
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-1

q=1.51a
0
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q=1.76a
0

-1

q=2.25a
0

-1

q=3.50a
0

-1

q=0.71a
0

-1

FIG. 2. For Fs�q , t� the vibrational contribution �lines� and the
MD data �dots� agree extremely well to around 0.2 ps �fine vertical
line�.

DE LORENZI-VENNERI, CHISOLM, AND WALLACE PHYSICAL REVIEW E 78, 041205 �2008�

041205-4



D. Transit-induced decorrelation

Our goal here is to model the effects of transits in a way
that is consistent with the a priori determined vibrational
motion in a single random valley. We start by returning to the
definition, Eq. �1�, which becomes

FVT
s �q,t� =

1

N���
K

e−iq·�rK�t�−rK�0���
vib
�

trans

. �22�

This form expresses the fundamental insight of V-T theory
that the motion of the atoms consists of vibrations that are
periodically modified by transits, allowing us to consider the
effects of the two kinds of motion as two consecutive aver-
ages. Expanding each rK and evaluating the vibrational av-
erage as in Eqs. �2�–�4�, we find

FVT
s �q,t� =

1

N
�
K

�e−iq·�RK�t�−RK�0��e−2WK�q�

e�q · uK�t�q · uK�0�	vib	trans. �23�

Notice that the equilibrium positions still carry time depen-
dence because we have not yet evaluated the transit average.
From this point of view we identify two ways in which tran-
sits will modify Fs�q , t�. The first arises from transit-induced
changes in the atomic equilibrium positions RK�t�, while the
second way is through their effect on the displacement auto-
correlation functions �q ·uK�t�q ·uK�0�	vib. Given the fact that
transits change the equilibrium positions on very short time
scales compared to the vibrational motion, we expect the first
effect to be largely decoupled from the second, so we make
the approximation of full decoupling and find

FVT
s �q,t� =

1

N
�
K

�e−iq·�RK�t�−RK�0��	trans

�e−2WK�q�e�q · uK�t�q · uK�0�	vib	trans. �24�

Now we can consider each transit average separately.
Let us abbreviate the first transit average as AK�t�. In V-T

theory the motion of RK�t� is entirely responsible for self-
diffusion, hence it is appropriately modeled as a random
walk. The single atom transit rate � is the number of transits
per unit time in which a given atom is involved. Consider an
increment �t sufficiently small that an atom is very unlikely
to be involved in more than one transit. Then in �t, AK�t�
changes by

�AK�t� = ��e−iq·RK�t+�t� − e−iq·RK�t��eiq·RK�0�	trans. �25�

In �t, each atom transits once with probability ��t, or else
does not transit. If atom K does transit, RK�t+�t�=RK�t�
+�RK. If atom K does not transit, RK�t+�t�=RK�t�. Equation
�25� becomes

�AK�t� = ��e−iq·�RK − 1�e−iq·�RK�t�−RK�0��	trans��t . �26�

We assume ��RK�=�R, the same for all transits, while the
direction of �RK is uniformly distributed and uncorrelated
with the other factors inside the sum. Then �e−iq·�RK −1� can
be separately averaged over angles and Eq. �26� can be writ-
ten

�AK�t�
�t

= − ��q��e−iq·�RK�t�−RK�0��	trans, �27�

where

��q� = ��1 −
sin q�R

q�R
 . �28�

Since the transit average on the right-hand side of Eq. �27� is
AK�t� and AK�0�=1, the equation integrates to

AK�t� = e−��q�t. �29�

Finally, from this result and Eq. �4� for Fvib
s �q , t�, Eq. �24�

becomes

FVT
s �q,t� = e−��q�t�Fvib

s �q,t�	trans. �30�

So the random walk for RK�t� in Eq. �24� yields the last
relation, with the displacement autocorrelation functions in
Fvib

s �q , t� still having arbitrary time dependence.
Now we must account for the fact that the transit-induced

decorrelation does not begin to operate until some time has
passed �Fig. 2�. We do this with the simplest possible model,
replacing the decay factor e−��q�t by the decorrelation func-
tion D�q , t�, defined by

D�q,t� = �1 for t � �c,

e−��q��t−�c� for t � �c,
� �31�

where �c is the crossover time, to be calibrated. Then from
Eq. �30�, our transit decorrelation model is now

FVT
s �q,t� = �Fvib

s �q,t�	transD�q,t� . �32�

In the random walk model, the self-diffusion coefficient is
D= 1

6���R�2. A measurement of �R was obtained from MD
simulations at 30 K �28�, and the result can be used here
because �R has only weak T dependence. On the other hand,
� is a strong function of T, so we use the MD evaluation
DMD=5.61�10−5 cm2 /s� at the temperature of the present
study, 395 K �29�. For comparison, the experimental value
for liquid Na at 395 K is 5.08�10−5 cm2 /s� �30�. The results
for �R and � are

�R = 1.75a0,

� = 3.9 ps−1.

The value of � is not far from our previous estimate of
2.5 ps−1 �31�. Data for ��q� are listed in Table I.

The second effect of transits is felt on the displacement
correlation functions. As noted in Sec. II B, these functions
already decay to zero by the natural decorrelation among
normal modes. As a model, we might suppose that transits
cause sudden vibrational phase shifts, and therefore enhance
the decay of the displacement autocorrelation functions. This
enhanced decay will cause Fvib

s �q , t� to decay more quickly to
Fvib

s �q ,��. Referring to the curves in Fig. 1, the main effect
will be to slightly raise the broad minimum around 1 ps, and
bring the curve to Fvib

s �q ,�� noticeably before 2 ps. This is
an interesting physical effect, but is small; in fact it is ex-
tremely small compared to the decorrelation caused by the
motion of the equilibrium positions, as modeled in Eq. �31�.
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We therefore neglect the transit-induced decorrelation of the
displacement autocorrelation functions in the present study,
with the final result that

FVT
s �q,t� = Fvib

s �q,t�D�q,t� . �33�

Now the only thing that remains to be determined is the
parameter �c. The foremost property revealed in Fig. 2 is that
�c must be independent of q. For this reason it is conceivable
that vibrational information alone can determine �c. We have
clues to this effect—for example, �c is close to the start of
dephasing at 0.25 ps �Sec. II B�—but we have no certainty.
We therefore calibrate �c by comparison of the theoretical
FVT

s �q , t�, Eq. �33�, with the MD results in Fig. 2, at t around
�c. This gives �c=0.22 ps. The reason �c is a little larger than
the initial departure time of 0.20 ps in Fig. 2 is to allow the
discontinuous D�q , t�, Eq. �31�, to better fit the actual smooth
crossover behavior. When �c is determined in the same way
for different random valleys, the scatter in �c is around
�0.01 ps.

E. Hydrodynamic limit

The hydrodynamic limit corresponds to q→0 and t larger
than a characteristic time. As q→0, from Eqs. �4�–�6�,
Fvib

s �q , t�→1+O�q2� for 0� t��. Also as q→0, ��q�
→O�q2�, and from Eq. �31�, D�q , t�→e−��q�t�1+O�q2�� for
t��c. Then from Eq. �33�, FVT

s �q , t� is e−��q�t�1+O�q2��. We
drop the term in O�q2� and take the q→0 limit of ��q�, Eq.
�28�, to find

lim
q→0

FVT
s �q,t� = e−Dq2t for t � �c, �34�

where we used the random walk model expression for the
self-diffusion coefficient. The right side is the correct hydro-
dynamic limit of Fs�q , t�.

III. COMPARISON OF THEORY WITH MD
CALCULATIONS

A. Self-dynamic response

Graphs comparing theory with MD are shown in Fig. 3
for q=0.30–2.51a0

−1. The time required to decay to zero de-
creases strongly as q increases, from around 28 ps at q
=0.30a0

−1 to 0.6 ps at q=2.51a0
−1. The decay rates ��q�, Table

I, show a corresponding strong increase as q increases. Since
the decorrelation begins at �c=0.22 ps, nearly the entire
curve at q=0.30a0

−1 is the decay process. The decorrelation
steadily becomes a smaller part of the curve as q increases,
until it affects only the tail of the curve at q=2.51a0

−1. These
changes are accompanied by a change in shape of the graphs,
from a near exponential at q=0.30a0

−1, going over to a quali-
tatively Gaussian shape at q=2.51a0

−1. All of this behavior
has the important consequence that the decay rate ��q� even-
tually becomes irrelevant as q increases.

Generally speaking, the crossover bump in the theoretical
curve around �c cannot be seen in graphs as small as those in
Fig. 3. The prominence of the bump depends on both the
slope and magnitude of the curve at �c. It is most prominent

at q=1.51a0
−1, where it is enlarged in the inset. The devia-

tions

�Fs�q,t� = FVT
s �q,t� − FMD

s �q,t� �35�

for representative q are shown in Fig. 4. The largest devia-
tions in our study are included in the figure. For most q and
most t, the deviation is �0.005 in magnitude, which we con-
sider insignificant. Larger deviations are seen in two places.
�a� The positive spike at t
0.22 ps is due to the crossover
model, Eq. �31�. This error could be removed by smoothing,
but since it is so small we are willing to forego the introduc-
tion of a smoothing model. �b� The only significant devia-
tions are those in the negative dip at t�0.3–2.0 ps. These
deviations reach magnitude �0.01–0.02 for the dotted curve
�q=0.30a0

−1� and the four dashed curves �q=0.71–1.14a0
−1�.

Notice the shape at q=0.30a0
−1 is the same as the others, but
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FIG. 3. Comparison of FVT
s �q , t� �lines� with FMD

s �q , t� �circles�
for various q. The crossover bump near �c is enlarged in the graph
for q=1.51a0

−1.
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stretched out over a much longer time. This error arises from
the broad shallow minimum in Fvib

s �q , t� observed in Fig. 1.
That minimum is not entirely in error, however, since a
weakened copy of it is present in FMD

s �q , t�. From a detailed
examination of the data, we conclude that the error can be
eliminated by adding a theoretical model for the transit-
induced decorrelation of the displacement autocorrelation
functions. This decorrelation process was discussed at the
end of Sec. II D.

Graphs comparing theory with MD for Ss�q ,�� are shown
in Fig. 5. The only significant error corresponds to the nega-
tive dip in �Fs�q , t� for a limited q range, in Fig. 4. This q
range is near the location of the first peak in S�q�, at qm
=1.05a0

−1 in our system.
Further comparison of theory and MD is shown in Figs. 6

and 7. The quantity graphed in Fig. 6 is ���q� /Dq2, where
���q� is the half width of Ss�q ,�� and Dq2 is the half width
in the diffusion limit �24,25�. Figure 7 shows the quantity
�Dq2Ss�q ,0�, where ��Dq2�−1 is Ss�q ,0� in the diffusion
limit �22�. In these graphs we used the same value DMD for
Na at 395 K as in calibrating ��q� following Eq. �33�. These
figures will allow a comparison of the present theory with
the traditional generalized hydrodynamics and mode cou-
pling theories in Sec. IV. Here we observe that Figs. 6 and 7
show a rather good agreement between theory and MD for
the entire q range, including the approach to the free-particle
limit. Further, most of the error revealed in Figs. 6 and 7
appears in the vicinity of qm and is attributed to our neglect
of the transit-induced decorrelation of the displacement au-
tocorrelation functions in Eq. �4�.

B. Approach to the free-particle limit

According to Eq. �14�, Fvib
s �q , t� reaches the free-particle

limit as q→�. When the transit-induced motion of the equi-
librium positions is accounted for, the V-T theory expression
is Eq. �33�, with D�q , t� given by Eq. �31�. The approach of
FVT

s �q , t� to the free-particle limit is therefore to be under-
stood by watching the function Fvib

s �q , t�D�q , t� as q in-
creases. The process contains two steps, both operating at all

times, but in effect more or less sequential, as follows.
�a� In the first step, because Fvib

s �q , t� decreases to zero in
an ever shorter time as q increases, and because D�q , t�=1
for t��c, the decorrelation function effectively approaches 1
as q increases. This process is apparent in Fig. 2. Let us
define qc by the condition that D�q , t� can be replaced by 1
for q�qc. Then

FVT
s �q,t� = Fvib

s �q,t� for q � qc. �36�

This is the situation in Fig. 8 at q=3.50a0
−1: D�q , t� is effec-

tively 1 for all time, and as a result, FVT
s and FMD

s are in near
perfect agreement for all time.

�b� In exact free-particle motion, the self-intermediate
scattering function is given by Eq. �12�. But when step �a� is
completed and Eq. �36� holds, and Fvib

s �q , t� agrees with
FMD

s �q , t�, these functions have not yet reached the free-
particle limit. This is also shown in Fig. 8, where the theory
and MD curves differ noticeably from the free-particle curve.
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0 1 2 3 4 5 6 7
time (ps)

∆F
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FIG. 4. Deviations of FVT
s �q , t� from FMD

s �q , t�, Eq. �35�. The
dotted line is q=0.30a0

−1, the four dashed lines are �from the lowest�
q=0.71, 0.92, 1.01, and 1.25a0

−1, and the solid lines show negligible
deviation for q�1.51a0

−1.
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The situation exemplifies the point discussed in Sec. II B,
that in the intermediate time period, Fvib

s �q , t� continues its
steep decrease but is not well approximated by the e−a�q�t2

factor. So the final step in arriving at the free-particle limit is
to increase q beyond qc, until Fvib

s �q , t� concides with
Ffree

s �q , t�.
Figure 9 shows the Fourier transform of Fig. 8. Again the

theory and MD are in agreement while both differ from the
free-particle curve. Another view of the approach to the free-
particle limit is seen in Fig. 6. For the half width, the differ-
ence between theory and MD is around 0.8% for q
=2.51–3.50a0

−1, and is 0.1% at q=6.00a0
−1. This level of

agreement is in strong contrast to the much larger difference
of theory and MD from the free-particle half width. The
same property for Ss�q ,0� is observed in Fig. 7. Clearly,
theory and MD are in substantial agreement long before they
arrive at the free-particle limit. Then, the final approach to
the free-particle limit is determined entirely by the vibra-
tional contribution, and is very slow, possibly algebraic, as
seen in Figs. 6 and 7.

IV. SUMMARY AND CONCLUSIONS

A. Vibrational contribution

The main conclusions of this study are expressed through
a discussion of the self-intermediate scattering function. We
begin by comparing properties of Fvib�q , t� with exact theory
and with MD results.

�a� The short-time expansion is Eqs. �8�, �10�, and �13�.
The value at t=0 is Fvib

s �q ,0�=1, the exact result. The ex-
pansion gives the free-particle limit Ffree

s �q , t�=e−a�q�t2 as the
leading factor in Fvib

s �q , t�, at all q. The result is not trivial. It
appears because the eigenvector completeness relation Eq.
�11� decouples the free-particle motion in the exponent. This
property ensures that V-T theory will automatically give the
free-particle behavior as q→�.

�b� At the end of the period of free-particle motion, at t
=� f, Fvib

s �q , t� starts to depart from e−a�q�t2. Fvib
s �q , t� contin-

ues its strong decrease throughout the intermediate period,
until Fvib

s �q , t� levels off and starts to converge to Fvib
s �q ,��.

The power series in t2 does not usefully represent Fvib
s �q , t� in

the intermediate period. Fvib
s �q , t� is in very good agreement

with FMD
s �q , t� for all times up to near the end of the inter-

mediate period, and all q, Fig. 2. This period of agreement
between Fvib

s �q , t� and FMD
s �q , t� is three times longer than the

duration � f of free-particle motion, providing direct confir-
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FIG. 6. Comparison of theory �solid line� and MD �circles� for
the normalized halfwidth of Ss�q ,�� for all q listed in Table I. The
dashed line is the free-particle limit.
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mation that normal-mode vibrational correlations are present
in the motion of the liquid state.

B. Transit contribution

To complete the theory for the self-intermediate scattering
function, we must include the transit motion. What is needed
is a physically motivated model which will not interfere with
the above listed accurate properties of the vibrational contri-
bution. In Eq. �4� for Fvib

s �q , t�, there are two places where
transits will cause decorrelation of the purely vibrational
atomic motion.

�a� The first effect of transits is to make the equilibrium
positions time dependent in Eq. �2�, i.e., RK�t�. This motion
is modeled as a random walk of transit jumps �RK, all of the
same magnitude �R, and uniformly distributed over angles
for each atom. This transit motion then decouples from the
vibrational motion, to give the complete theory in the form
of Eqs. �31� and �33�. The random walk model is calibrated a
priori from MD data for the transit jump distance and the
self-diffusion coefficient. The crossover time �c is the only
parameter calibrated with the aid of MD data for self-
intermediate scattering. The transit decorrelation embodied
in D�q , t� constitutes a major correction to Fvib

s �q , t�, and
brings FVT

s �q , t� into excellent overall agreement with
FMD

s �q , t�.
�b� The displacement autocorrelation functions, written in

Eq. �5�, decay to zero as t→�, by virtue of the natural deco-
rrelation among normal-mode vibrations. The second transit
effect will be to enhance this decay. To make a proper model
for this will require additional study, especially regarding the
form of the decorrelation and the importance of the K depen-
dence. In the meantime, the present study shows that this
transit effect is small enough to neglect entirely and still have
a highly accurate theory.

For the self-function, the transition to free-particle behav-
ior involves two sequential steps. First, with increasing q,
Fvib

s �q , t� goes to zero in a shorter and shorter time, until at
qcFvib

s �q , t� vanishes for t��c. Then for q�qc, D�q , t� in Eq.
�33� is effectively 1, so that FVT

s �q , t�=Fvib
s �q , t�, and FVT

s �q , t�
agrees with FMD

s �q , t�. As q increases from qc, theory and
MD remain in agreement, and together they approach the
free-particle limit. This final approach is within the vibra-
tional contribution.

In contrast, the hydrodynamic limit depends entirely on
the transit decorrelation. As q→0, FVT

s �q , t�→e−��q�t for t
��c, and this produces the hydrodynamic limit in Eq. �34�.

C. Comparison with traditional theories

The self-dynamic structure factor for liquid Ar near the
triple point was studied by Levesque and Verlet �22�, who
compared several generalized hydrodynamics models with
MD for the quantities graphed in Figs. 6 and 7. A similar
study was made for liquids Ar and Rb by Wahnström and
Sjögren �23�, who carried out their analysis in mode cou-
pling theory. These studies are discussed by Hansen and Mc-
Donald ��24�, p. 266� and by Balucani and Zoppi ��25�, Sec.
5.3�, and have become the benchmark theories for Ss�q ,��.

Levesque and Verlet use the memory function formalism “to
give a simple phenomenological fit for the computed self-
intermediate scattering function.” The fitting process uses the
q-dependent coefficients of t2, t4, and t6 in Fs�q , t�, and is
also adjusted to give the correct ideal gas �high-q� limit.
Wahnström and Sjögren split the memory function into a
rapid binary collision part and a slowly varying collective
recollision part. Their calibration also uses the coefficients of
t2, t4, and t6 in Fs�q , t�, and additional longer time informa-
tion. The application of V-T theory constitutes an extreme
contrast to these traditional theories. The collision concept
does not appear in V-T theory. The vibrational contribution
alone, a priori and for all q, accurately accounts for the
short- and intermediate-time behavior of Fs�q , t� and accu-
rately accounts for the free-particle limit as well. Hence
Fvib

s �q , t� provides much of the information used for calibra-
tion by the traditional theories. Then, only the transit contri-
bution remains to be addressed.

Since we are proposing a different theory of self-dynamic
response, we should compare numerical accuracy with the
traditional theories. The standard for this comparison is the
error of theory from MD for the quantities graphed in Figs. 6
and 7, the width and height of Ss�q ,�� �22–25�. These errors,

FIG. 10. Error in �� /Dq2 as a function of q /qm. The line is
present theory �qm=1.05a0

−1�, the open and filled circles are Ar from
�22,23�, respectively, and the filled diamonds are Rb from �23�.

FIG. 11. Error in �Dq2Ss�q ,0� as a function of q /qm. The line is
present theory �qm=1.05a0

−1�, the open and filled circles are Ar from
�22,23�, respectively, and the filled diamonds are Rb from �23�.
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in the form of �theory-MD�/MD, are compared for traditional
and present theories in Figs. 10 and 11. The Levesque and
Verlet data for Ar are from their tables �22�, and the
Wahnström and Sjögren data for Ar and Rb are read from
their graphs �23�. The large error for Rb at large q is attrib-
uted to a difference of the self-diffusion coefficient between
theory and MD �23�. In the overall comparison, the error in
the present theory is smaller than in the traditional theories.
However, in our view, more important than the comparison
of numerical accuracies is the near a priori character of the
present theory. Beyond the standard diffusional model for the
motion of the vibrational equilibrium positions, only the
single scalar parameter �c is needed to calibrate FVT

s �q , t� for
all q and t.
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APPENDIX: OPERATIONAL PROCEDURES OF V-T
THEORY

A brief summary of the operational procedures of V-T
theory will perhaps be useful. One begins with an inter-

atomic potential for the system of interest. An MD system is
constructed, and quenches are made from the liquid to mini-
mum potential energy structures, where the equilibrium po-
sitions and the dynamical matrix are evaluated. Except for
three translational eigenvalues, which are zero to numerical
accuracy, all normal mode eigenvalues must be positive. In
the first application to a given system, one needs to make
some tests to identify the random structures �as differentiated
from symmetric structures�, and to verify that the random
structures do indeed dominate the potential energy surface
�27,29,32�. This step is to check the “single random valley”
approximation, whose verification is still in progress �27�.
From this point one can proceed by working with a single
random valley. The dynamical matrix is diagonalized to find
the frequencies �� and eigenvectors wK�. The vibrational
contribution to any thermodynamic function �18,19� or to a
time correlation function �26� can be expressed in terms of
these quantities. This is illustrated by the equations of Sec.
II. A numerical evaluation of sums ��f� proceeds by direct
summation over the 3N−3 modes with nonzero ��. At the
present stage in the theoretical development, the transit con-
tribution to a statistical mechanical average is accounted for
by a macroscopic model, such as the one reported here in
Sec. II D.
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