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The ideas related to potential-energy landscape and cooperativity of atomic rearrangements are widely
discussed in the research field of glass transition. The crossover transition from high-temperature regime to
potential-energy-landscape-influenced regime was extensively studied using the concept of inherent structure.
However, the interpretation of this crossover behavior in terms of microscopic changes in real structures is still
lacking. In this paper we present several observations on the crossover behavior on real structures. We compare
fluctuations in the global properties �total number of bonds, total potential energy, pressure� versus fluctuations
in the local properties �coordination number, atomic potential energy, local atomic pressure� by means of
molecular dynamics simulations. We then show that the total and local fluctuations in the number of atomic
bonds in the system depend on temperature differently above and below the temperature of crossover to the
landscape-influenced regime. Similarly, the ratio between the global and local fluctuations in the potential
energy and pressure changes in the vicinity of the crossover temperature, whereas the change is less distinct
than in the case of the bond fluctuations. Our results indicate that local fluctuations become more correlated
below the crossover temperature, most likely via the interaction through the dynamic shear elastic field.
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I. INTRODUCTION

The connection between structure and dynamics is a cen-
tral question in the research field of glass transition �1–3�.
After many years of study it is still unclear why such prop-
erties as diffusivity, viscosity, and relaxation time change by
so many orders of magnitude while there are only small ap-
parent changes in the structure. It is also not clear if there
exist universal parameters that can describe these subtle
changes in the structure for all classes of liquids and glasses
�4–7�.

In the past decades extensive numerical studies were per-
formed on different model systems exhibiting the glass tran-
sition. These studies indicated the presence of different dy-
namic regimes in supercooled liquids �1,8–10�. In particular,
two temperatures are often considered to separate these re-
gimes, in addition to the glass transition temperature Tg. One
is the mode-coupling temperature Tc which is above, but is
rather close to Tg �11,12�. The other is the so-called cross-
over temperature TA which lies significantly above Tg or Tc,
but usually below the melting temperature Tm �2�. It is often
assumed that “the true supercooled liquid behavior” starts
below TA �2�.

Most often the presence of the crossover temperature TA
is revealed in molecular dynamics �MD� simulations by ex-

amining the inherent structure, i.e., the structure obtained by
steepest decent relaxation �quenching� of the structure at a
given “real” temperature. In particular, it was shown �10�
that the mean potential energy of the inherent structures ex-
hibits a nontrivial dependence on the temperature of the
original “real” structure. Thus when the system is quenched
from a high temperature, the energy of the inherent structure
is almost temperature independent. However, as temperature
is reduced below TA, the energy of the inherent structure
starts to decrease with the decreasing original temperature.

There are also several observations of crossover behavior
on real structure. In particular it was observed in the tem-
perature dependence of the � parameter in the stretched ex-
ponential fit to the intermediate self-scattering function
�10,11,13�, in the temperature dependence of viscosity �i.e.,
breakdown of Stokes-Einstein relationship� �13,14�, and in
deviation from the fluctuation-dissipation relation �13�. How-
ever, while these observations are important, in our view
they did not yield enough insight about the relations of these
phenomena to the microscopic structure of the real liquid.
The interpretation of the crossover phenomenon in terms of
microscopic parameters is still absent.

In this paper we present several evidences of the cross-
over behavior on the real, not the inherent, structure. In our
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approach we use several different microscopic parameters
�atomic coordination number, individual atomic potential en-
ergy, local atomic pressure� and compare fluctuations in
these microscopic parameters with fluctuations in related
macroscopic quantities �total number of bonds in the system,
total potential energy, pressure�. Thus our approach reveals
the relation between the collectivity of atomic motion and
the crossover behavior. To the best of our knowledge, previ-
ous observations of collectivity of atomic motion, done, for
instance, using four-point correlation functions �15–18�,
were focused on the region of the mode-coupling tempera-
ture Tc and the presence of TA was not addressed in these
works.

We performed molecular dynamics �MD� simulations on a
single component system of particles interacting through a
short-range pairwise potential. The changes in the local
atomic structure with temperature are often described in
terms of the changes in short �nearest neighbors� and inter-
mediate �second and third nearest neighbors� order �19,20�.
Here we describe the local structure in terms of the atomic
bond, defined by the first minimum of the atomic pair distri-
bution function �PDF� without implying a chemical bond. In
our model the deep first minimum in the PDF ensures that
the atomic bond and the local atomic coordination number,
Nc, are well-defined. We find that the temperature depen-
dence of the mean-square deviation in the total number of
bonds in the system normalized to the mean-square devia-
tions in the number of bonds of the individual atoms �coor-
dination number� exhibits the same crossover behavior as
does the energy of the inherent structure. Our results show
that below the crossover temperature stronger correlations
between bond breaking and bond formation develop. This
may be interpreted as an indication that a tendency toward
rigidification in the network of bonds begins around the po-
tential energy landscape crossover temperature. Similar con-
clusions were obtained by comparing the temperature depen-
dencies of global and local fluctuations in the potential
energy and pressure. However, as shown below, the cross-
over behavior is more pronounced in the statistics of bonds
rather than in potential energy or pressure. This illuminates
the role of fluctuations in atomic connectivity in the cross-
over phenomenon. Our results provide further insights into
the microscopic origin of the crossover phenomenon.

II. DETAILS OF MD SIMULATIONS

In our molecular dynamics �MD� simulations we used a
single component system of particles interacting through the
modified Johnson pair potential �see inset of Fig. 1� �21�.
Further details of the potential can be found in Appendix A.
This potential was designed to model the properties of a
supercooled metallic �iron� liquid and glass. However, we
are not interested in describing the properties of iron. In-
stead, we present the results with the hope that they are valid
for any system of particles interacting through a pair poten-
tial, as long as the first minimum in the pair density function
is well-defined. We chose a single component system despite
its instability against crystallization in order to simplify the
results as much as possible.

The data in our MD simulations were collected at a fixed
number of particles, fixed volume, and fixed energy
�NVE-ensemble�, with periodic boundary conditions. A fifth-
order Gear algorithm was used to integrate equations of mo-
tion �22�. The simulations were performed on the systems
consisting of 5488 and 1458 particles. No size effects were
found for the results presented below. The initial liquid state
was obtained by running MD at a high temperature
�10 000 K� and at a low number density ��o=0.016 �Å�−3�
starting from the bcc lattice. After the structure was random-
ized we rescaled the distances between the particles to the
density of interest: �o=0.078 43 �Å�−3 �23,24�. This density
minimizes the energy of the fcc lattice with respect to the
lattice spacing at T=0. The structures at lower temperatures
were obtained by means of cooling and relaxation from this
high temperature liquid state.

We controlled the temperature using a velocity rescaling
algorithm �25,26� based on the formula �mvi

2 /2�=3kBT /2,
where m is the mass of the particle, vi is the velocity of the
particle i, kB is Boltzmann constant, and T is the temperature.
During cooling and during the collection of statistics for the
fluctuations in the number of bonds we applied this algo-
rithm in two different ways. During cooling we rescaled the
velocity of the particles on every MD step �the time step was
chosen to be 10−15 s� in such a way that the average kinetic
energy over all particles would correspond to the target tem-
perature value. We found that at temperatures above 1300 K
the structure of the system becomes insensitive to the history
of relaxation after less than 20 000 MD steps. Thus the struc-
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FIG. 1. �Color online� Radial pair-density function of the system
at different temperatures. Note that the value of the density drops to
almost zero as temperature goes to zero. Thus the first nearest
neighbors are well-defined. The position of the first minimum is
located at distance 3.3 Å, in the limit of zero temperature. The inset
shows the modified Johnson pair potential used in our MD
simulations.
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tures obtained by incremental cooling �with intermediate re-
laxations over 105 steps� down to 1300 K and the structures
obtained by an instant drop of temperature �velocity rescal-
ing� from 10 000 to 1300 K were indistinguishable when
judged by the potential energy and the PDF.

Above 1400 K the system remained supercooled without
crystallization during the simulation runs longer than 107

MD steps. In the temperature interval between 1300 and
700 K, crystallization into the bcc lattice usually occurred
within �105–107 MD steps depending on temperature and
initial conditions. In this temperature range, slow relaxation
was observed, i.e., the potential energy and the PDF were
dependent on the initial conditions and the duration of relax-
ation. Relatively fast crystallization in this temperature range
did not allow us to collect enough data for statistics of bond
fluctuations. However, this temperature range is not impor-
tant to the purpose of this work. Below 800 K relaxation
becomes very slow. In order to avoid crystallization and ob-
tain structures below 800 K we instantaneously rescaled the
velocities of the particles from 1300 to 800 K. Further cool-
ing was done with relaxations between the incremental tem-
perature drops. The value of the potential energy in the sys-
tem was dependent on the history of relaxation below 800 K.

When we collected the data for statistics of bond fluctua-
tions we ran MD simulations at a constant energy in order to
avoid fluctuations in the total energy affecting the bond sta-
tistics. Thus we averaged the kinetic energy over the micro-
canonical ensemble and over the sampling time of 105 MD
steps. The average value of the kinetic energy over this time
interval, �K�t��, in general was slightly different from the
target value Ktar due to a finite time step and a finite averag-
ing time. Thus at the end of the sampling time we instanta-
neously rescaled the velocities of all particles, v� i�
=v� i

�Ktar / �K�t��. However, the changes in the total energy,
�E, were very small. For example, at 2000 K we always had
�E /kB�2 K. Thus we essentially performed constant en-
ergy simulations.

As was observed in the previous study �27�, we found that
the average pressure was almost linearly dependent on tem-
perature above 1300 K, and also below 800 K but with dif-
ferent slopes. Extrapolation of the data suggests that the
change in the slope occurs around 800–1000 K depending
on the history of cooling. This change in the slope is com-
monly associated with the glass transition �1,28� �see also
Fig. 7�a��.

Figure 1 shows the pair density function �PDF� calculated
from the structures obtained in our MD simulations at differ-
ent temperatures. Note that the depth of the first minimum in
the PDF approaches zero in the limit of zero temperature.
Thus, as it was done in �29,30�, we define an atomic bond
between two particles when the distance between them is
smaller than the cutoff distance corresponding to the first
minimum in the pair density function, i.e., 3.3 Å.

The average atomic coordination number in our model
system is around 12 to 13, as could be seen in Fig. 2. Thus
the local structure in this system is in general similar to the
local structure of the system composed of hard spheres
�31–33�, or a Lennard-Jones liquid �34–36�.

III. ENERGY OF THE INHERENT STRUCTURE

The data for the inherent energy were obtained from 100
structures at each original temperature. The time separation
between the two consecutive real structures was 10 000 fs at
all temperatures. Each inherent structure was obtained by
steepest descent relaxation of the initial structure.

The main plot in Fig. 3 shows how the average energy of
the inherent structures depends on temperature. The solid
circles show the energy of the inherent structure obtained
from the MD simulation. The solid line is a fit using the
�1 /T� functional form, suggested by the previous studies in
the case of the Gaussian probability distribution of the po-
tential energy minima �37–41�. The inset shows how the av-
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FIG. 3. �Color online� The solid circles in the main plot shows
the dependence of the average inherent potential energy per atom
on temperature obtained from MD simulations. The solid curve
shows the fit to the data using the form and the values of parameters
shown in the figure. The data below 800 K all fall on a horizontal
line. Intersection of this line with the fit for the liquid state presum-
ably gives glass transition temperature. The inset, besides the en-
ergy of the inherent structure, also shows how the energy of the
“real� structure �squares� obtained from MD depends on tempera-
ture. The dotted line shows the fit to the data using the Rosenfeld-
Tarazona form.
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erage energies of the real �solid squares� and inherent struc-
tures �solid circles� depend on T. We see that the energy of
the inherent structure is much less dependent on temperature
than the energy of the real structure. This is not surprising
since inherent structures do not have atomic vibrations. The
purpose of the inset is to remind one that the crossover be-
havior is associated with rather small and subtle changes in
the inherent structure. The fit �dotted line� of the dependence
of the energy of the real structure on temperature was done
using the Rosenfeld-Tarazona �T3/5 scheme �42�.

Figure 3 shows that the energy of the inherent structure
deviates from the �1 /T� functional form above around
2300 K and becomes less strongly dependent on tempera-
ture. This defines the crossover temperature, TA�2300 K
below which the system enters the potential energy land-
scape �PEL� influenced regime �2,10,43�.

IV. STATISTICS OF BONDS FLUCTUATIONS

In covalent glasses such as silicate or polymer glasses the
covalent bonds remain intact well above the glass transition
temperature and even near the crossover temperature. In me-
tallic glasses, however, the depth of the interatomic potential,
in our case 0.25 eV �	2900 K�, is of the same order of
magnitude as the crossover temperature. Thus atomic bonds,
defined between the nearest neighbors, are dynamic: they are
broken and formed with high rates all the time in the liquid
state.

If bonds would form and break totally independently of
each other then the mean-square deviation �MSD� in the total
number of bonds, �B,total

2 �every bond is counted once�,
would be essentially equal to the MSD of the local atomic
coordination number, �B,indiv

2 , times the number of atoms:
�B,total

2 =�B,indiv
2 Na /2, as we discuss in Appendix B. On the

other hand if the bond breaking and forming are correlated
these two numbers will not be equal. Thus we calculated the
time average of �B,total

2 �T� /Na and compared it with the time
and ensemble average of �B,indiv

2 �T� at different temperatures,
T. In order to collect statistics we counted the total number
of bonds in the system every 100 MD steps. The total length
of the simulation was �107 MD steps.

In Fig. 4 the open symbols show the results obtained on a
system of 5488 particles, while the small closed symbols
show the results obtained on a system of 1458 particles. The
upper curves show the temperature dependence of the MSD
in the individual particle’s coordination numbers, i.e.,
�B,indiv

2 �T�. The lower curves show the temperature depen-
dence of the MSD in the total number of bonds �every bond
is counted once� normalized to the number of atoms, i.e.,
�B,total

2 �T�.
The temperature dependence of the ratio,

X�T� =
�B,total

2 �T�
�B,indiv

2 �T�
, �1�

is shown in Fig. 5. The ratio X�T� is nearly constant above
�2500 K, but it starts to decrease as temperature is reduced
below, and more rapidly below 1000 K. By extrapolating the
linear portions of the data we identify two crossover tem-

peratures, the first one close to 950 K and the second one
around 2300 K. These two may be identified as the glass
transition temperature, Tg, and the crossover temperature, TA.
The values of Tg and TA are independent of the system size
for Na=1458 and 5488.

The rapid decrease in X�T� below 950 K must be the con-
sequence of the system freezing into a glass. There should be
two kinds of bond fluctuations: One is due to configurational
rearrangements while the other is due to vibrational atomic
motion. Atomic diffusion with displacements larger than in-
teratomic distances leads to essentially irreversible changes
in atomic connectivity. The fluctuations in the number of
bonds due to such processes could be considered as configu-
rational fluctuations in the network of bonds. On the other
hand some of the vibrational motions of atoms around their
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temporal equilibrium positions can also lead to the temporal
changes in connectivity. This will happen when the inter-
atomic distance happens to be close to the cutoff distance
used to define the nearest neighbors and vibration moves the
atom across the cutoff. The fluctuations in the number of
bonds due to such dynamic processes could be considered as
vibrational fluctuations. Below Tg the configurational fluc-
tuations are essentially frozen, so that �B,total

2 �T� reflects only
the vibrational contributions, and extrapolates to zero at T
=0 K, as it should. On the other hand �B,indiv

2 �T�, i.e., MSD
of the individual particles coordination numbers, reflects the
fact that different atoms can have different coordinations.
Thus it is non-zero even at zero temperature as seen in Fig. 2.
Therefore the ratio, X�T�, extrapolates to zero at T=0 K.

The change at TA is more subtle. Whereas the glass tran-
sition at Tg occurs through the system falling out of equilib-
rium because of slow kinetics, the system has to be in equi-
librium in the vicinity of TA. In terms of the potential energy
landscape �PEL� approach the decrease in the inherent en-
ergy below TA occurs because the system spends more time
in the potential energy landscape matabasins and spends less
time between the metabasins, since in order to make transi-
tions between the metabasins the system has to overcome
large potential energy barriers. In the framework of the
above reasoning, the decrease in the values of X�T� below
the crossover temperature could mean that transitions be-
tween different metabasins require larger deviations in the
total number of bonds from an average value. As these tran-
sitions become more and more rare the ratio X�T� starts to
decrease.

A different view is that the decrease in X�T� means that
the network of bonds becomes more rigid below the cross-
over temperature as discussed below. The stronger tendency
to conserve the total number of bonds, of which X�T� is a
representative, is a signature of this behavior. Thus the de-
crease in X�T� could essentially signify the beginning of the
transition from a liquid to a glass.

V. FLUCTUATIONS IN POTENTIAL ENERGY
AND PRESSURE

Similar to the fluctuations in the number bonds, we can
also consider fluctuations in the total potential energy vs
fluctuations in the potential energy of individual atoms, since
the potential energy and the number of bonds are related
quantities. As we described previously, we ran essentially
constant total energy simulations. However, while the total
energy is fixed the values of the potential and kinetic ener-
gies fluctuate with time. In order to estimate the mean-square
deviation �MSD� of the total potential energy we ran simu-
lations for �107 MD steps and we evaluated the value of the
total potential energy, �U,total

2 , as well as the MSD in the
potential energy of the individual atoms, �U,indiv

2 , every 20
MD steps. The summary of the obtained data is presented in
Fig. 6. The plot �c� of this figure shows the ratio, Y�T�
=�U,total

2 /�U,indiv
2 . The results again suggest the existence of a

gradual crossover behavior around the temperature between
2000 and 3000 K.

However, the comparison between the inset of Figs. 5 and
6�c� shows that crossover is much more pronounced if ex-

pressed in terms of simple connectivity units �bonds� as in
Fig. 5. We find it quite remarkable that simple geometrical
features show the crossover more clearly than does the po-
tential energy. The possible reason for this could be that most
of the atomic vibrations other than those of the pairs of at-
oms close to the cutoff distance do not contribute to bond
fluctuations, whereas the potential energy reflects all the vi-
brations. This is similar to the situation for the inherent struc-
ture where atomic vibrations are removed by steepest descent
relaxation, and the temperature dependence in the topology
of atomic connectivity is revealed.

We have also compared the fluctuations in the global pres-
sure and those in the local pressure on the individual par-
ticles. The total pressure in the system for a particular con-
figuration of the particles could be calculated according to

P = −
1

3V


ij
�rij� ��

�rij

� . �2�

The local, or atomic-level, pressure was defined earlier �24�.
The atomic-level pressure on an atom i can be calculated as

pi = −
1

6Vi



j
�rij� ��

�rij

� , �3�

where the sum over j covers the neighbors within the range
of the potential, 3.44 Å. The local atomic volume of an atom
i could be calculated as

Vi =
4

3
�ri

3, �4�

where
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ri = �

j

wijrij
��

j

wij
, wij = �1/rij
2 � . �5�

The sums in Eqs. �4� and �5� are again over the nearest
neighbors. The weighing factor wij is proportional to the
solid angle that atom j blocks as seen from an atom i.

Figure 7�a� shows how average pressure depends on tem-
perature. This plot suggests that there is a glass transition
around 1000 K. Figure 7�b� presents the temperature depen-
dence of the MSD of the global pressure per atom, �P,total

2

and the MSD of the atomic-level pressure �P,indiv
2 . The tem-

perature dependence of the ratio Z�T�=�P,total
2 /�P,indiv

2 is
shown in Fig. 7�c�.

The results suggest that atomic pressures on different sites
do not fluctuate independently and that correlations in pres-
sure fluctuations on different cites exhibit nontrivial tempera-
ture dependence. Thus if the local pressure on a certain atom
increases because of some structural change, then at low
temperatures it becomes more and more probable that the
local atomic pressure on some other atom will decrease.
Thus the correlated changes in the local pressure on different
atoms tend to keep the total average pressure constant, and
thus these correlations decrease the MSD in total pressure
compared to the MSD in the local atomic pressures. As it
was shown in �44�, the local atomic-level pressure is related
to the coordination number. When the coordination number
is smaller than the average then, on average, the central atom
is under compression. On the other hand if it is larger than
the average then the central atom feels the expansive �nega-
tive� pressure. Thus the similarity in the results in Figs. 5 and
7 is not an accident.

VI. DISCUSSION

The major result of this paper is that we have found evi-
dence that the crossover behavior previously observed in the
inherent structure could also be seen in the dynamics of the
real structure. This conclusion is derived from the compari-
son of fluctuations �mean-square deviations� in the global
properties vs fluctuations in the local properties. In particular
we considered fluctuations in the number of bonds �i.e., fluc-
tuations in the atom network connectivity� as well as fluc-
tuations in the potential energy and pressure. All the results
consistently demonstrate that they all contain the evidence of
crossover phenomenon at the same temperature, which is
also the crossover temperature observed in the inherent struc-
ture.

There are several previous observations of crossover be-
havior on real structures which include temperature depen-
dence of � in stretched exponential fit to the intermediate
self-scattering function �10,13�, temperature dependence of
viscosity and breakdown of the Stokes-Einstein relationship
�13,14�, and deviation from the fluctuation-dissipation rela-
tion �13�.

The present results add to these observations and bring
some insights into the nature and origin of the crossover
phenomenon. In this work the crossover behavior was most
clearly observed in the temperature dependence of the ratio
between the mean-square deviations in the total number of
bonds and the mean square deviation in the coordination
number of individual atoms, X�t�=�B,total

2 /�B,indiv
2 . X�T� ex-

hibits a marked change around TA�2300 K, well above the
glass transition temperature. This temperature coincides with
the temperature at which the energy of the inherent structure
starts to deviate from the expected 1 /T temperature depen-
dence �i.e., the crossover temperature� which is also around
�2300 K. Thus the way in which the system samples the
potential energy landscape is reflected in the correlations be-
tween the bond breaking and bond forming. A similar cross-
over was also observed in the ratio between the mean-square
deviations in the global pressure and the mean-square devia-
tion in the atomic-level pressure, Z�T�=�P,total

2 /�P,indiv
2 .

When an atomic bond between the atoms i and j is cut,
the coordination number is reduced by one at both atoms,
whereas when a bond is created the coordination number is
increased by one for the two atoms involved. Since the local
coordination number is linearly related to the atomic-level
pressure �44�, the fluctuations in bonds must be related to the
fluctuations in the atomic level pressure. Indeed the similar-
ity in the behaviors of X�T� and Z�T� underscores this point.
Again, as we discussed on the relation between X�T� and
Y�T� this correspondence is not perfect, since Y�T� and Z�T�
include contributions from all the atomic vibrations, while
only small portions of the atomic vibrations affect X�T�.

It was shown previously that spatial correlations develop
in the local atomic shear stresses, even above the glass tran-
sition temperature, in the system studied in this work �27�.
Strong correlations are seen between the nearest neighbors
that decrease with distance. The onset of correlations is
around 2000 K or higher. In our view this observation is
directly relevant to our results. At high temperatures local
shear stresses fluctuate freely without correlation, but as tem-
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FIG. 7. �Color online� �a� The temperature dependence of the
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perature is lowered they start to interact with each other.
It is natural to assume that the local stresses interact with

each other through the dynamic stress fields, including the
phonon fields. Although liquids do not support static stress
fields, they could support dynamic stress fields. They cer-
tainly support dynamic pressure fields, since the bulk modu-
lus of a liquid is not much different from that of a solid, and
sound waves propagate in the liquid. On the other hand it
may appear less likely that the shear stress fields are sup-
ported by the liquid, since the shear modulus is zero. How-
ever, the shear modulus is frequency-dependent, and at high
enough frequency and low enough temperature dynamic
shear fields may be present in the liquid. The correlations
reported in Ref. �27� are the evidence of the existence of
such fields. The observed correlations are instantaneous
�same time�, but dynamic correlations that decay with time
must be present as well in the liquids, in a similar tempera-
ture range. We are currently examining such local dynamic
shear stress correlations in relation to the Green-Kubo ex-
pression for viscosity.

In the glassy state such correlations can be modeled
�44,47� by the continuum mechanics theory of Eshelby �46�.
According to the Eshelby theory pressure centers interact
with each other through the shear fields. Thus the local pres-
sure fluctuations, and therefore bond fluctuations, become
correlated only when the dynamic shear stress fields are
present. Then the onset of such dynamic shear stress fields
could cause the crossover phenomenon. The closeness of the
onset temperature for shear stress correlation to the crossover
temperatures that characterize the changes in X�T�, Y�T�, and
Z�T� strongly supports this possibility.

If the onset of the dynamic shear stress fields is the origin
of the crossover phenomenon, it leads to an interesting pos-
sibility that the metabasin in the energy landscape may be
defined by the communication through such dynamic shear
stress fields. At high temperatures local topology defined by
bonds fluctuates almost freely, so that the system does not
see the energy landscape. The properties are determined
mostly by local energy fluctuations. Below the crossover
temperature, however, local fluctuations start to communi-
cate through the dynamic shear stress fields, so the local
fluctuations are no longer independent, and start to develop
the energy landscape. It is therefore likely that the features of
the energy landscape will be made clearer by studying the
detailed aspects of the local dynamic stress correlations. This
subject will be discussed in our future publications.

VII. CONCLUSION

The results discussed in this paper indicate that the cross-
over phenomenon is characterized by the increase in the cor-
relations between bond breaking and forming as well as the
onset of interaction among the local pressure fluctuations.
Since the bond breaking and forming change the atomic level
pressure, these two observations describe essentially the
same phenomenon. According to the continuum theory of
mechanics �46�, pressure centers interact with each other
through the shear stress fields. Together with the earlier ob-
servation �27� on the development of spatial correlations in

instantaneous local shear stresses, this result suggests an in-
teresting possibility that the crossover phenomenon is caused
by the onset of dynamic shear stress fields. The crossover
phenomenon could be considered as a signature of the liquid
becoming more rigid and assuming a more solidlike charac-
ter.
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APPENDIX A: MODIFIED JOHNSON PAIR POTENTIAL

The form of the modified Johnson pair potential used in
this study is slightly different from the one that was used
previously �45�. The minimum allowed distance used in the
previous form was 1.9 Å, while we found that at tempera-
tures above 3000 K atoms can come closer than 1.9 Å. Thus
we had to modify potential at small distances. In our present
work we used the potential which coincides with the form
described previously �45� at distances larger than 2.4 Å. For
the distances smaller than 2.4 Å the form of the potential
was slightly modified. The full form of the potential is given
below �the intervals of distance r are in Å and pair potential
energy is in eV�.

For �0�r	2.246 948� the potential has the form

��r� = 2.463 595�r − 2.977 441�4

− 1.396 616�r − 2.977 441�2.

For �2.246 948�r	2.4� the potential has the form

��r� = − 12.900 210�r − 2.4�4 − 15.096 180�r − 2.4�3

+ 1.372 738�r − 2.4�2 − 0.504 775�r − 2.4�

− 0.200 211.

For �2.4�r	3.0� the potential has the form

��r� = − 0.639 230�r − 3.115 829�3

+ 0.477 871�r − 3.115 829� − 0.092 606.

For �3.0�r	3.44� the potential has the form

��r� = 14.671 110�r − 3.0�5 − 12.910 630�r − 3.0�4

+ 1.725 326�r − 3.0�3 + 0.222 124�r − 3.0�2

+ 0.452 143�r − 3.0� − 0.146 964.

The potential defined in this way has a continuous second
derivative everywhere.

APPENDIX B: PROBLEM OF BOND COUNTING

Here we estimate the value of the ratio of the MSD in the
total number of bonds �normalized to the number of atoms�
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to the MSD in the number of bonds for uncorrelated atoms
for a very simple model.

Let us suppose that we have a lattice. We assume that the
coordination number of every atom is Nc

a. We also assume
that every bond in the lattice fluctuates in such a way that the
average ratio of the length of time t1 when it exists to the
length of time t2 when it does not exist is t1 / t2. Let us also
assume that all bonds fluctuate independently.

Under the assumptions above the contribution of one
bond to the average number of bonds of an individual atom
is given by

n̄1b =
1

�t1 + t2��0

t1

dt =
t1

�t1 + t2�
, �B1�

while the MSD from the average value �for one bond� is
given by

�1b
2 =

1

�t1 + t2���0

t1

�1 − N̄1b�2dt + �
0

t2

�0 − N̄1b�2dt�
=

t1t2

�t1 + t2�2 . �B2�

Since all bonds fluctuate independently the average number
of bonds and mean-square deviation in the number of bonds
for one atom are

N̄1a = Nc
an̄1b, �1a

2 = Nc
a�1b

2 . �B3�

Let us now consider the whole lattice. The contributions
of every bond to the total number of bonds in the lattice and
to the mean-square deviation are still given by Eqs. �B1� and
�B2�. Thus the total average number of bonds in the whole
lattice and the mean-square deviation are given by

N̄L = �NaNc
a

2

n̄1b, �L

2 = �NaNc
a

2

�1b

2 , �B4�

where �NaNc /2� is the total number of bonds in the lattice �if
every bond is counted once as in Fig. 4�.

Thus we conclude that the ratio of the MSD in the total
number of bonds per atom to the msd in the number of bonds
for one atom is

1

Na

�L
2

�1a
2 =

1

2
. �B5�

Thus this model suggests that because of the way the
bonds are counted the value of the ratio of the MSD in the
total number of bonds �normalized to the number of atoms�
to the MSD in the number of bonds for one atom should be
1 /2. The fact that the value of the ratio calculated in MD
simulations is smaller than 1 /2 indicates that there are cor-
relations in bond breaking and formation.
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