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Phase transition of a spin-lattice-gas model with two timescales and two temperatures
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We study the phase transition of a nonequilibrium statistical-mechanical model, in which two degrees of
freedom with different time scales separated from each other touch their own heat bath. A general condition for
finding anomalous negative latent heat recently discovered is derived from a thermodynamic argument. As a
specific example, the phase diagram of a spin—lattice-gas model is studied based on a mean-field analysis with
the replica method. While configurational variables are spin and particle in this model, it is found that the
negative latent heat appears in a parameter region of the model, irrespective of the order of their time scale.
Qualitative differences in the phase diagram are also discussed.
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I. INTRODUCTION

Phase transitions under nonequilibrium conditions have
attracted a great deal of attention in statistical-mechanical
problems [1-3]. There have been many investigations on
nonequilibrium phase transitions so far [4-7], which have
revealed a fascinating new transition behavior different from
equilibrium transition. In general, probability distribution in
nonequilibrium cannot be expressed in terms of only energy
functional, which causes a difficulty in theoretical study.

Recently, another class of nonequilibrium systems that ex-
hibits a phase transition has been studied [8], in which two
different degrees of freedom coupled to their own heat baths
interact with each other through multibody interactions. For
simplicity, time scales of these two variables are assumed to
be well separated. Then, the systems consist of slow and fast
variables belonging to different time hierarchy. The fast vari-
ables behave in quasiequilibrium for a given set of slow vari-
ables that plays a role as quenched variables for the fast ones.
Meanwhile, the slow variables are not given by an indepen-
dent distribution function as in quenched disordered systems,
but are affected through the mean force of fluctuating fast
variables. Such systems with a hierarchy in separated time
scales and different heat baths are called here “two-
temperature” systems. These systems are adopted to describe
neural network systems with a synaptic evolution [9], evolv-
ing networks [10], and some kind of NMR systems [11]. In
contrast to most nonequilibrium systems, the steady-state
distribution of the models is formally expressed in terms of
the energy function using the replica method that is a stan-
dard tool for studying thermodynamic properties of the
quenched disordered systems [12].

The replica formalism for two-temperature systems has
been introduced in Refs. [9,13,14]. While the quenched dis-
ordered systems require the replica limit in which the replica
number is zero, the two-temperature systems have a physical
meaning for any value of the replica number that corre-
sponds to a ratio of two temperatures. In this sense, this is
regarded as a generalization of quenched systems and is
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sometimes called a partial annealing system [9]. The biggest
difference from the quenched systems is that the slow vari-
ables are also dynamically coupled to their heat bath. There-
fore, both the slow and fast variables are responsible for
phase transition. This could provide a new cooperative phe-
nomenon over a different time scale.

In fact, Allahverdyan and Petrosyan, hereafter referred to
as AP, studied a mean-field spin model as a two-temperature
system and found that the model exhibited a first-order phase
transition with anomalous negative latent heat, which never
occurs in equilibrium statistical mechanics. However, this
peculiar behavior observed in the two-temperature system is
not well understood. We pursue phase transition in the two-
temperature systems and give a general condition that the
system exhibits the negative latent heat with the help of the
idea of thermodynamics. It is also found that, in the systems,
two different entropies associated with the fast and slow
variables, respectively, play a competitive role in determin-
ing the phase boundary of first-order transition. We further
studied a two-temperature version of a spin—lattice-gas
model, similar to that studied by AP, as a specific example.
The spin—lattice-gas model consists of two degrees of
freedom—spins and particles—which have been studied for
a given Hamiltonian in equilibrium [15]. The two-
temperature version is characterized by not only the Hamil-
tonian but also the order of time scales of two variables. AP
studied the case in which the spins were slow and the par-
ticles were fast. We study this case with some modified
Hamiltonian and also the other case, namely when the spins
and particles behave as fast and slow variables, respectively.
We then find that the existence of the negative latent heat is
common to both cases, suggesting that it is observed in a
wide class of the two-temperature systems. On the other
hand, qualitatively different behavior is also found in the
phase diagram of the two cases, in particular the stability of
the ferromagnetic ordered phase.

This paper is organized as follows. In Sec. II, we review
the replica formalism of the two-temperature system, which
leads to an equilibrium model of a replicated system. We also
discuss the phase boundary of the first-order transition and
derive a Clausius-Clapeyron relation in this system. This re-
lation enables us to find generally a geometric property of
the phase boundary and the negative latent heat. In Sec. III,
we explicitly define two mean-field spin—lattice-gas models
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with a different order of time scales, and we give self-
consistent equations for the models. The results obtained by
solving the equations are presented in Sec. IV. In Sec. V, we
summarize our results.

II. TWO-TEMPERATURE FORMALISM WITH
DIFFERENT TIME SCALES

In this section, we review a theoretical formalism for a
two-time-scale and two-temperature system [8]. Suppose a
system described by a Hamiltonian H(f,s), in which f is a
symbolic notation of a fast degree of freedom and s is of a
slow degree of freedom. These variables f and s are in con-
tact with their different heat baths with temperature 7y and
T,, respectively. We assume that the two characteristic time
scales on the variables s and f are well separated from each
other and that the thermal average of the fast variable f can
be taken with a fixed configuration of the slow variable s.
Then, the conditional probability P(f|s) of finding a configu-
ration f for a given s at the inverse temperature 5,=1/T is
defined as

e BHS)
Z(s)

P(fls) =

where the normalization constant or the partition function of
the fast variable is set as

; (1)

Z(s) = Trye P, ()

Hereafter, the Boltzmann constant is set to be unity. One can
define partial free energy for the fast variable as F(s)
==T;log Z(s).

The steady-state probability of slow variables P(s) is de-
rived by an adiabatic approximation of the two-temperature
Langevin equation [13]. The force acting on s is assumed to
be an averaged derivative of the Hamiltonian with respect to
the slow variable over the conditional probability, which is
represented by the partial free energy as —%S(Ls). The equilib-
rium distribution P(s) at the inverse temperature B,=1/T is
given by

e BEA)
P(s)=—>—, (3)
where
Z =Tr,e A1), (4)

The total free energy F is defined by F=-T,logZ.

Using the replica trick, the model can be mapped onto an
equilibrium problem with a replicated Hamiltonian for the
integer number of ratio n=T,/T,

F=-T, log(TrsTr}l) e Tr}">e‘5f27:1H(f<”J)) , (5)

where f) denotes replicated fast variables. This could be
extended to any real value of the ratio T/ T after calculating
the replicated system in a standard manner of the replica
method. While one takes the replica limit n—0 for the
quenched disordered system like spin glasses, any value of n
makes sense as the two-temperature system in this context.
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This formalism is also interpreted as a kind of statistical-
mechanical problem with randomness. In particular, note that
the distribution of the random variables is determined by not
only a given independent function but also the thermal aver-
aged quantity of the fast variables. The latter leads to a non-
trivial correlation among the slow variables.

We discuss the thermodynamic properties of the two-
temperature system. The simultaneous probability P(f,s) is
expressed as P(f,s)=P(f|s)P(s). The total entropy S defined
by the simultaneous probability is decomposed into two de-
grees of freedom as

§=—Tr, ;P(f.s)log P(f.s) = S, + S, (6)
where S, and S, are expressed as
S, =— Tr,P(s)log P(s), (7)
Sp=—TrP(s)[ TrP(f]s)log P(fls)]. (8)
The total free energy F is formally expressed as
7(Tcan)=<H(f7S)>f—Tfo—TxSm )

where (--); and -+ denote an average over the variables f
with P(f|s) and s with P(s), respectively. It should be noted
that the free energy is also rewritten by

F(T,T)) = F{s) - TS, (10)

Averaging over the fast variables f, the thermodynamic
structure is found by regarding the averaged partial free en-
ergy F/(s) as an “energy” for the slow variable s. Namely,
the averaged partial free energy and the entropy S, for the
slow variables decrease monotonically with decreasing 7.

As a consequence of the thermodynamic structure [16], a
Clausius-Clapeyron-like relation for two-temperature sys-
tems is derived, which gives us a topological property of a
first-order-transition line. Suppose a phase diagram of the
system onto the two-temperature plane of 7, and 7. We take
two points (T, T,) and (Ty+ 6Ty, T+ 6T,), which are located
on either side of the first-order-transition line. The free-
energy difference SF between these points with small tem-
perature differences 67 and o7 is given by

8F == §,6T; - 8,4T,. (11)

At the first-order transition point (Tffl),Tﬁl)), the ordered and
disordered states coexist and the free energy of these states
coincides with each other, meaning

AF=FOTP 1 - FOTP 1 =0, (12)

where the superscripts 0 and d denote the ordered and the
disordered states, respectively, and AA means the difference
of a physical quantity A between the ordered and disordered
states at the transition point. Using Eqgs. (11) and (12), the
Clausius-Clapeyron [16] -like relation is obtained as

1)
s -
f S;

This implies that when the slope of the phase boundary
d]"ﬁl)/ dT}l) is positive, AS, and AS are opposite from each
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other. The free-energy difference AF is also expressed as
AF=AU-TAS~T,AS,, with U being the internal energy
(H)_f. Thus, we obtain the relation between the deference of
the internal energy and the phase boundary as

1)
Au(yﬁnjﬁn) _ 7§1>ASS<1 - nZ%”)' (14)

Because the entropy S; is a monotonically decreasing func-
tion of T, the sign of AU/ depends on only the gradient of the
phase boundary. This implies that the condition to find the
negative latent heat is i$d7‘§”/d7‘}l) when T decreases. On
the other hand, when Ty decreases, the condition for the
negative latent heat changes to 0 < dTﬁl)/ dT}l) < ﬁ While AP
explicitly found that a specific spin—lattice-gas model exhib-
ited the negative latent heat in a region of the phase diagram
using the replica method, we find a general condition for
which the negative latent heat appears through the thermo-
dynamic argument.

III. MEAN-FIELD SPIN-LATTICE-GAS MODEL

A model Hamiltonian we studied is an infinite-range spin—
lattice-gas model, which is given by

N
1
H{S,p}) = X,E (USS;+ epip;+aX pi,  (15)
(i) i=1

where S;= * 1 are spin variables, p;=0,1 are particle occu-
pation variables, and they are defined on N sites. In the case
in which the spins §; are the slow variable and the particles p;
the fast, referred to as the case-1 model, the model system
with €,=0 is identical to that studied by AP [8]. We also
consider the inverse case in which the spins and the particles
represent the fast and slow variables, respectively, which is
referred to as the case-2 model. The spin and particle vari-
ables are coupled to their own heat baths, whose temperature
is denoted by T and T, respectively. The sum is taken over
all pairs of sites. The interactions J and €, denote a ferromag-
netic coupling and an attractive interaction between particles,
respectively. In this paper, J is taken as a unit of energy and
temperature. The first term of the Hamiltonian consists of a
spin-mediated interaction and a direct one. The second term
plays a role for controlling a particle number with chemical
potential «, which is chosen to be a positive value. The spin—
lattice-gas model could exhibit two types of phase transition,
namely magnetic and density orderings. The interaction
—(JS;S;+¢€/) between particles tends to increase the particle
density and magnetically ferromagnetic ordering, while the
chemical potential « tends to decrease the particle density. In
this sense, these two energy terms compete with each other.
Furthermore, two different kinds of entropy associated with
the fast and slow variables also compete with the energy
terms.

Since the Hamiltonian is an infinite range model, the trace
of Eq. (5) is carried out with the help of the replica method
by introducing two auxiliary fields m and p, which corre-
spond to average magnetization and particle density, respec-
tively. The self-consistent equations for m and p are written
as, for the case-1 model,
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> SH(S;m,p)[ 1+ H(S;m,p)]""!
o St | o

> [+ ¢(S;m,p)]"

S==*1

ES d(S;m,p)[1 + H(S;m,p) ]!

S==*1

pe .y

2 [1+¢(S:m.p)]
S=*1
and for the case-2 model,

( > S¢(S;m,p)>< > <z5(S;m,p)>"_1

S=*1 S==*1

" 2"+ <S§1 ¢(S;m,p)>” ’

(18)

( > ¢(S;m,p))"

S==*1

= . (19)
2"+( > ¢(S;m,p))
S=*1

where ¢(S;m,p)=ePe/5-) Here By is the inverse of
the fast temperature, which corresponds to 1/7), in the case-1
model and 1/7Ty in the case-2 model. The free energy of the
system is represented with a solution (my,p,) of the above
self-consistent equations as

1
Fi(mo,po, Ts, T)) = E(Jm?) + €p;)

- T log( E [1+ ¢(S§mo’Po)]n>

s==1
(20)

for case-1 and

1
Fo(mg,po, T, T)) = E(Jmé + EfP(z))

S==*1

-T, 103[2” + ( > ¢(S§m0,Po)>n]

(21)

for case-2. Here n is defined as the ratio of the fast tempera-
.1, Ts
ture to the slow one, namely 7 is T—’S and 7 for case-1 and
case-2, respectively. In this paper, F; and fZ as functions of
m and p are loosely called “free energy” in the sense of
Ginzburg-Landau free energy. According to Egs. (7) and (8),
two kinds of decomposed entropy are termed Sg and S,
respectively, for the case-1 model, and S, and Sg for the

case-2 model.

IV. RESULTS AND DISCUSSIONS
A. Phase diagram and negative latent heat

We first discuss the phase diagram of the spin—lattice-gas
model with the condition €,=0 both for the case-1 and the
case-2 models. The case-1 model with ef:O, which is the
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FIG. 1. (Color online) Phase diagram of the case-2 model on the
Tg-T, plane with a=0.45 and €=0. PM and FM denote paramag-
netic and ferromagnetic phases, respectively. The solid and dashed
lines represent the first- and second-order transitions, and the dotted
line represents the instability limit of the paramagnetic solution.
The inset shows an enlarged view around the critical point.

same as that studied by AP [8], shows that a ferromagnetic
phase has a place in a low-Tg region at @=0.45, and that
there is a region of the phase boundary in which the internal
energy of the ferromagnetic phase is higher than that of the
paramagnetic phase. Namely, the phase transition involves
the negative latent heat discussed in Sec. III.

We study the phase diagram of the case-2 model, the
time-scale reversed version studied by AP [8]. Figure 1
shows a phase diagram on the Ts-7), plane for the case-2
model with €=0 and a=0.45, which is in comparison to the
phase diagram of the case-1 model shown in Ref. [8] under
the condition of €=0.

While the first-order phase-transition temperature shows a
rather weak dependence of 7, and takes a finite value at 7),
=0, it behaves nonmonotonically as a function of T, near the
critical point as shown in the inset of Fig. 1. According to
Eq. (14), in the region between A and B shown in the figure,
the latent heat becomes anomalously negative when 7, de-
creases. Figure 2 shows T, dependence of thermodynamic
quantities for a fixed Ts, where phase transitions occur three
times as a function of 7,. As T, decreases at 73=0.071, a

P p
first-order transition occurs at 7,=0.18 from a dense ferro-

magnetic phase to a dilute one alr71d a second-order transition
between the dilute ferromagnetic and the paramagnetic
phases at 7,,=0.175. Eventually, the transition from the para-
magnetic to the ferromagnetic phases again occurs 7,
=0.116.

At the highest transition temperature 7,=0.180, the inter-
nal energy and the entropy Sg have a positive jump, while the
averaged partial free energy Fg(p) decreases monotonically.
This means that the internal energy of the highly ordered
phase at higher temperatures is lower than that of the disor-
dered phase at lower temperatures. A similar first-order tran-
sition is found between A and B in Fig. 1. Thus, this phase
transition could be simply interpreted as a kind of reentrant
transition, in which the low-temperature disordered phase is
stabilized by an entropic effect. This is in contrast to the
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FIG. 2. (Color online) 7, dependence of U/ (open circle), TsSg
(closed square), and averaged partial free energy Fs(p)=U-TsSg
(open triangle) at @=0.45 and T¢=0.071 in the case-2 model. There
are three phase transitions, indicated by vertical lines, with T,
changing for a fixed Tg. Two first-order transitions occur at T,
=0.116 and 0.180. The former is between PM and FM, whereas the
latter is a reentrant transition between dense and dilute ferromag-
netic phases. Between these transitions, a second-order transition
occurs at 7,=0.175.

case-1 model, in which the low-temperature phase is the dis-
ordered paramagnetic one.

Another difference between the case-1 and case-2 models
is found in the topology of the phase diagram. Whereas the
case-1 model has a tricritical point at which the first- and the
second-order-transition lines merge, the first-order-transition
line enters into the ferromagnetic phase in the case-2 model
as shown in Fig. 1. Interestingly, a density origin phase tran-
sition occurs in the ferromagnetic phase. Near the transition,
the free energy has four different local minima that corre-
spond to high-density and low-density ferromagnetic states
and their time-reversal ones. This is qualitatively different
from that observed by AP in the case-1 model.

Let us discuss the effect of the €, term in the spin-lattice-
gas model. The first-order transition of this system is origi-
nated with the particle density. Therefore, the first-order-
transition line could be changed by introducing the direct
interaction between particles, the € term in Eq. (15). We
study the effect of the €, term on the phase diagram of both
the case-1 and case-2 model. First, we focus on the € depen-
dence of the region in which the negative latent heat is ob-
served. Figure 3 shows the phase diagram with €,=0.4 in the
case-1 model and the inset shows that with €,=0. As the
value of € increases from zero, the first-order-transition tem-
perature T(Sl) for a fixed T, increases and the ferromagnetic
region is extended. The intensity of nonmonotonic behavior
of T<S') found in the inset of Fig. 3 near the multicritical point
gets weaker with increasing €, Eventually, at the value €
=0.80 as shown in Fig. 5, the first-order-transition line is
monotonic as a function of 7),. The argument in Sec. II yields
that the monotonic behavior of T(Sl) as a function of 7, means
the absence of negative latent heat on the transition. Thus, it
is found that the region in which negative latent heat is ob-
served is robust against an infinitesimal attractive interaction
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FIG. 3. (Color online) Phase diagram of the case-1 model on the
Ts-T, plane with @=0.45 and €,=0.4. The thick line represents the
first-order phase transition. The symbols of lines are the same as
those in Fig. 1. The inset shows the phase diagram of the case-1
model with @=0.45 and €:=0.

and disappears by further increasing the interaction. This
suggests that the negative latent heat is not peculiar behavior
in the two-temperature system and could be observed by
controlling the model parameter. Similar behavior is ob-
served in the case-2 model. The phase diagram with €,=0.4
for the case-2 model is shown in Fig. 4. As seen in the case-1
model, the ferromagnetic phase transition is also enhanced
and the nonmonotonic region of the first-order-transition line
becomes narrow with increasing ;.

B. Stability of ferromagnetism in the two models

In this subsection, we discuss the phase diagram with
relatively large €, There is a remarkable difference in the
stability of ferromagnetic order between the case-1 and

0.5 : :
£=0.40
041 PM P ]
03 —\/ ]
0.2+ 1
03108 1
0.1 03102} 1
i FM 0.408  0.409 0.41
T
0 0 0.1 02 03 04 (%5 06 0.7 08 09 1

p

FIG. 4. (Color online) Phase diagram of the case-2 model with
a=0.45 and &=0.40. The symbols of lines are the same as those in
Fig. 1. The inset shows an enlarged view near the multicritical
point. The first-order-transition line intersects with the paramagnetic
instability line.
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£=0.80

25+

FIG. 5. (Color online) Phase diagram of the case-1 model with
a@=0.45 and &=0.80. The symbols of lines are the same as those in
Fig. 1.

case-2 models. Figure 5 shows a phase diagram of the case-1
model with €=0.8, in which the ferromagnetic phase exists
stably up to extremely high temperature. As € increases fur-
ther, T( takes a finite value in the limit 7,=0 agaln as
shown in Fig. 6. Namely, in a finite range of €, 7‘ diverges
as a function of 7, and then the ferromagnetlc phase be-
comes stable even in the high-T limit. In contrast, the fer-
romagnetic phase boundary in the case-2 model changes
modestly with increasing €, as shown in Fig. 4, and Tgl)
remains finite in the limit 7,=0. This suggests that the dif-
ference of the time scales between the particle and the spin
strongly affects the stability of the ferromagnetic phase.

In order to clarify the issue mentioned above in the two
models, it would be helpful to see an instability condition of
the parama%netic phase. The paramagnetic instability line,
(T(pml) T<p ), on the Tg-T), plane is simply determined by
the cond1t10n o 2|m_0p pPM)_O because the off-diagonal

term of a Hessian matrix of the free energy with respect to m
and p vanishes in the paramagnetic phase. Then, the self-

3 : ‘
€=0.99

251 7

0.5

FIG. 6. (Color online) Phase diagram of the case-1 model «
=0.45 and €=0.99. The symbols of lines are the same as those in
Fig. 1.

041132-5



C. H. NAKAJIMA AND K. HUKUSHIMA

consistent equations for p, Egs. (17) and (19), in the para-
magnetic phase are simply reduced to the equation

(PM)

elgp(ffp() -a)

(PM) _

pO ) (22)

L1 P

where py (PM) genotes a solution of the self consistent equation
in the paramagnetic phase. By using the solution of the equa-
tion, the instability condition for the case-1 model is given
by
J
,Bs]<1 - —pf’M>(1 o) - L ey ) 0. (23)
p T
This yields the instability temperature T{Spmi) as a function of
T, expressed as

Jp(PM
1= (UIT)p™ (1 = pif™)”

When the denominator 1-(J/T )Po PM)(1— p(P M) is  zero,
T(Pm‘) diverges and hence the ferromagnetic phase becomes
stable even at Tg=%. As a tr1V1al example, when €,=2a,
T(pm‘) goes to infinity at T 4 At (€7, @)=(0.90,0.45), the
ﬁrst—order—tran51t10n line and the paramagnetic instability
line almost merge and the jump of thermodynamic quantities
at first-order transition is quite weak in a wide region of the
phase boundary. Because the instability line is located on the
second-order transition or inside the ferromagnetic phase, the
divergence of Tgpml)(Tp) means the stability of the ferromag-
netic phase at an infinite 7.

We show explicitly the stability of the ferromagnetic
phase in the case-1 model at 7,,=0. In the case-1 model, the
spins that are slow variables can fluctuate even at 7,=0. The
particle configuration is determined adaptively for a given
slow spin configuration by minimizing the free energy. For
intermediate €, which is, to be precise, given by €,<1.45 at
a=0.45, the paramagnetic state is an empty state at 7,=0,
namely my=0 and p"™"=0. On the other hand, the self—
consistent equations, E%s (16) and (17), for the ferromag-
netic solution, mgy and p;, ", at T, =0 are then

7Pm(T,) =

(24)

mo= = pi™, (25)
(FM)
) _ eﬁs[(1+ef)p +a] 26)
Po
ﬁs[ J+sf +a] + 1

When TS increases to infinity, p(F M) decreases gradually
down to 5 > but never reaches zero. Consequently, the magne-
tization m remains finite even at Tg=cc. In fact, in the limit
T¢— o, the free-energy difference between the ferromagnetic

and the paramagnetic solution takes the form —%Gf+a/ 2,
which is the internal energy for the ferromagnetic solution.
This yields the stability condition of the ferromagnetic phase
as > 4a—J. For example, with @=0.45 and ef=0.8, as
shown in Fig. 5, the ferromagnetic phase is extended up to
very high T¢ temperature, although the instability line of the
paramagnetic solution goes down to the origin.

For sufficiently large €, as shown in Fig. 6, the paramag-
netic solution is qualitatively changed by the effect of the
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(PM) _

attractive interaction. Then, py =1 at Tg— in the limit

T,=0 and the free-energy difference is modified to —J+T3€f

—2. The dense paramagnetic solution becomes dominant at
(T T)=(0,). Thus, the first-order-transition temperature
Td))(T ) can diverge only in a finite range of €, in the case-1
model

In the case-2 model, on the other hand, the spin variables
fluctuate as a fast degree of freedom for a given slow particle
configuration. The paramagnetic instability condition is then

given by

1
- ;Jp&"M)) =0, (27)
S

3,,J< 1

where p(pM is again determined by Eq. (22). The

T,-dependent term coupled to p (PM)* cancels out because of
the symmetry of the fast spm variable. In the paramagnetic
phase, the particle density p, (PM) of the case -2 model is the
same value as the case-1 model. Thus, T(Spm‘) could not di-
verge in any value of € and T,, in sharp contrast to the
case-1 model. This is, however, a necessary condition but not
a sufficient one for the finite transition temperature at 7,=0.

We see again the phase boundary at 7,=0. In the case-2
model, the only particle configuration that minimizes the par-
tial free energy at 7,=0 contributes to the ensembles, and the
fast spin variables fluctuate under the resultant artlcle con-
figurations. The self-consistent equation for p ) leads to
pPM)—O at T,,=0, while the corresponding equation for the
ferromagnetic phase leads to a fully occupied solution with
po=1. For the latter, the magnetization m, is determined by
the equation

mg= tanh ﬁSJmo, (28)

under the condition #s(¢~% cosh BsJn,> 1. Thus, T(Sl) never
diverges and the ferromagnetic phase only emerges at most
Ts<1/J. Actually, ngl) is obtained by solving the equation

1
0= E(ng +€) — Tg log(ePs'sr*® cosh BsJmy),  (29)

which is derived from the condition that the free-energy dif-
ference becomes zero at the transition temperature.

V. SUMMARY

We have studied the phase transition of a nonequilibrium
statistical-mechanical model that consists of two degrees of
freedom with different time scales and heat baths, called
two-temperature systems. A theoretical framework based on
the replica method and its thermodynamic structure, which
have already been given in the literature [8,9,14], is summa-
rized. As a direct consequence of the structure, we have
pointed out the existence of a Clausius-Clapeyron-like rela-
tion in two-temperature systems, which enables us to link the
topology of the phase diagram and discontinuity of thermo-
dynamic quantities at first-order transition. In particular, a
general condition to find the anomalous negative latent heat
that is found in a specific spin model [8] is reduced to a
simple topological constraint on the phase diagram. To be
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concrete, when the slope of the first-order phase boundary is
a certain value determined by the ratio of two temperatures,
the negative latent heat appears. It is worth noting that this
criterion can be applied to any model including short-ranged
models in finite dimensions.

We have also performed a mean-field analysis of the two-
temperature version of a spin—lattice-gas model that has
spins and particles as configurational variables. Generally,
two-temperature systems are characterized by the Hamil-
tonian and time-scale order of two variables. Even in the
same Hamiltonian, the phase diagram still depends on the
choice of the time-scale order. We have studied the phase
diagram of the spin-lattice-gas model for two different cases:
one is that the spins are slow and the particles are fast, which
is the same as that studied by AP [8], and the other is alter-
native. Furthermore, the effect by introducing preferentially
an attractive interaction for one of the two variables is stud-
ied. We have found that the general condition for the nega-
tive latent heat is satisfied in a parameter region both for two
cases, suggesting that the negative latent heat is not acciden-
tal but frequently observed in two-temperature systems. By
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increasing the attractive interaction, the parameter region be-
comes narrow in common. On the other hand, qualitatively
different properties are found in the phase diagram, such as
the stability of the ferromagnetic order and the existence of
the ferromagnetic-ferromagnetic transition. This indicates
that the time-scale order plays a significant role in phase
transitions and cooperative phenomena. An interesting and
open problem would be to see if the results found in the
spin—lattice-gas model are preserved beyond the mean-field
analysis, for instance in finite-dimensional short-range mod-
els. In this direction, we further progress the model up to the
Bethe approximation [17].
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