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We study analytically and numerically the ratchet transport of interacting particles induced by a monochro-
matic driving in asymmetric two-dimensional structures. The ratchet flow is preserved in the limit of strong
interactions and can become even stronger compared to the noninteracting case. The developed kinetic theory
gives a good description of these two limiting regimes. The numerical data show emergence of turbulence in
the ratchet flow under certain conditions.
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I. INTRODUCTION

For systems without spatial inversion symmetry the ap-
pearance of directed flow of particles induced by a time-
periodic parameter variation with a zero-mean force is now
commonly known as the ratchet effect �see reviews �1–3��.
This phenomenon is ubiquitous in nature so that such flows
appear in a variety of systems including asymmetric crystals
�4,5� and semiconductor surfaces �6� under light radiation,
vortexes in Josephson junction arrays �7�, macroporous sili-
con membranes �8�, microfluidic channels �9�, and others. A
significant increase of interest to ratchets is related to the
experimental progress in the investigation of molecular
transport in biological systems such as proteins characterized
by asymmetry and nonequilibrium �1–3�. At the same time
the nanotechnology development allowed us to fabricate ar-
tificial asymmetric nanostuctures with the two-dimensional
electron gas �2DEG� where it has been shown that infrared or
microwave radiation creates a ratchet transport �10–13�. The
theoretical studies predicted that the directionality of ratchet
flow in such systems can be controlled by the polarization of
radiation �14–18� that has been confirmed by recent experi-
ments with a semidisk Galton board for 2DEG in
AlGaAs /GaAs heterojunctions �19�.

Until the present, the theoretical studies of ratchet trans-
port have been performed mainly for noninteracting particles
�1–5,14,18�. However, in many systems the interactions be-
tween particles are of primary importance, such as for ex-
ample, for microfluidic channels �9�, 2DEG nanostructures
with strong electron-electron �e-e� interactions at a large rs
parameter �20�, granulated materials �21�, and one-
dimensional Luttinger liquids �22�. On a first glance it seems
that a strong scattering between particles should suppress the
ratchet transport. On the other hand, the local conservation of
momentum of particles indicates that even in the presence of
strong interactions the ratchet flow still should exist. The
investigation of the properties of ratchet transport for inter-
acting particles in two dimensions is the main aim of this
paper. The theory developed is based on the kinetic approach
used in �18� extended to the case of strong interactions. The
theory is compared with the extensive numerical simulations
of ratchet transport of interacting particles in asymmetric
structures. The model description is given in Sec. II; the

analytical theory based on the kinetic equation is developed
in Sec. III; the numerical results are presented in Sec. IV and
the discussion is given in Sec. V.

II. MODEL DESCRIPTION

The interactions between particles are treated in the frame
of the mesoscopic multiparticle collision model �MMPCM�
proposed by Kapral �see, e.g., �23��. This method exactly
preserves the total momentum and energy of particles collid-
ing inside each of Ncel collision cells on which the whole
coordinate space with N particles is divided. In this method
the collisions inside cells are modeled by rotation of all par-
ticle velocities in the moving center-of-mass frame of a
given cell on a random angle after a time �K. To equilibrate
the whole system of interacting particles in the presence of
external monochromatic driving force F cos �t we use the
Nosè-Hoover thermostat �24� which drives the system to the
Boltzmann equilibrium with a temperature T=mvT

2 /2 on a
relaxation time �H. Such a combination of two methods for
systems with interactions and ac driving has been already
used in �25�. As in �18� the asymmetry appears due to asym-
metric scatterers having the form of vertical cuts with diffu-
sive �right-hand� and elastic �left-hand� sides �cuts model� or
of elastic semidisks of radius rd �semidisks model� placed in
a periodic square lattice of size R�R. The system orientation
geometry and two types of scatterers are shown in Fig. 1 �see
also �18� and Fig. 5 below�. In the cuts model it is assumed
that the scattering on cuts takes place instantaneously at ran-
dom moments of time which have a Poisson distribution with
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FIG. 1. �Color online� Geometry of asymmetric scatterers ori-
ented in the �x ,y� plane: Cuts with elastic �left-hand� and diffusive
�right-hand� sides; elastic semidisks; linear-polarized force F has
angle � with respect to the x axis.
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time scale �c. This corresponds to the case of the flashing
cuts model �instantaneous appearance of cut at some moment
of time� which is slightly different from the case of static
cuts randomly distributed in the plane �both cases were dis-
cussed in �18��. As in �18�, in absence of interactions an
effective impurity scattering is added with the scattering time
�im. The monochromatic force is polarized as it is shown in
Fig. 1 with F=F�cos � , sin ��. Here, we present numerical
results only for the semidisks model and the flashing cuts
model, which is rather convenient for numerical simulations,
but in the analytical treatment we also consider the static cuts
model.

The results of numerical simulations for the polarization
dependence of the ratchet flow in the flashing cuts model are
shown in Fig. 2. In the absence of interactions the results are
well described by the theory �18� with the fit dependence
vf /vT=b�−cos�2�� ,2 sin�2��� /2, where b=0.0064
��FvT�c /T�2�0.8bth and bth is the theory value �see Eqs. �9�
and �41� in �18��. For interacting particles the fit gives the
dependence vf /vT=bint�−a1 cos2 �+a2 sin2 � , sin�2��� with
bint /b=2.7 and a1=0.10, a2=0.29. In the presence of inter-
actions the ratchet flow appears even after polarization aver-
aging. The results for the semidisks model are shown in Fig.
3. Without interactions the data are satisfactory described by
the theoretical dependence vf /vT=b�−cos�2�� , sin�2��� with
the fitting value b=0.24�Frd /T�2�0.4bth and the theoretical
value bth of �18� �see Eq. �42� and discussion there�. In the
presence of interactions, the polarization dependence of the
flow is qualitatively changed: The component vy is enhanced
by a factor of 8 and vx remains negative for all � showing a
signature of the fourth � harmonic �Fig. 3, top panel, curves
are shown as a guide for the eye�.

III. ANALYTICAL THEORY

The numerical simulations are based on the dynamical
description of motions of many interacting particles. To ob-
tain an analytical description of the ratchet transport we use
the kinetic equation approach valid for systems with devel-
oped chaos and rapid decay of correlations. The validity of
the kinetic equation requires rare collisions with asymmetric
scatterers �antidots� and randomness of scattering events.
Under such conditions the kinetic equation can be applied for
comparative study with the numerical data even if the nu-
merical simulations are done for a deterministic system with
a periodic lattice of semidisks of relatively large size.

The symmetry of the system determines the ratchet flow
which mean velocity v f is quadratic in the amplitude of the
ac force F�t�=Re�Fe−i�t�. Therefore, the flow velocity can be
described by the phenomenological expressions

v f ,x = �xxx�Fx�2 + �xyy�Fy�2, v f ,y = 2 Re��yxyFxFy
*� .

The tensor components �xxx, �xyy, and Re��yxy� determine
the response produced by a linear-polarized monochromatic
force �Im F=0�. In the absence of interactions �see �18��, for
the linear polarization along the x or y axes, the mean flow is
directed along the x axis; the current in the y direction ap-
pears for a tilted linear-polarized force.

We also note that for the elliptically polarized force with
Im F�0 there exists also a circular ratchet effect determined
by the product of Im��yyx� and Im�FxFy

*� but we will not
consider this effect here.

A. Kinetic equation

The kinetic equation in the momentum space p reads as

�f

�t
+ F�t�

�f

�p
= Î�f� , �1�

where in the case of microwave field, E�t� is the electric field
interacting with electron gas F�t�=eE�t�, e is the electron

charge. The collision operator Î= Îel+ Îee contains the operator
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FIG. 2. �Color online� Polarization dependence of the average
ratchet flow vf in the flashing cuts model with �top panel� and
without �bottom panel� interactions; diamonds and circles show nu-
merical data for v f ,x and v f ,y components, curves give the fits of
data �see text�. The system parameters are N=104, Ncel=100
�100 inside the periodic space domain R�R with vT�H /R=2.4,
�c /�H=0.45, �K /�H=0.02, ��H=3, FvT�c /T=0.64 for the top panel
and the same parameters for the bottom panel but �K /�H=� and
impurity scattering is added with �im /�H=0.5; total integration time
is t /�H�103.
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FIG. 3. �Color online� Same as in Fig. 2 for the semidisk model
with R /rd=4, Frd /T=0.15, ��H=1, effective �c /�H

�R2 / �2rdvT�H�=0.85, other parameters are as in Fig. 2.
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of elastic collisions �including impurities and scatterers �or

antidots�� Îel and interparticle �electron-electron or e-e� col-

lisions Îee.
The integral of elastic collisions with scatterers and static

impurities reads as

Îel�fp� = �
p�

Qpp�fp� = �
p�

�W�p�,p�fp� − W�p,p��fp� , �2�

where Qpp� is the kernel of the operator Îel and W�p� ,p� is
the probability of the transition from p� to p.

The interparticle collisions operator �e-e� is

Îee�f� =
2	

S2 �
p1,p�,p1�


p+p1,p�+p1�

��p + �p1

− �p� − �p1�
�up−p�

2

��fp�fp1�
�1 − fp��1 − fp1

� − fpfp1
�1 − fp���1 − fp1�

�� .

�3�

Here, S is the sample area and uk is the Fourier transform of
e-e-interactions.

Interparticle collisions satisfy the conservation of the total
momentum of gas. Due to the Galileo invariance the action
of the collision integral on the equilibrium distribution func-

tion with shifted argument Îeefp+a
�0� vanishes for any a. Ex-

panding by a we have

Îee�fp
�0�� = 0, Îee� �a�pf �0�� = 0,

Îee� �a�pf �0� � a�p�f �0�� + Îee� �aiaj�pi,pj

2 f �0�� = 0. �4�

We use the following notations for the first and the second

variations around equilibrium: 
Îee�f�= Îee� �
f� �linear opera-

tor�, 
2Îee�f�= Îee� �
f �
f� �bilinear operator, asterisk denotes
integration with two functions of different arguments�.

The ratchet flow is generated by the anisotropy of colli-
sions. This anisotropy is constructed artificially due to the
asymmetric form of oriented scatterers. As theoretical mod-
els we considered cases of fixed oriented anisotropic scatter-
ers, namely cuts and semidisks. The model of static cuts is
analytically solvable �18� but has a disadvantage since it
leads to a divergence due to electrons moving along the mir-
rors. Even if this divergence can be regularized by an isotro-
pic impurity scattering such a property is not very conve-
nient. Owing to that, it is useful to use a modified model of
flashing cuts which does not have such divergence. In this
model at any moment a particle can meet a scatterer with a
constant probability independent of its velocity and direction
of motion; after collision the particle equiprobably scatters
into any angle of the right-hand semicircle if it collides from
the right-hand semicircle and is mirror-reflected if it collides
from the left-hand semicircle �see Fig. 1�. Such a model of
flashing cuts gives a significant simplification for analytical
and numerical studies.

The corresponding transition probability in these models
is given by �see also �18��

W�p�,p� =
4	2

mS
w���,��
�
p − 
p��; �5�

with

w���,�� =
1

�c
�cos ����cos ���
��� + � − 	�

−
1

2
cos �� cos ���cos ����− cos ���	

�static cuts� , �6�

w���,�� =
1

�c

cos ����cos ���
��� + � − 	�

+
1

4
�sin�� − ��

2
	����� − �����− � − ���

+ ���� − ����� + ����� �semidisks� , �7�

w���,�� =
1

�c

��cos ���
��� + � − 	�

+
1

	
��cos ����− cos ���� �flashing cuts� .

�8�

Here � is the polar angle of electron momentum
�−	���	�, �c�
� is the characteristic scattering time on
asymmetric scatterers, ��x� is the Heaviside function.

B. Linear response

We consider the limit of a high rate of interparticle scat-
tering exceeding the rate of elastic collisions. At the same
time the interactions preserve the total momentum and in
isotropic media do not affect the momentum relaxation. This
is not the case for an anisotropic medium where the interac-
tions indirectly lead to the momentum relaxation due to the
conversion of the first angular harmonic of the distribution
function fp to higher harmonics produced by the anisotropic
scattering. In particular, it is generally excepted that in an
isotropic medium with closed Fermi surface the e-e scatter-
ing does not affect the conductivity. Nevertheless, in the con-
sidered case of anisotropic medium e-e collisions indirectly
affect the momentum relaxation rate. This action is realized
due to the conversion of the first angular harmonics of the
distribution function to higher harmonics produced by the
anisotropic scattering. As a result, the conductivity becomes
temperature dependent in the temperature range when the e-e
relaxation time is comparable with the elastic relaxation
time.

At first we consider the linear response to the electric field
using the expansion f = f �0�+ f �1�+ f �2�+¯ in small driving
force F. The linearized kinetic equation can be written in the
form �f �1��t�=Re�f�

�1�ei�t��
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− i�f�
�1� + F��pf �0� = Î�1��f�

�1�� , �9�

where the collision operator contains the elastic collisions

with anisotropic scatterers determined by Îel and interparticle

or e-e collisions determined by Îee� ;

Î�1� = Îel + Îee� . �10�

The formal solution of Eq. �9� in the first order of alternating
force is

f�
�1� = �i� + Î�1��−1�F��p�f �0�. �11�

In the case of weak e-e interaction Îee� can be canceled. In the
opposite limit of strong e-e scattering the formal parameter

describing Îee is large. Having in mind Eq. �4� we see that the

inverse operator ��+ Î�1��−1 can be found by a projection on
the subspace of the Hilbert space of the basis functions �i

= �f �0�

�pi
/ 
 �f �0�

�pi

 corresponding to zero eigenvalue of the operator

Îee� . Thus, the operator Îel is replaced by its projection, while

Îee� can be canceled. The resulting tensor of conductivity of
e-charged particles with density ne reads as

�ij��� =
e2ne

m

�i

1 − i��i

ij , �12�

where �i are relaxation times of the first harmonics of the
distribution function related with the projected operator of
elastic collisions,

1

�i
= − �

p,p�

�i�p�Qpp��i�p�� . �13�

Here in the �i index, i is the axis index �x or y�. For the
considered systems from the relations �6�–�8� we have �i
= �̄c /ai and

ax =
	

8
+

4

	
, ay =

2

3	
�for static cuts� ,

ax =
2

3
+

8

3	
, ay =

2

3
�for semidisks� ,

ax =
3

2
+

4

	2 , ay =
1

2
�for flashing cuts� . �14�

The quantity �̄c is determined by gas statistics

1

�c

=

�
0

�

d
�f �0���2�
/�c�
��

�
0

�

d

�f �0���2

,

where the prime denotes the derivative over the energy �.
In the case of static cuts or semidisks 1 /�c�
��
s with s

=1 /2. So, one can write �̄c=�c�
F� �strongly degenerate
Fermi case� and �̄c=4�2 /	�c�T� /3 �Boltzmann case�; s
=1 /2 for fixed obstacles and s=0 for flashing cuts �in this
case �c�
�=const�.

The physical origin of Eqs. �12� and �13� is a very quick
relaxation of higher angular momenta harmonics as com-
pared to the first harmonic relaxation. As a result, the con-
ductivity has different values at low temperature, when �ee
��el and at high temperature when �ee��el. In both limits
the conductivity does not depend on e-e interaction, but has
different values. In the case of the Fermi distribution the
conductivity changes from low-temperature value where �ee
��el to high-temperature value where �ee��el. We should
emphasize that the transition between these two values is
ruled by the ratio �ee /�el rather than by the ratio of tempera-
ture T to the Fermi energy EF. The transition temperature T0
can be estimated by equating e-e relaxation time to the re-
laxation time given by elastic scattering. In clean samples
with high mobility the transition corresponds to a rather low
temperature T0�EF /���F / lp, where �= �e*�2 /�vF is the di-
mensionless e-e interaction constant, �F and vF are the Fermi
wavelength and velocity lp is the elastic mean free path. For
EF=0.01 eV, �F�10 nm, �=0.5, lp�10−4 cm, T0�10 K.

From Eq. �12� one can write the expression for the ratio of
static conductivities �yy /�xx,

�yy/�xx = �y/�x = ax/ay . �15�

In the case of flashing cuts this ratio is equal to 3+8 /	2

�3.81 �see Eq. �14��. For such scatterers the problem of
linear conductivity is solved exactly also in the limit of ab-
sence of e-e interaction �see, e.g., �18��. Using Eq. �8�, we
find �ii=nee

2�cbi /m, bx=1 /2, by =3 /2. Thus, in this case
�yy /�xx=3. Hence, for example, for this flashing cuts model
the ratio �yy /�xx=3 is changed significantly when the tem-
perature is changed from T�T0 to T�T0.

C. Quadratic response

The stationary ratchet flow appears in the second order of
ac force F. In this case we can operate in a similar way as
before. The nonlinearity occurs due to the field term in the
kinetic equation and nonlinear e-e collision operator

�t f �2� − �Îel + Îee� ��f �2�� = − �F�t��p�f �1� + Îee� �f �1� � f �1�� .

�16�

The projection of anisotropic elastic collision operator onto
the vector functions kills the third rank tensor needed for
photogalvanic current. So inclusion of anisotropy should be
done a bit more accurately. In short, the stationary ratchet
current is generated in the following way. The oscillating
distribution function with vector anisotropy is converted by
nonlinear e-e interactions to the static second angular har-
monics which in turn is partially suppressed by linear e-e
interactions and then is transformed to the static vector an-
isotropy by anisotropic elastic collisions. The main contribu-
tion to the stationary flow reads as

ji =
1

S
Re �

p
viÎ

−1Î�−�Î−1Îee
�2��f−�

�1� � f�
�1�� . �17�

Equation �17� has a simplified form in accordance with the

smallness of the elastic antisymmetric operator Î�−� as com-
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pared with the inelastic scattering �Î�−� obligatory contains
higher angular harmonics�. The subsequent simplifications

include the following: The substitution of Îee� instead of Îee� ,

according Eq. �4�; use of the fact that inverse operators Î−1

do not contain antisymmetric operators; the cancellation of

Î−1Îee
�1� acting on the second angular harmonics; the replace-

ment of the left-hand operator Î−1 �taking into account sum-
mation with vi� by the inverse projected operator. As a result,
we arrive at

v f ,i = −
1

2
C�

j,k
ajki�i Re���j��k

* F�jF�k
* � . �18�

Here 
=mv2 /2 is the particle energy, aijk= �viv jÎ
�−�vk��c /v3

is a numerical tensor, characterizing the asymmetry of scat-
terers ��¯� stands for average over angles in the momentum
space�, prime again means the derivative over particle en-
ergy, 1 /��i=−i�+1 /�i. For the specific cases of our models
we obtain

axxx =
1

48
, axyy = −

1

16
�for static cuts� ,

axxx = − axyy =
1

12
�for semidisks� ,

axxx =
1

6	
, axyy = −

1

3	
�for flashing cuts� . �19�

For C we have

C =

�
0

�

d
�f �0���2�v3/�c��

�
0

�

d

�f �0���2

.

In the case of static cuts or semidisks C= �3 /2
+s�vF

3 / ��c�
F�
F
2� �strongly degenerate Fermi case� and C

=2ds�3 /2+s� / �21/2+sm�c�T��mT� �Boltzmann case�; s=1 /2,
ds=1 for fixed obstacles and s=0, d0=�	 /2 for flashing cuts
�in this case �c�
�=const�.

To compare with results of numerical calculations it is
convenient to write expressions for ratchet velocity compo-
nents. For the linear polarization of monochromatic force we
obtain

v fx/vT = − B�FvT�c/T�2axxx

��cos2 �/�ax
3�1 + �2�x

2�� − sin2 �/�axay
2�1 + �2�y

2��� ,

v fy/vT = − B�FvT�c/T�2axyy

�sin�2���1 + �2�x�y�/�axay
2�1 + �2�x

2��1 + �2�y
2�� ,

�20�

where B=CT2�̄c /2vT
3 and we remind the reader that �i

= �̄c /ai. For the flashing cuts model we have �c= �̄c, axxx
=1 /6	, axyy =−1 /3	, ax=3 /2+4 /	2, ay =1 /2, C
=2�	 / �2m�c

�2mT�, �c=const and for the semidisks model

axxx=−axyy =1 /12, ax=2 /3+8 /3	, ay =2 /3, C
=2 / �m�̄c

�mT�, �̄c�T−1/2. Here we give the results for the
Boltzmann distribution f �0�, but similar calculations work for
other f �0�, e.g., for the Fermi-Dirac distribution. We also give
a simplified derivation of the ratchet flow in the Appendix. It
is based on the local equilibrium distribution and give the
same results as Eqs. �20�.

The opposite limit in the absence of e-e interactions was
analytically studied for the cases of static cuts �16� �exactly�
and approximately, for weak anisotropy, for static cuts or
semidisks �18�. It is important to emphasize that in both lim-
its of weak and strong e-e interactions the current does not
contain the strength of interactions. The transition between
the regimes occurs when the interparticle scattering rate be-
comes comparable with the rate elastic scattering on antidots
and impurities.

IV. NUMERICAL RESULTS

For the flashing cuts model the theory �20� gives a good
description of numerical data �see Fig. 4�. For the semidisks
model the agreement between the theory and numerical
simulations �Fig. 3, top� is less accurate, e.g., fourth � har-
monic for v f ,x is absent in �20�. To understand the origins of
this difference we present the map of local flow velocities at
various polarizations � in Fig. 5. For �=0 the results clearly
show the appearance of turbulent flow with two vertexes
behind the semidisk. When the interaction scattering time �K
is increased by a factor 25 the interaction and turbulence
practically disappear and the average local flow becomes
laminar �see Fig. 5 top left-hand and bottom right-hand pan-
els�. At the same time even with strong interactions the flow
has much more laminar structure for �=	 /4 �Fig. 5, top
right-hand panel� when the absolute value of the total ratchet
velocity has its maximal value �see Fig. 3 top panel�. Thus,
the ratchet flow of interacting particles has certain similari-
ties with a hydrodynamic flow of the Navier-Stocks equation
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0.4
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ω τc

v
/v

(
/4

)
π

f,
x

f,
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FIG. 4. �Color online� Comparison between theory �20� �full
curves, no adjustable parameters� and numerical data for interacting
particles in the flashing cuts model �symbols�; circles are for v f ,x

and �=	 /2 �here v f ,x�0�, diamonds are for �v fx� and �=0 �here
v f ,x�0 and we use the absolute value of v f ,x in the ratio
v f ,x /v f ,y�	 /4��; v f ,y is taken at �=	 /4; other parameters are as in
Fig. 2, top panel.
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around a semidisk body �26�. However, for �=	 /2 the
ratchet flow is composed from two alternative flows moving
in opposite directions at the cell boundaries and the semidisk
center �Fig. 5, bottom left-hand panel�, such a flow is differ-
ent from hydrodynamic flows with fixed velocity far from
the body. For a qualitative description of the turbulent flow
we may argue that the turbulence leads to a difference of
pressures on different sides of the scatterer producing differ-
ent resistances for different flow directions. This generates
the ratchet flow for the ac force driving. In general the ki-
netic description is applicable when the interaction scattering
length is large compared to the scatterer size, e.g., vT�K
�rd for semidisks. At small values of �K this condition is
broken �Figs. 3 and 5� and we have transition to the hydro-
dynamiclike regime where the theory �20� gives only ap-
proximate description. For the flashing cuts model the kinetic
description remains always valid since the size of the scat-
terer is zero.

The dependence of the ratchet velocity on the interaction
scattering time �K is shown in Fig. 6. The increase of inter-

actions �small �K� can change the sign of the flow in the x
direction that is in a qualitative agreement with the theory
�20�. For weak interactions, the flows are opposite in x for
polarization �=0 and �=	 /2 while at strong interactions,
they are collinear. Thus, in 2DEG in AlGaAs /GaAs hetero-
junctions where interactions are relatively weak �rs�1� the
flows are opposite for two polarizations in agreement with
the experiment �19�, but for other materials with stronger
interactions �e.g., SiGe with rs�6� the flows may become
collinear. We also note that at strong interactions the rescaled
ratchet characteristics are not sensible to the temperature
variation that indicates that we have an effective liquid flow
with temperature independent viscosity.

V. DISCUSSION

In conclusion, our extensive numerical simulations show
that even in the regime of strong interactions between par-
ticles a stationary ratchet flow is generated by monochro-

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

(b)(a)

(c) (d)

FIG. 5. �Color online� Map of local averaged velocities in �x /R ,y /R� plane of the semidisks model for parameters of Fig. 3 �top panel�
at �=0 �top left-hand side�; �=	 /4 �top right-hand side�; �=	 /2 �bottom left-hand side�; �=0 and 25 times increased interaction time
compared to other panels ��K /�H=0.5, �KvT /rd=4.7 point in Fig. 6�. The velocities are shown by arrows which size is proportional to the
velocity amplitude, which is also indicated by color �from yellow �gray� for large to blue �black� for small amplitudes�.
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matic driving in the asymmetric periodic arrays. The ob-
tained result are well described by the analytical theory
based on the kinetic equation for strongly interacting par-
ticles. It is interesting to note that for asymmetric arrays the
tensor of conductivity becomes temperature dependent due
to interplay of interactions and relaxation of high momentum
harmonics �see Eq. �15� and discussion there�. It would be
interesting to investigate the effects of interactions on ratchet
transport in experiments similar to those of �19�.
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APPENDIX

Here, on the example of the flashing cuts model we give a
more simple and heuristic derivation of the ratchet flow com-
pared to the exact kinetic equation approach �1�. In the re-
gime of very strong interactions we can assume that the en-
semble of particles is in a local equilibrium state and hence
the distribution function can be written as

f�v,t� = f0�v − v0�t�� , �A1�

where v0�t� is the instantaneous velocity of the center of
mass. We set here the particle mass m=1. It is assumed that
the interactions give rapid relaxation to the local equilibrium
distribution f0�v−v0�t��. The matrix of conductivity can be
determined from the momentum balance between accelera-
tion created by a small applied static force F and momentum
loss on the asymmetric cut scatterer,

dp

dt
= F −

1

�c
��Vc�v�f0�v − v0�� − v0� = 0, �A2�

where Vc�v� is the vector of average velocity after a scatter-
ing with the incident velocity v. It is expressed via the scat-

tering probability W�v� ,v� �see the main text above� as
Vc�v�=�dv�W�v� ,v�v�. This gives the relation

�Vc�v�f0�v − v0�� =� dv�2�v���− vx�
	

− vx��vx�

vy��vx�
� f0�v − v0� ,

�A3�

where ��v� is the Heaviside function. In the linear response
regime we can expand v0 to obtain f0�v−v0�= f0�v�
+ f0�v�

vv0

T +¯. After integrating over the Maxwell distribu-
tion f0�v� we obtain

�Vc�v�f0�v − v0�� =� dv�2�v���− vx�
	

− vx��vx�

vy��vx�
� f0�v�

vv0

T

=�−
8 + 	2

2	2 v0,x

1

2
v0,y

� , �A4�

where v0 is the velocity of the stationary flow. Then, the
moment balance gives

�v0,x

v0,y
	 = �c� 2	2

8 + 3	2Fx

2Fy
� , �A5�

and therefore �yy /�xx=�y /�x=ax /ay =3+8 /	2 is in agree-
ment with the kinetic theory result given in the main text. It
is interesting to note that for the noninteracting particles we
have �yy /�xx=3 �see �18��.

To compute the ratchet flow we should expand the local
velocity in Eq. �A1� up to the second order in the driving
force F: v0�t�= �̂iF�t�+vf, v f =O�F2� where �i are the above
values �x ,�y given by the linear response; we note that sec-
ond frequency harmonics e�i2�t are eliminated by the time
averaging. Then the time-averaged distribution function is

f�v� = �f�v,t��t = f0�v� + f0�v�
vvF

T
+

�v�̂iF�2 − T��̂iF�2

4T2 f0�v� ,

�A6�

where f0�v�= 1
Z exp�− v2

2T � is the Maxwell distribution and vF
is the average ratchet flow velocity. Again, the time-averaged
momentum balance equation reads as

��Vc�v�f�v�� − vf� = 0. �A7�
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FIG. 6. �Color online� Dependence of the ratchet velocity v f on
the Kapral interaction scattering time �K in the semidisk model,
numerical data are shown by symbols: v f ,y /vT �red circles� and
v f ,x /vT �yellow diamonds� for �=	 /4; v f ,x /vT �violet squares� for
�=0; v f ,x /vT �blue triangles� for �=	 /2; other parameters are as in
Fig. 3, top panel, curves are drown to adapt an eye.
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Using Eq. �A7� we obtain from the second term the contri-
bution �Vc�v�f0�v�

vvF

T �= ��1−ax�v fx , �1−ay�v fy� which is
similar to the linear response term. The integration of the
third Gaussian term gives the additional contribution
�F2 /8�2	T���−�x

2 cos2 �+�y
2 sin2 �� ,2�x�y sin�2���. Finally

we obtain

�v fx

v fy
	 =

F2

8�c
�2	T

�− �x
3 cos2 � + �x�y

2 sin2 �

2�x�y
2 sin�2��

	 . �A8�

For �→0 these expressions are in agreement with Eqs. �20�
obtained by the kinetic equation theory.
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