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We calculate the relaxational dynamical critical behavior of systems of O�n�� � O�n�� symmetry by renor-
malization group method within the minimal subtraction scheme in two-loop order. The three different bicriti-
cal static universality classes previously found for such systems correspond to three different dynamical
universality classes within the static borderlines. The Heisenberg and the biconical fixed point lead to strong
dynamic scaling whereas in the region of stability of the decoupled fixed point weak dynamic scaling holds.
Due to the neighborhood of the stability border between the strong and the weak scaling dynamic fixed point
to the dynamical stable fixed point a very small dynamic transient exponent of �v

B=0.0044 is present in the
dynamics for the physically important case n� =1 and n�=2 in d=3.
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I. INTRODUCTION

The phase diagram of systems with O�n�� � O�n�� sym-
metry contains several phases meeting in a multicritical
point. In Ref. �1� �henceforth called paper I� it was shown
that the static critical properties can be quantitatively ana-
lyzed from field theoretic functions in two-loop order if one
uses resummation. As an example we have in mind an anti-
ferromagnet in an external magnetic field �with n� =1 and
n�=2�, although other physical examples with different val-
ues of order parameter �OP� components may be considered.

In order to get more insight in the dynamical critical prop-
erties near such a multicritical point we reconsider the sim-
plest dynamical model possible for O�n�� � O�n�� symmetric
systems. In such a dynamical model one assumes relax-
ational behavior for the two OPs �� � and �� �. This model has
been briefly studied �2� on the basis of the static one-loop
results �3�. Meanwhile �1,4,5� it has been shown that the
one-loop results �3,6� are considerably changed in higher
loop order concerning the regions of different static multi-
critical behavior in the space of OP components n� and n�.
For integer order parameter components only a system n�

=1 and n�=2 belongs to the universality class characterized
by the biconical fixed point �FP� indicating tetracritical
behavior—if the physical system lies in the attraction region
of the FP �7�.

The paper is organized as follows: In Sec. II we define the
dynamical model, then in Sec. III the dynamical field theo-
retic functions are introduced and the results in two-loop
order are presented. From these results the FP and dynamical
exponents are calculated in Sec. IV and the stability of the
FP is considered in Sec. V. Due to the small dynamic tran-
sient exponent found, the effective—nonasymptotic—
dynamical behavior is studied in detail in Sec. VI. Finally
conclusions and an outlook to subsequent research of ex-
tended dynamical models is given.

II. DYNAMICAL MODEL

The results obtained in paper I for the statics of systems
with O�n�� � O�n�� symmetry are applied to the critical dy-
namics if the system dynamics is described by two relax-
ational equations for the OP components �� �0 and �� �0 in the

two subspaces. Correspondingly, two kinetic coefficients �̊�

and �̊� have to be introduced. The model A type equations
are

��� �0

�t
= − �̊�

�HBi

��� �0

+ ����
, �1�

��� �0

�t
= − �̊�

�HBi

��� �0

+ ����
. �2�

The stochastic forces ����
and ����

fulfill Einstein relations

����

� �x,t����

� �x�,t��� = 2�̊���x − x����t − t�����, �3�

����

i �x,t����

j �x�,t��� = 2�̊���x − x����t − t���ij , �4�

with indices � ,�=1, . . . ,n� and i , j=1, . . . ,n� corresponding
to the two subspaces. The static functional HBi is defined as

HBi =� ddx	 1

2
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1
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4!
��� �0 · �� �0�2 +

2ů	

4!
��� �0 · �� �0���� �0 · �� �0�� . �5�

The properties and renormalization of the static vertex func-
tions following from HBi have already been presented in
paper I. There in resummed two-loop approximation it has
been shown that within a small region in the space of the
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spatial dimension and the OP components the biconical FP is
stable �e.g., for n� =1 and n�=2 at d=3�.

III. RENORMALIZATION, FIELD THEORETIC
FUNCTIONS

From the dynamic equations �1� and �2� a functional may
be derived which allows the calculation of dynamic vertex
functions in perturbation theory �for an overview, See �8��.
Within this dynamic functional additional auxiliary densities

�̃� �0 and �̃� �0 are introduced �9�. Recently it has been shown
�10� that the dynamic two-point functions have a general
structure, which is, in the current model,

�̊���̃�
�
�,
�,k,�� = − i��̊���̃�

�
�,
�,k,��

+ �̊��
�2,0��
�,
�,k��̊�, �6�

�̊���̃�
�
�,
�,k,�� = − i��̊���̃�

�
�,
�,k,��

+ �̊��
�2,0��
�,
�,k��̊� , �7�

where �̊��
�2,0��
� ,
� ,k� and �̊��

�2,0��
� ,
� ,k� are the static two
point vertex functions discussed in paper I. The functions

�̊���̃�
�
� ,
� ,k ,�� and �̊���̃�

�
� ,
� ,k ,�� have to be deter-
mined within dynamic perturbation expansion. All functions
in Eqs. �6� and �7� depend, besides the correlation functions

�, 
�, the wave vector modulus k, and the frequency �, also

on the static couplings ů�, ů	, and ů�. The functions �̊��i
�̃�i

�with �i= � , �� additionally depend on the two kinetic coef-

ficients �̊� and �̊�. As we will see below, the genuine repre-
sentation �6� and �7� that allows one to single out contribu-
tions from merely static vertex functions into dynamic ones
essentially simplifies cumbersome calculations, and enables
one to effectively proceed with calculation of the dynamic
RG perturbative expansions.

A. Renormalization of the dynamic parameters

The renormalization of the static quantities appearing in
Eq. �5� has been presented in paper I in detail and explicitly
performed in the minimal subtraction RG scheme �11� di-
rectly at d=3 to the two-loop order. The resulting renormal-
ization factors and field theoretic functions �� and � func-
tions� remain valid also in dynamics. Additional
renormalizations are necessary for dynamic quantities.
Within the current dynamic model only the auxiliary densi-
ties and the kinetic coefficients have to be renormalized.

The renormalized counterparts of the auxiliary densities
are defined as

�̃� �0 = Z
�̃�

1/2
�̃� �, �̃� �0 = Z

�̃�

1/2
�̃� � . �8�

The renormalized kinetic coefficients are introduced as

�̊� = Z��
��, �̊� = Z��

�� . �9�

Relation �8� and the renormalization of the OP densities �� �0

and �� �0 introduced in paper I imply for the dynamic vertex
functions the renormalization

����̃�
= Z��

1/2Z
�̃�

1/2
�̊���̃�

, �10�

����̃�
= Z��

1/2Z
�̃�

1/2
�̊���̃�

. �11�

From the above relations and the structure of the dynamic
two-point vertex functions presented in Eqs. �6� and �7� fol-
lows that the renormalization factors of the kinetic coeffi-
cients �� and �� in the case of the absence of mode cou-
plings are determined by the corresponding renormalization
factors of the auxiliary densities. This leads to the relations

Z��
= Z��

1/2Z
�̃�

−1/2
, Z��

= Z��

1/2Z
�̃�

−1/2
. �12�

The static renormalizaton factors Z��
and Z��

have been in-
troduced in Eq. �4� of paper I.

B. Dynamic � and � functions in two-loop order

Quite analogous to statics in paper I we will use the uni-
form definition

�ai
��u
,��,��� =

d ln Zai

−1

d ln 

�13�

for the � functions also in dynamics, where ai is now a place-
holder for any auxiliary density or kinetic coefficient, 
 is the
scaling parameter, and �u
= �u� ,u	 ,u�
 is the set of static
couplings. From perturbation expansion the resulting two-
loop expressions for the � functions of the kinetic coeffi-
cients �� and �� read

���
=

n� + 2

36
u�

2 �3 ln
4

3
−

1

2
�

+
n�

36
u	

2 �2

v
ln

2�1 + v�
2 + v

+ ln
�1 + v�2

v�2 + v�
−

1

2
� , �14�

���
=

n� + 2

36
u�

2�3 ln
4

3
−

1

2
�

+
n�

36
u	

2 �2v ln
2�1 + v�
1 + 2v

+ ln
�1 + v�2

1 + 2v
−

1

2
� . �15�

The important dynamic parameter is the time-scale ratio

v =
��

��

�16�

between the two kinetic coefficients �� and ��, which has
been already introduced in Eqs. �14� and �15�. From the
above definition of the time-scale ratio and the definition of
the � functions in Eq. �13� the � function of v is determined
by

�v � 

dv
d


= v����
− ���

� , �17�

where the derivative is taken at fixed unrenormalized quan-
tities. Inserting Eqs. �14� and �15� into Eq. �17� the two-loop
expression of the � function of v reads �2,12�
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�v =
v
72
���n� + 2�u�

2 − �n� + 2�u�
2 ��6 ln

4

3
− 1�

− n�u	
2 �4

v
ln

2�1 + v�
2 + v

+ 2 ln
�1 + v�2

v�2 + v�
− 1�

+ n�u	
2 �4v ln

2�1 + v�
1 + 2v

+ 2 ln
�1 + v�2

1 + 2v
− 1�� .

�18�

The � function changes its sign under interchanging the par-
allel and perpendicular components and replacing the time-
scale ratio v by 1 /v.

In the nonasymptotic region where a nonuniversal effec-
tive critical behavior may be observed the values of the static
couplings and the time scale ratio are described by the flow
equations. For v it reads

l
dv
dl

= �v„u��l�,u��l�,u	�l�,v�l�… , �19�

whereas for the static couplings Eq. �36� of paper I with the
Borel resummed static � functions are used. The asymptotics
is reached in the limit l→0 starting in the background at l
=1 from nonuniversal initial values of the time-scale ratio
and couplings.

IV. FIXED POINTS AND DYNAMICAL CRITICAL
EXPONENTS

As usual �8�, the two � functions, Eqs. �14� and �15�,
define two dynamical critical exponents, z� and z�, that gov-
ern the power law increase of the autocorrelation time for the
OPs �� � and �� �, correspondingly,

z� = 2 + ���

� and z� = 2 + ���

� , �20�

where the stable FP values of the static and dynamic param-
eters have been inserted into the � functions; this means
���i

� ����i
��u�
 ,v��. At the strong scaling FP there is only one

dynamic time scale and the two exponents are equal whereas
at the weak scaling FP they are different and define for each
component, parallel and perpendicular, the time scale.

Depending on the FP value of the time-scale ratio v one
may obtain strong �v��0,�� or weak �v�=0,�� dynamic
scaling. The dynamical FPs are calculated �see also Eq. �12�
in Ref. �2�� from setting the � function �18� equal to zero.
Inserting the stable static FP values �see Table I in paper I�
into Eq. �18� one then may calculate a dynamical “phase
diagram” in the n�-n� plane quite similar to the static phase
diagram, Fig. 1 in paper I. Let us note here that one can
make use of two different ways to analyze perturbative ex-
pansions within the minimal subtraction RG scheme. The
first one is the familiar � expansion, when the FP coordinates
and asymptotic critical exponents are obtained as a series in
�=4−d and then evaluated at the dimension of interest �e.g.,
for d=3�. The second one relies on treatment of the expan-
sions in renormalized couplings directly at fixed dimension
d=3 �11�. Enhanced by resummation such a scheme allows
us to treat, besides the asymptotic quantities, the nonuniver-

sal effective exponents. The latter method has been applied
in paper I to perform a comprehensive analysis of nonuni-
versal static behavior. Below we will make use of the static
results obtained there to proceed with the analysis of
�asymptotic and effective� dynamical critical behavior.

To summarize an outcome of the static FP stability analy-
sis �1,3–6�, let us recall that, depending on the n�, n� values,
the critical behavior is governed by one of the three non-
trivial FPs: �i� isotropic Heisenberg FP H�n�+n�� with u�

�

=u�
� =u	

� =u�; �ii� decoupling FP D with u�
��0, u�

� �0, u	
�

=0; �iii� biconical FP B with u�
��0, u�

� �0, u	
� �0. Below,

we will analyze peculiarities of the dynamical critical behav-
ior in the above universality classes.

A. Dynamics at the isotropic Heisenberg fixed point

At the isotropic Heisenberg FP H�n�+n�� the fourth order
static couplings are equal, u�

�=u�
� =u	

� =u�. In consequence,
the static couplings drop out in the FP equation for v. As-
suming a nonzero finite value of v at the FP, the equation for
v�, �v�v��=0, reads

0 = ���n� + 2� − �n� + 2���6 ln
4

3
− 1�

− n�� 4

v� ln
2�1 + v��

2 + v� + 2 ln
�1 + v��2

v��2 + v��
− 1�

+ n��4v� ln
2�1 + v��
1 + 2v� + 2 ln

�1 + v��2

1 + 2v� − 1�� . �21�

One immediately sees that for general n� and n� a zero can
only be found if the arguments of the logarithms are equal to
4 /3, which leads to the FP value

v� = 1. �22�

This result has to be fulfilled also in higher loop order and
therefore the result is exact. Due to Eq. �22� the � functions
�14� and �15� become equal at the FP,

���

� = ���

� = �n + 2�u��6 ln
4

3
− 1� �23�

with n=n� +n�. This means strong dynamic scaling with the
dynamical critical exponent

z = 2 + c� �24�

of the O�n�-symmetric model A universality class, where c
=6 ln 4

3 −1 in two-loop order �13�, and � is the anomalous
dimension of the O�n�-symmetric model.

B. Dynamics at the decoupling fixed point

At the decoupling FP D static critical behavior does not
fulfill scaling due to the existence of two different correlation
lengths, each for one of the decoupled parts of the system
�the parallel and perpendicular components of the OP�. The
FP value of the static coupling u	 is equal to zero. Therefore
the flow equation �19� at the static FP reduces to
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l
dv
dl

=
v
72
���n� + 2�u�

�2 − �n� + 2�u�
�2��6 ln

4

3
− 1��

�25�

leading either to a flow reaching v�=0 or 1 /v�=0 depending
on whether

n� � n� then ���

��A� � ���

��A� or

n� � n� then ���

��A� � ���

��A�, �26�

with the � function of model A for the subsystems with
n� and n� components. Both cases mean that weak scaling
holds at the decoupling FP. Indeed, inserting the values of
the decoupling FP into the � functions �14� and �15� gives
two dynamical exponents z: one for the dynamics of the
parallel and another for the perpendicular components of the
OP. Both exponents correspond to the model A universality
class

z� = 2 + c�� and z� = 2 + c��. �27�

In the special case when n� =n� the exponents z� and z�

become equal and the FP values of the time-scale ratio are
determined by the initial values of the flow.

C. Dynamics at the biconical fixed point

At the biconical FP B the FP values of the three fourth
order couplings are different and the solution for the FP
value of v becomes nontrivial and dependent on the number
of components n� and n�. However, the only relevant case
where this FP is stable in d=3 is �n� ,n��= �1,2� or �n� ,n��
= �2,1� �7�. Due to symmetry the two solutions are related,

v��n�,n�� =
1

v��n�,n��
. �28�

The numerical solution found using the static one-loop order
FP values for the static couplings reads �2�

v��1,2� = vB = 1.0241. �29�

Thus one finds strong scaling with a new biconical dynami-
cal exponent. Inserting the FP values into the � functions
�14� and �15� the dynamical critical exponent is given by

zB = 2.015. �30�

As has been shown in paper I the biconical FP becomes
stable in two-loop order within a small region around the
OP-component values n�=2 for n� =1. However, one has to
apply resummation techniques to the two-loop functions in
order to get real FP values for the static couplings. Using
these two-loop order resummed values the dependence of the
FP value of the time-scale ratio v within this region is shown
in Fig. 1. Note that we do not resum the expression for �v,
Eq. �18�, itself. The biconical FP reaches the value of the
Heisenberg FP, vH�3�=1, at the stability border line and the
decoupled FP value, v�=0 or v�=� �depending on whether
n� is larger or smaller than n�� at the corresponding stability
borderline. Inserting for n� =1 and n�=2 the resummed FP

values for static fourth order couplings at the biconical FP
into Eq. �18� one obtains

v� = vB = 1.0555. �31�

The corresponding dynamical critical exponent reads

zB = 2.052. �32�

This has to be compared with the predicted value for the
Heisenberg FP zH�3�=2.015, which was found to be stable in
the � expansion in one-loop order �2�.

V. DYNAMIC TRANSIENT EXPONENTS

The static stability boundaries are also dynamic stability
boundaries and therefore in the case n� =1 and n�=2 a small
dynamic transient exponent is expected. Its value is given by

�v = � ��v

�v
�

u
	
� ,v�

= u	
�2 v�

18
� n�

v� ln
2�1 + v��

2 + v� + n� ln
2�1 + v��
1 + 2v� � . �33�

It will be further numerically evaluated by inserting the
Borel resummed values for static couplings. As will be
shown below this exponent goes to zero only when the dy-
namical FP changes from the strong dynamic scaling to the
weak dynamic scaling FP. This is the case when in addition
to the change of the stability of the static FP, the stability of
the dynamic FP is changed.

The instability of the weak scaling FP v�=0 or 1 /v�=0 is
defined by a negative dynamic transient exponent

FIG. 1. Dependence of FP values of the time-scale ratio 1 /v�

and the dynamic transient exponent �v on n� for n� =1 in the region
of stability of the Heisenberg H�3� and biconical B FP in d=3. The
dotted vertical line indicates the stability border between FPs H�3�
and B. At the stability border to the decoupled FP at n��2.18 both
1 /v� and �v go to zero.
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�v = � ��v

�v
�

v�=0

=
1

72	��n� + 2�u�
�2 − �n� + 2�u�

�2��6 ln
4

3
− 1�

− n�u	
�2�3 − 2 lim

v→0
ln�2v�� − n�u	

�2� . �34�

This shows that in any case where u	
�2 is different from zero

the weak scaling FP is never stable. Thus only at the decou-
pled fixed point the dynamic transient exponent might be
positive, if n� �n�; see Eq. �26�. The transient exponent then
reads

�v =
c

18
��� − ��� . �35�

At the Heisenberg FP the dynamic transient exponent re-
duces to

�v
H =

n�uH�n��2

18
ln

4

3
. �36�

Thus the dynamic transient exponent at the stability border-
line to the biconical FP is finite and continuous �see Fig. 1�.
In the region of stability of the biconical FP the dynamic
transient exponent is given by the expression �33� evaluated
with the appropriate FP values for u	 and v. At the stability
borderline to the decoupling FP both FP values go to zero.
Thus also the dynamic transient exponent goes to zero indi-
cating the change from the stability of the strong scaling
dynamic FP to the weak scaling FP. Inserting the FP value
for the biconical FP leads to a dynamic transient exponent
roughly one order smaller than at the Heisenberg FP due to
the smaller FP value of the static coupling u	. Inserting the
FP values for the biconical FP into Eq. �33� one obtains

�v
B = 0.0044. �37�

Thus in addition to the already small transient from statics an
even smaller transient in dynamics appears. This leads to a
slow approach of the FP values in the flow equations.

The resulting phase diagram concerning the dynamical
universality classes is shown in Fig. 2. A strong dynamic
scaling part at small values for the OP components is sepa-
rated by a stability borderline �solid curve� at which the dy-
namical transient �v goes to zero. This borderline lies very
near the dots representing the model describing the critical
behavior of a three dimensional Heisenberg antiferromagnet
in a magnetic field �n� =1, n�=2�. In consequence the tran-
sient from the background to the asymptotic behavior might
be very slow.

VI. FLOW EQUATIONS AND EFFECTIVE EXPONENTS

The asymptotic dynamic exponents may be reached only
in very small region around the FP where the deviation from
the FP values in the model parameters have died out. Due to
the small transient exponents �either static and/or dynamic�
in the physical accessible region the critical behavior may be

an effective one described by effective exponents calculated
with the parameters different from their FP values at l=0 and
obtained from the flow equations at finite values of l.

The effective exponents are defined as

zef f,��l� = 2 + ���
„u��l�,u��l�,u	�l�,v�l�… , �38�

zef f,��l� = 2 + ���
„u��l�,u��l�,u	�l�,v�l�… . �39�

In Figs. 3 and 4 we show the effective dynamic exponents
for the parallel and perpendicular components of the OP. In
the asymptotics when reaching the stable biconical FP both
exponents reach the same value since the strong scaling dy-
namic FP is stable. In order to show the effect of the small

FIG. 2. �Color online� Regions of different static bicritical be-
havior, which are defined by the stable FP in the n� −n� plane ��
=4−d=1� separated by the static stability border lines �from left to
right: Heisenberg FP, biconical FP, and decoupled FP�. The solid
line is also the border line between dynamic strong and weak scal-
ing. The dots indicate small integer values of the component
numbers.

FIG. 3. �Color online� Effective dynamic exponent for the static
flows 3, 5, and 6 �see Fig. 1 in paper I�. The time-scale ratio v is set
to its biconical FP, Eq. �31�.
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static transient exponent we fix the value of the time-scale
ratio to its biconical FP value. The initial values for the static
couplings are chosen to be the same as in paper I for the
flows in Fig. 1 numbered from 1 to 6. Although the static FP
value is not reached �see Fig. 1 in paper I� the numerical
differences in the effective dynamical exponents are small.
The difference between the parallel and perpendicular effec-
tive dynamical exponent for curves number 2 and 3 in the
background region �larger l� result from that part of the static
flow where u	 and either u� or u� are almost zero.

In order to show the effect of the smaller dynamical tran-
sient exponent �37� we fix the static couplings to their biconi-
cal FP values and start the flow for the time-scale ratio v at
three different initial values corresponding to the situation
where the parallel relaxation coefficient is smaller than,
equal to, or larger than 1.

As one can see from Fig. 5, indeed for initial values of
v�0� far from its FP value, the time-scale ratio almost never
attains its FP value �for v�1�=0.1 it reaches the asymptotics
at ln ��−103�! However the effective exponents zef f are not
so far from their FP values in consequence of the general
dependence on the time-scale ratio �see Fig. 6�. One might
define a dynamic amplitude ratio from the relaxation rates
�� /��. This ratio then would in leading order behave like v.

Starting the flows of 3 and 5 with v different from its FP
value �see Fig. 7� leads to nonmonotonic behavior of the
effective dynamic exponents �see Fig. 8�. At first sight, the
behavior of the parallel and perpendicular effective dynami-
cal exponents looks strange since the nonmonotonic behavior
is seen in Fig. 8 for small initial values v�0� in the perpen-
dicular exponent, whereas for large values v�0� in the paral-
lel exponent. To explain such an unexpected behavior, one
may look at the difference of the two effective exponents
�see Eqs �14� and �15��,

�z = zef f,��u�,u	,u�,v� − zef f,��u�,u	,u�,v� , �40�

and estimate it at fixed u� ,u	 ,u� but for different values of
v. The difference can be written as

�z = c + �z�v� . �41�

In Eq. �41�, c depends on the static coupling only and �z�v�
for n�=2, n� =1 reads

�z�v� =
u	

2

36
�4v ln�2

1 + v
1 + 2v

� + 2 ln� �1 + v�2

1 + 2v
�

−
2

v
ln�2

1 + v
2 + v

� − ln� �1 + v�2

v�2 + v��� �42�

depending on v and the static coupling u	. For flows where
u	 is very small, no difference is seen according to v. So no
difference is seen in the corresponding flow for the static
flow number 3.

However for u	 near the bicritical FP, the difference be-
tween z� and z� calculated at the same values of the static

FIG. 4. Effective dynamic exponent for the static flows 1, 2, and
4 �see Fig. 1 in paper I�. The time-scale ratio v is set to its biconical
FP, Eq. �31�.

FIG. 5. �Color online� Flows of the time-scale ratio v�l� at the
biconical static FP B for different initial conditions. a: v�l=1�=5, b:
v�l=1�=1, c: v�l=1�=0.1. Note the scale of the flow parameter
compared to Figs. 3, 4, and 6.

FIG. 6. �Color online� Effective dynamical exponents zef f,�
�solid curves� and zef f,� �dashed curves� for the flows shown in Fig.
5.
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couplings but at different values of the time-scale ratio some-
times can be positive �i.e., z� �z�� and sometimes it can be
negative �z� �z��, depending on particular values of v. Nu-
merically estimates indeed recover the differences shown in
Fig. 8.

VII. CONCLUSION AND OUTLOOK

We have reconsidered the relaxational dynamics at the
multicritical dynamical FPs in O�n�� � O�n�� symmetric sys-
tems. According to the static two-loop order results the bi-
conical FP is the stable FP at the interesting case n� =1 and
n�=2 for which a new dynamic FP with strong dynamic
scaling has been found.

The critical dynamics of such a system has to take into
account additional properties, namely, if the densities of con-
served quantities couple statically to the OP and/or if mode
coupling terms are present. Both extensions of the dynamical
equations have to be considered lacking a complete two-loop
order calculation �2�. The model C like extension of this
model will be presented in a third part of this series.
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