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The extinction time of an isolated population can be exponentially reduced by a periodic modulation of its
environment. We investigate this effect using, as an example, a stochastic branching-annihilation process with
a time-dependent branching rate. The population extinction is treated in eikonal approximation, where it is
described as an instanton trajectory of a proper reaction Hamiltonian. The modulation of the environment
perturbs this trajectory and synchronizes it with the modulation phase. We calculate the corresponding change
in the action along the instanton using perturbation techniques supported by numerical calculations. The
techniques include a first-order theory with respect to the modulation amplitude, a second-order theory in the
spirit of the Kapitsa pendulum effect, and adiabatic theory valid for low modulation frequencies.
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I. INTRODUCTION

Extinction of species after maintaining a long-lived qua-
sistationary self-regulating population is a striking manifes-
tation of large deviations coming from intrinsic stochasticity
of processes of birth-death type. Not surprisingly, the extinc-
tion phenomenon is at the center stage of population biology
and epidemiology �1�. More recently, it has attracted interest
in the context of cell biochemistry �2�. As birth-death pro-
cesses are usually far from equilibrium, they are also of
much interest to physics �3,4�. Birth-death processes often
occur in a time-varying environment, and the variations of
the environment manifest themselves as an explicit time de-
pendence of the birth and/or death rates. Elucidating differ-
ent regimes of exponential reduction of the mean time to
extinction �MTE� of species due to the time variation of the
process rates is both important and interesting �5�. There is a
large body of work on the effects of environmental noise on
the MTE of birth-death systems. Early theoretical works on
this subject assumed that the environmental noise which
modulates the rates is delta correlated �6,7�. More recently,
effects of finite correlation time of the noise have also been
addressed in numerical simulations �8�. Not surprisingly, the
simulation results provide only a partial understanding of the
complex interplay between the nonlinear kinetics and intrin-
sic stochasticity of the self-regulating population on the one
hand, and the magnitude and spectral and correlation prop-
erties of the environmental noise on the other hand. To get
more insight into this type of problems, we will follow the
recent work of Escudero and Rodríguez �9� and consider a
much simpler model, where the time variation of the envi-
ronment, as manifested in the rate modulation, is periodic in
time. Although completely ignoring the noise aspect, this
model enables one to investigate, in a controlled and often
analytic way, different frequency and amplitude regimes of
response of a self-regulating birth-death system to the rate
modulations. Furthermore, not all environmental variations
are noisy: some of them �such as daily, monthly, and annual
cycles� occur in an almost periodic fashion.

The main objective of this work is to calculate, in differ-
ent regimes of parameters, the exponential reduction in the

MTE of birth-death systems due to a sinusoidal rate modu-
lation. These calculations are intimately related to finding the
“optimal path to extinction,” or instanton connection in birth-
death systems �10,11�. The instanton connection emerges in
eikonal approximation to the original master equation, and it
describes the most probable sequence of events that brings
the birth-death system from its long-lived quasistationary
state to extinction. As a prototypical example we will
consider the stochastic branching-annihilation process
A→�

2A and 2A→�
�. This single-species birth-death process

can be viewed as a simplified version of the well-known
Verhulst logistic model �12�. Its constant-rate version was
previously analyzed by a number of methods employing the
large parameter ��� /��1 that corresponds to a large av-
erage number of individuals in the quasistationary state at
times short compared to the MTE �11,13–15�.

The main theoretical tool that we employ in this work is
an eikonal method which assumes that ��1. We apply the
eikonal method to the exact evolution equation for the prob-
ability generating function that encodes the original
continuous-time master equation �3,4�. In the leading order
of the eikonal approximation, the evolution equation for the
probability generating function reduces to a Hamilton-Jacobi
equation, with an effective Hamiltonian that explicitly de-
pends on time. We explore, analytically and numerically, the
phase trajectories generated by this Hamiltonian and find the
perturbed instanton: a perturbed heteroclinic phase trajectory
that corresponds to extinction. Calculating the action along
the instanton yields an approximation for the logarithm of
the MTE �10,11�. Because of the explicit time dependence of
the eikonal Hamiltonian, analytical progress is possible only
via perturbation approaches. Therefore we use the eikonal
method in conjunction with two different perturbation tech-
niques that employ additional small parameters. The first of
them is linear theory �LT�: a theory based on linearization of
Hamilton equations with respect to the modulation ampli-
tude. For birth-death processes, the LT has been recently
used by Escudero and Rodríguez �9�. A closely related theory
was earlier developed by Dykman et al. �16,17� in the con-
text of large fluctuations and escape in continuous
�Langevin-type� stochastic systems driven by a time-periodic
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signal. Dykman et al. showed that in LT the modulation sig-
nal removes the degeneracy of the unperturbed instanton tra-
jectories with respect to time shift. This leads to the selection
of the optimal instanton which is synchronized with the
phase of the modulation signal. In general, the action along
the optimal instanton is smaller than the action along the
unperturbed instanton, leading to an exponential reduction of
the escape time �16,17�.

By employing a theorem due to Melnikov �18,19�, Escu-
dero and Rodríguez �9� proved the existence of a perturbed
instanton in the branching-annihilation process with weakly
modulated reaction rates. We extend the LT by calculating
analytically the action along the instanton, which yields the
logarithm of MTE. We also show numerically that the per-
turbed instanton persists for any reasonable modulation am-
plitudes, and for all modulation frequencies. Furthermore,
we show that the LT gives satisfactory results only when the
modulation frequency � is smaller than or comparable with
the relaxation rate of the system �. When ���, the first-
order correction to action, as predicted by the LT, turns out to
be exponentially small with respect to the rescaled frequency
� /�. It is the second-order correction in the modulation am-
plitude that becomes dominant in this regime. We calculate
this correction by employing �a Hamiltonian extension of�
the Kapitsa method, see, e.g., �20�.

The opposite, low-frequency regime is both the simplest
and most important as, for the same modulation amplitude,
the exponential reduction of the MTE turns out to be the
largest here. This regime can be efficiently dealt with in adia-
batic approximation, for any reasonable modulation ampli-
tude. Here one assumes that the extinction rate correspond-
ing to the unperturbed problem is known, obtains the
instantaneous extinction rate and averages it over the modu-
lation period. This simple procedure yields the average ex-
tinction rate, and hence the MTE, of the perturbed problem.
If the knowledge of the extinction rate of the unperturbed
problem includes a pre-exponent, the adiabatic approxima-
tion yields a �modified� pre-exponent of the MTE of the
perturbed problem: a significant improvement over the lead-
ing order of the eikonal method.

The remainder of the paper is organized as follows. We
begin Sec. II with a brief introduction to the eikonal theory
of extinction in birth-death processes with time-independent
rates using the branching-annihilation model as an example.
In Sec. III we present the eikonal theory of population ex-
tinction for a time-periodic rate modulation. We begin Sec.
III by developing the LT, and continue by addressing the
high-frequency limit ��� and employing the Kapitsa
method. We conclude Sec. III by reporting numerical solu-
tions of the Hamilton equations, in order to verify our theo-
retical results and extend them beyond the validity domain of
the perturbation techniques. Section IV deals with the low-
frequency limit by means of adiabatic approximation. Theo-
retical results obtained in this limit are compared with nu-
merical solutions of the master equation. Section V presents
a brief summary and discussion of our results.

II. MASTER EQUATION, PROBABILITY GENERATING
FUNCTION, AND GEOMETRICAL OPTICS

OF EXTINCTION

Here we present a brief introduction into an eikonal
theory of population extinction in a time-independent envi-
ronment �10,11�, using the prototypical example of the
branching-annihilation process A→�

2A and 2A→�
�, where �,

��0 are the reaction rate constants �11,13–15�. We assume
in this section that � and � are independent of time.

At the level of deterministic modeling, the dynamics of
the average number of individuals n̄�t� is described by the
�mean-field� rate equation

dn̄

dt
= �n̄ − �n̄2. �1�

This equation predicts an attracting fixed point n̄=� /���
�1. The rate equation ignores the intrinsic noise that comes
from the discreteness of individuals and stochastic character
of the reactions. This noise determines the probability distri-
bution of the actual values of n and, in particular, a quasis-
tationary distribution around the average value ��1 that
sets in on a relaxation time scale �−1; see below. On this time
scale the mean-field picture correctly describes the average
number of individuals in the stochastic process. At suffi-
ciently long times, however, the noise invalidates the mean-
field picture completely due to the existence, in the stochas-
tic process, of the absorbing state n=0. In other words, the
stochastic process A→2A and 2A→� eventually suffers a
rare sequence of events that brings the system into the empty
state.

The intrinsic noise is accounted for quantitatively by the
master equation which describes the time evolution of Pn�t�:
the probability to have n individuals at time t. In the
branching-annihilation example, the continuous-time master
equation, for n�1, reads

dPn�t�
dt

=
�

2
��n + 2��n + 1�Pn+2�t� − n�n − 1�Pn�t��

+ ���n − 1�Pn−1�t� − nPn�t�� . �2�

The master equation can be conveniently recast with the help
of the probability generating function �3,4�

G��,t� = �
n=0

	

�nPn�t� , �3�

where � is an auxiliary variable. G�� , t� encodes all the
probabilities Pn�t�, as the latter ones are given by the coef-
ficients of the Taylor expansion of G�� , t� around �=0. As
the probabilities are normalizable to 1, �0

	Pn�t�=1, the gen-
erating function satisfies the condition

G�1,t� = 1. �4�

The time-dependent moments of the distribution Pn�t� can be
expressed through the derivatives of the generating function
at �=1, e.g., �n��t���nnPn�t�= 	��G�� , t�	�=1.

After a simple algebra, Eq. �2� can be transformed into an
exact evolution equation for G�� , t�:
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�G

�t
=

�

2
�1 − �2�

�2G

��2 + ���� − 1�
�G

��
. �5�

The absorbing state at n=0 corresponds to the stationary
solution Gs���=1. The presence of the absorbing state is
manifested by the absence in Eq. �5� of a term proportional
to G�� , t�.

An initial value problem for Eq. �5� can be solved by
expanding G�� , t� in the eigenmodes of a Sturm-Liouville
problem related to the non-Hermitian operator

Ĥ =
�

2
�1 − �2�

�2

��2 + ���� − 1�
�

��
;

see Ref. �15� for details. As in many other problems of ex-
tinction of species, there is a zero eigenvalue E0=0 which
describes the absorbing state, and an infinite discrete set of
eigenvalues 
En�n=1

	 which describe an exponential decay
with time of the rest of eigenmodes �15,21�. For ��1 the
eigenvalue E1 is exponentially small in �, and much less
than the eigenvalues E2 ,E3 , . . ., which are of the order of the
relaxation rate of the system �. Therefore there are two
widely different time scales in the problem. The decay, on
the time scale �−1, of the higher eigenmodes corresponds to a
rapid relaxation of the probability distribution Pn�t� to the
quasistationary distribution, peaked at n��. The much
slower decay, on the time scale E1

−1, of the lowest excited
eigenmode �accompanied by a slow growth of the extinction
probability P0�t�� corresponds to an exponentially slow de-
cay of the quasistationary distribution and to extinction of
the species. A simple approximation to the eigenvalue E1 is
provided by the leading order of the eikonal approximation
�11�. Although it gives only exponential accuracy, it can be
readily applied to systems of two species �22,23� and to
time-dependent problems �9,23,24�: the focus of the present
work.

Employing the eikonal ansatz G�� , t�=exp�−S�� , t�� in
Eq. �5� and neglecting �2S /��2, we arrive at a Hamilton-
Jacobi equation for S�� , t� in the � representation:

�S

�t
+

�

2
�1 − �2�
 �S

��
�2

− ���� − 1�
�S

��
= 0. �6�

Introducing a canonically conjugate coordinate q=−�S /��
and shifting the momentum p=�−1, we arrive at a one-
dimensional Hamiltonian flow, where p plays the role of the
momentum �11�:

H�q,p� = ���1 + p� −
�

2
�2 + p�q�qp . �7�

The Hamilton equations are

q̇ =
�H

�p
= q���1 + 2p� − ��1 + p�q� , �8�

ṗ = −
�H

�q
= p���2 + p�q − ��1 + p�� . �9�

As the eikonal Hamiltonian �7� does not depend explicitly
on time, it is conserved: H�q , p�=E=const, and the problem

is integrable. The phase plane �q , p�, defined by this Hamil-
tonian flow, provides a useful visualization of the dynamics;
see Fig. 1. The attracting fixed point n̄=� and the repelling
fixed point n̄=0 of the one-dimensional rate equation �1�
become hyperbolic points A�q=� , p=0� and O�q=0, p=0�
of the phase plane �q , p�. They belong to the mean-field zero-
energy line p=0. �The equality H�q ,0�=0 reflects the prob-
ability conservation.� Another zero-energy line is the extinc-
tion line q=0. Of special importance, however, is the
nontrivial zero-energy line

q = q0�p� =
2��1 + p�

�2 + p�
. �10�

This line, which includes still another hyperbolic fixed point
B�q=0, p=−1� �we call it the fluctuational point�, gives a
leading-order description of the quasistationary probability
distribution. The −1
 p
0 segment of this line is a hetero-
clinic trajectory. It exits, at time t=−	, the hyperbolic fixed
point A along its unstable manifold and enters, at time t=	,
the hyperbolic fixed point B along its stable manifold. The
heteroclinic trajectory �often referred to as the optimal path
to extinction, or the instanton �25–27�� describes the most
probable sequence of events bringing the system from the
quasistationary state to extinction. Up to a pre-exponent, that
is missed by the leading order of the eikonal theory, the MTE
can be approximated as �ex�exp�S0�, where

S0 = − �
0

−1

q0�p�dp = 2��1 − ln 2� . �11�

The time-dependent instanton coordinate q0�t− t0� and mo-
mentum p0�t− t0� are the following:

q0�t − t0� =
2�

2 + e��t−t0� , p0�t − t0� = −
1

1 + e−��t−t0� ,

�12�

where t0 is an arbitrary time shift.

−1 0

0

p

q

OB

A

FIG. 1. �Color online� The phase plane of the unperturbed
Hamiltonian �7�. The solid lines denote zero-energy trajectories.
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The eikonal approximation is valid when S0�1, that is
��1. Equation �11�, obtained by Elgart and Kamenev �11�,
coincides with the leading order term of the logarithm of the
MTE found by other methods �also employing the strong
inequality ��1� by Turner and Malek-Mansour �13�,
Kessler and Shnerb �14�, and Assaf and Meerson �15�.

III. EXTINCTION IN A TIME-VARYING ENVIRONMENT:
PERTURBATION TECHNIQUES

FOR THE INSTANTON

Now let the branching rate � in the master equation �2�,
and in the evolution equation �5� for G�� , t�, vary sinusoi-
dally in time:

��t� = �0�1 + � cos �t� , �13�

where 	�	
1, and � and � are the modulation amplitude and
frequency, respectively. The eikonal approximation now
yields the following time-dependent Hamiltonian:

H�q,p,t� = H0�q,p� + �H1�q,p,t� , �14�

where

H0�q,p� = �0�1 + p�pq −
�0

2
�2 + p�pq2, �15�

and

H1�q,p,t� = �0�1 + p�pq cos �t . �16�

For the unperturbed Hamiltonian H0�q , p�, the instanton �10�
and the corresponding action S0 along it, Eq. �11�, are
known. Our strategy will be to calculate the action along the
perturbed instanton: the instanton of the perturbed, time-
dependent Hamiltonian �14�.

Following Escudero and Rodríguez �9�, let us consider the
Poincaré map P�

t0 = 
q , p , t 	 t= t0� �0,T��: the projection of
three-dimensional trajectories of the nonautonomous system
�14� in the �q , p , t� space on the �q , p� plane at section time
t0� �0,2� /��. In the perturbed system the hyperbolic points
A and B are also perturbed. We will denote the perturbed
fixed points by A�

t0 and B�
t0, respectively. For generic Hamil-

tonians the existence of the perturbed hyperbolic points is
guaranteed, by the Poincaré-Birkhoff fixed point theorem
�19�, only for sufficiently small �. For the birth-death Hamil-
tonian we are dealing with here the perturbed fixed points
exist for any 	�	
1. The point B�

t0 = �q=0, p=−1� remains
unchanged �28�, whereas the point A�

t0 can be easily found
from the time-dependent rate equation �8� with p=0 and �
from Eq. �13�:

q̇ = q��0�1 + � cos �t� − �q� . �17�

The solution of this equation, for an arbitrary initial condi-
tion q�0�, is the following:

q�t� =
q�0�exp
�0t + ���0 sin��t�/���

1 +
�0

�0
q�0��0

�0t exp
s + ���0 sin��s/�0�/���ds

,

�18�

see also Ref. �9�. At long times this solution becomes peri-
odic in time, and can be written as

q�t� =
�0

�0

exp���0 sin ��t�/��

�
n=−	

	

In���0/��cos�n�t − �n − n�/2�/�1 + n2�2/�0
2

,

�19�

where In�x� is the modified Bessel function, and �n
=arctan�n� /�0�. Putting in Eq. �19� t= t0 we obtain q of the
perturbed fixed point A�

t0, whereas its p remains zero.
Existence of the perturbed fixed points is a necessary but,

in general, insufficient condition for the existence of a het-
eroclinic trajectory connecting the unstable manifold of A�

t0

and the stable manifold of B�
t0. In general, one should also

establish the existence, in the perturbed problem, of the un-
stable and stable manifolds themselves, and of their intersec-
tion �9,19�. We verified analytically and numerically, see be-
low, that the unstable manifold of A�

t0 and the stable manifold
of B�

t0 do intersect. Let us denote the perturbed instanton
connection by the pair q�t , t0� , p�t , t0�. As the energy is not
conserved, the action along the perturbed instanton now in-
cludes an integral of H over time:

S = �
−	

	


p�t,t0�q̇�t,t0� − H0�q�t,t0�,p�t,t0��

− �H1�q�t,t0�,p�t,t0�,t��dt , �20�

where q̇�t , t0�=dq /dt, and the unperturbed Hamiltonian
H0�q , p� is invariant to the specific choice of t0. Escudero
and Rodríguez �9� applied the Melnikov theorem �18,19� and
proved that a perturbed instanton exists in this problem for
sufficiently small �. To this end they calculated �an approxi-
mation for� the distance between the unstable and stable
manifolds, which is given by the Melnikov function, see be-
low, and showed that it vanishes for a specific choice of t0.
We briefly reproduce their derivation in Sec. III A, along
with additional results: a linear-theory calculation of the ac-
tion �20� and the corresponding reduction in the logarithm of
the MTE. We also show, in Sec. III B, that the perturbed
instanton exists for high-frequency perturbations, ���0 at
any 	�	
1. Furthermore, we report, in Sec. III C, strong nu-
merical evidence that the perturbed instanton exists for any
	�	
1 and any �.

A. Linear correction to action

Here we consider the linear theory �LT� which assumes
that the term �H1�q , p , t� in Eq. �14� can be treated perturba-
tively. For this assumption to hold it is sufficient to demand
the strong inequality 	�	�1. As we will see in Sec. III B, at
high frequencies, ���0, the strong inequality 	�	�1 be-
comes unnecessary. For completeness, we will derive Eqs.
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�24� and �25� in a general form, before dealing with the
particular example of branching and annihilation. In the first
order in � the perturbed instanton of H�q , p , t� is described
by the equations

q�t,t0� = q0�t − t0� + �q1�t,t0� ,

p�t,t0� = p0�t − t0� + �p1�t,t0� , �21�

where q0�t− t0� and p0�t− t0� stand for the �known� instanton
solution of the unperturbed equations,

q̇0 =
�H0�q0,p0�

�p0
,

ṗ0 = −
�H0�q0,p0�

�q0
, �22�

that is Eqs. �8� and �9� with �=�0.
To calculate the action �20� we expand the integrand in �

and obtain, in the first order,

�p0 + �p1��q̇0 + �q̇1� − H0�q0,p0� − �q1
�H0�q0,p0�

�q0

− �p1
�H0�q0,p0�

�p0
− �H1�q0,p0,t�

� p0q̇0 − H0�q0,p0� + �p1q̇0 + �p0q̇1 + �q1ṗ0 − �p1q̇0

− �H1�q0,p0,t� . �23�

After the integration the first two terms yield the unperturbed
action S0. The third term cancels out with the sixth term,
while the fourth term cancels out, after integration by parts,
with the fifth term. The result is S�t0�=S0+�S�t0�, where

�S�t0� = − ��
−	

	

H1�q0�t − t0�,p0�t − t0�,t�dt . �24�

Recall that the integration is performed along the unper-
turbed instanton. To find the optimal correction to action we
have to minimize S�t0� with respect to t0 �compare to Refs.
�16,17��. This yields the following equation for t0:

dS�t0�
dt0

= ��
−	

	 
 �H1

�q0
q̇0 +

�H1

�p0
ṗ0�dt

� − ��
−	

	


H0,H1�0dt = 0, �25�

where 
H0 ,H1�0 is the Poisson bracket evaluated on the un-
perturbed instanton. The quantity M�t0�=�−	

	 
H0 ,H1�0dt is
the Melnikov function of the perturbed problem �9,18,19�. It
is proportional to the distance between the unstable and
stable manifolds of A�

t0 and B�
t0, respectively �19�. That M�t0�

has simple zeros yields a sufficient condition for the exis-
tence of the perturbed instanton. These zeros are the critical
points of the function S�t0�. By finding the critical value of t0
for which S�t0� has its minimum, we obtain the minimal
action along the instanton of the perturbed problem �24�. It is
the min �S�t0� that yields the reduction of the logarithm of
the MTE, caused by the time dependence of the rate. Note

that when H0 commutes with H1, M�t0� vanishes identically
at any t0, but this degenerate case is hardly of interest.

The validity of the linear eikonal theory is determined by
the double strong inequality

1 � �S � S0. �26�

The left inequality is required for the eikonal approximation
to be valid, while the right inequality is needed for the lin-
earization to be valid. Note that the rate variation does not
have to be time periodic for the LT to hold: it suffices to
demand that the rate variation be bounded by a sufficiently
small value.

Now we return to the branching-annihilation example. In
the first order in �, the perturbed fixed point A�

t0 is deter-
mined by the equation

qA

�
= 1 +

��0��0 cos �t + � sin �t�
�2 + �0

2 �27�

evaluated at t= t0. Substituting Eqs. �12� and �16� in Eq. �24�,
we obtain

�S�t0� = 2���
−	

	 cos��/�0 + t0�e�

�1 + e��2�2 + e��
d� . �28�

Calculating the integral we arrive at

S�t0�
S0

= 1 +
��

�1 − ln 2�sinh���/�0�

�� �

�0
cos �t0 − sin��
 ln 2

�0
+ t0�� + sin �t0� ,

�29�

where S0 is given by Eq. �11�. The minimal action is S�t
0
*�,

where t
0
* is the solution of the trigonometric equation for t0:

dS�t0�
dt0

� − �M�t0�

= −
2����

sinh���/�0�

�� �

�0
sin �t0 + cos��
 ln 2

�0
+ t0�� − cos �t0�

= 0, �30�

subject to the condition d2S�t0� /dt0
2�0. The solution is

�t0
* = � + arctan�1 − cos�� ln 2�

� − sin�� ln 2� � , �31�

where �=� /�0, and we assume here and in the remainder of
this subsection that ��0 �30�. Equation �31� shows that the
optimal instanton becomes synchronized with the rate modu-
lation, similarly to what happens in the context of escape in
Langevin-type stochastic systems driven by a time-periodic
signal �16,17�. Figure 2 depicts the difference �t0−� as a
function of �. This difference is small at ��1, �t0−�
��ln 2�2 / �2�1−ln 2���, and at ��1: �t0−���−1�1
−cos�� ln 2��. It vanishes for �=2�n / ln 2, where n
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=1,2 , . . .. For ��1 the difference �t0−� is of the order of
one.

Now we use Eqs. �29� and �31� to find the perturbed ac-
tion:

Smin

S0
= 1 +

�S
S0

= 1 −
��

�1 − ln 2�sinh����

�
�sin�� ln 2� − ��2 + �cos�� ln 2� − 1�2�1/2.

�32�

Figure 3 depicts �S / ���� as a function of � as predicted by
Eq. �32�. The maximum effect of the rate modulation is ob-
tained at �→0. Recall that the perturbed action yields �in the
leading order in �� the natural logarithm of the MTE of the
perturbed branching-annihilation problem.

The perturbative eikonal result is valid as long as the
double inequality �26� is obeyed. The left inequality breaks
down at very small �, whereas the right inequality breaks
down at not small � where linearization becomes invalid.
One can define, in analogy with the problem of activated
escape in Langevin-type stochastic systems �16�, the loga-
rithmic susceptibility �=���S� /�	�	. Within the framework
of the LT �that is, for intermediate values of the modulation
amplitude that satisfy the double inequality �26��, � is inde-
pendent of �:

� = −
2��

sinh����

�sin�� ln 2� − ��2 + �cos�� ln 2� − 1�2�1/2.

�33�

At small and large modulation amplitudes � becomes
amplitude-dependent.

In the low-frequency limit, ��1, one obtains from Eq.
�32�

�S
�S0

= − 1 +
�2

6
��2 −

�ln 2�3

�1 − ln 2�2 +
�ln 2�4

4�1 − ln 2�2� , �34�

where we have kept the leading and subleading terms. The
leading term coincides with the prediction �63� from the
adiabatic approximation; see Sec. IV. In this limit the LT is
valid for �−1���1. The same criterion applies for ��1, as
�S / ���� in Eq. �32� is of order 1 there. In the high-
frequency limit, ��1, the correction �S is exponentially
small:

�S
�S0

= −
2��e−��

1 − ln 2
. �35�

Here � need not be small compared to 1 to satisfy the right
inequality in Eq. �26�. Note that Eqs. �32�–�35� with � re-
placed by 	�	 are valid also for �
0.

In Fig. 3 Eq. �32� is compared with the correction to ac-
tion found by solving the Hamilton equations numerically
�see Sec. III C for details of the numerics�. One can see a
good agreement at small and intermediate frequencies, and a
disagreement at high frequencies. What is the reason for the
disagreement? That the correction to action �S, as predicted
by the LT, becomes exponentially small at large frequencies
indicates that the �2 correction, neglected by the LT, becomes
dominant there. This conjecture is validated in the next sub-
section, where we consider the high-frequency case and cal-
culate the �2 correction using �a Hamiltonian extension of�
the Kapitsa method.
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0.75

1

α

ω
t 0

−
π

FIG. 2. �Color online� The difference �t0−�, see Eq. �31�, as a
function of �=� /�0.
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FIG. 3. �Color online� The correction to action �S, rescaled by
�S0, vs the rescaled modulation frequency �=� /�0. Dashed and
dash-dotted lines: predictions of the linear theory, �SLT, see Eq.
�32�, for �=0.04 and �=0.1, respectively. Solid line: �Snum found
by solving the Hamilton equations numerically; see Sec. III C. On
this scale the three lines are indistinguishable. The inset shows the
ratios of �SLT and �Snum for �=0.04 �the dashed line�, and �
=0.1 �the dash-dotted line�. The disagreement at high frequencies
demands an account of what we call the Kapitsa correction, calcu-
lated in Sec. III B.
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B. Quadratic correction to action: The Kapitsa correction

Here we consider the high-frequency limit, ���0 and
calculate the correction to action which is of the second order
in �. To this end we use �a Hamiltonian extension of� the
method that was developed long ago in the context of the
“Kapitsa pendulum:” a rigid pendulum with a rapidly vibrat-
ing pivot, see, e.g., �20�. The Kapitsa method involves, as a
first step, calculation of small high-frequency corrections to
the unperturbed coordinate and momentum of the system.
Because of the high frequency of the perturbation these cor-
rections are small even if � is of order 1. Using the high-
frequency corrections, we construct a canonical transforma-
tion which, by means of time averaging �that is, by rectifying
the high-frequency component of the motion�, transforms the
original time-dependent Hamiltonian into an effective time-
independent one. The effective Hamiltonian includes a cor-
rection coming from the rectified high-frequency perturba-
tion. Finally, we find the perturbed instanton, emerging from
this effective time-independent Hamiltonian, and the action
along the instanton.

The starting point of the derivation is the same Hamil-
tonian �14� with rates given by Eq. �13�. We represent q and
p as follows:

q�t� = X�t� + ��t�, p�t� = Y�t� + ��t� , �36�

where X and Y are slow variables, while � and � are small
and rapidly oscillating. Now we expand the Hamiltonian
H�q , p , t� around q=X and p=Y up to the second order in �
and �:

H�q,p,t� � H�X,Y,t� + �
�H�X,Y�

�X
+ �

�H�X,Y�
�Y

+
�2

2

�2H�X,Y�
�X2 +

�2

2

�2H�X,Y�
�Y2 + ��

�2H�X,Y�
�X�Y

� H̃�X,Y,t� . �37�

The Hamilton equations become

q̇ = Ẋ + �̇ �
�H̃�X,Y,t�

�Y
, ṗ = Ẏ + �̇ � −

�H̃�X,Y,t�
�X

.

�38�

Now we demand that the rapidly oscillating terms in Eqs.
�38� balance each other. This yields

�̇ � ��0X�2Y + 1�cos �t, �̇ � − ��0Y�Y + 1�cos �t ,

�39�

where terms of the order of � and � have been neglected, but
their time derivatives �which are proportional to � and there-
fore large� have been kept. Treating X and Y as constants
during the period of rapid oscillations 2� /�, we can easily
solve Eqs. �39� and obtain

��t� �
��0

�
X�2Y + 1�sin �t, ��t� � −

��0

�
Y�Y + 1�sin �t .

�40�

Now it is clear that this perturbation scheme demands
	�	�0 /��1. As we have assumed ���0, � need not be
small.

Using Eqs. �36� and �40�, we perform an almost canonical
transformation from the old variables q and p to the new
variables X and Y:

q�X,Y,t� =
X

1 − ���0/���2Y + 1�sin �t

� X�1 +
��0

�
�2Y + 1�sin �t

+
�2�0

2

�2 �2Y + 1�2sin2 �t� ,

p�X,Y,t� = Y�1 −
��0

�
�1 + Y�sin �t� . �41�

This transformation is canonical up to third order of
O���0 /��3��1, as the Poisson brackets 
q , p��X,Y�=1
+O���0 /��3�. The generating function of this transformation
is

F2�q,Y,t� = qY�1 − ���0/���Y + 1�sin �t� ,

see, e.g., Ref. �20�. Now we transform to the new variables X
and Y, H�=H+�F2 /�t, and average the new Hamiltonian H�
over the period of rapid oscillations 2� /�. This yields an
effective Hamiltonian

H̄�X,Y� = �0XY�1 + Y� −
�0

2
�Y + 2�YX2

+
�2�0

2

2�2 XY��0Y�1 + Y�2

−
�0

2
�2 + 12Y + 18Y2 + 5Y3�� �42�

which is time-independent. The first two terms come from
the unperturbed Hamiltonian, Eq. �15�, the other two terms
describe a rectified �2 correction coming from the high-
frequency perturbation. The mean-field fixed point and fluc-
tuational fixed point of the effective Hamiltonian are

A�q = �
1 −
�2�2

2�2 �,p = 0� and B�q = 0,p = − 1� ,

respectively. As the effective Hamiltonian is time-
independent, there is no need for the Poincaré section in this
limit. Two “trivial” zero-energy lines of the effective Hamil-
tonian are X=0 and Y =0. The nontrivial zero-energy line
yields the effective instanton X0�Y�. In the leading order of
��� /�0�1 we obtain

POPULATION EXTINCTION IN A TIME-MODULATED … PHYSICAL REVIEW E 78, 041123 �2008�

041123-7



X0�Y� �
2��1 + Y�

2 + Y
�1 −

�2�2 + 10Y + 15Y2 + 4Y3�
2�2�2 + Y� � .

�43�

The action along the effective instanton is

S = − �
0

−1

X0�Y�dY = S0
1 −
K�2

�2 � , �44�

where

K =
6 ln 2 − 49/12

1 − ln 2
= 0.2462 ... . �45�

We will call the resulting correction to the unperturbed ac-
tion,

�SK = − KS0��/��2, �46�

the Kapitsa correction. The eikonal approximation, that has
led to Eq. �46�, demands �SK�1. Figure 4 shows the ratio
of �SK and the correction to action, found by solving the
Hamilton equations numerically �see Sec. III C for details of
the numerics�. As expected, good agreement is observed at
high frequencies, where the Kapitsa method is applicable.

Now we can put the results obtained with the LT and with
the Kapitsa method into a broader context. The correction to
the unperturbed action �S=S−S0
0 must have the follow-
ing general form:

�S
S0

= − f1���	�	 − f2����2 + ¯ . �47�

�Clearly, �S must be analytical in 	�	, rather than in �, as
changing the sign of � only brings about a phase shift �
which changes the minimum point t0 but leaves the mini-
mum action unchanged.� The function f1����0 is given by
the LT, see Eq. �32�:

f1��� =
�
�sin�� ln 2� − ��2 + �cos�� ln 2� − 1�2�1/2

�1 − ln 2�sinh����
.

�48�

The high-frequency asymptote of f2��� is given by Eq. �44�:

f2��� =
K

�2 , � � 1. �49�

To calculate the function f2��� analytically for all � would
be quite cumbersome, so we found it numerically by solving
the Hamilton equations for three different values of � and for
different frequencies �see Sec. III C for details of the numer-
ics�. For each set of � and � we computed �S and used Eq.
�47� with f1��� from Eq. �48� to extract f2���. As expected,
the resulting plots of f2��� for different � collapse into a
single curve; see Fig. 5. Noticeable is a nonmonotonic,
alternating-sign � dependence. The high-frequency asymp-
tote of f2��� is in excellent agreement with the Kapitsa cor-
rection �49�. Note that f2��� vanishes as �→0. The reason is
that, as �→0, the dependence of the eikonal part of �S on �
becomes linear; see Sec. IV. This is a nongeneric property of
the case when the branching rate � is modulated, while the
annihilation rate � is not.

When does the Kapitsa correction to action dominate over
the exponentially small first-order correction at high frequen-
cies? The corresponding condition �2f2���� 	�	f1��� can be
rewritten as 	�	��3e−��; it is easily satisfied for large �. In
this regime the logarithmic susceptibility � is proportional to
	�	.

C. Numerical calculations of the perturbed instanton
and the action

To verify our analytical results, and to explore the param-
eter regions beyond the validity of the perturbation methods,
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FIG. 4. �Color online� The ratio of the Kapitsa correction �SK,
Eq. �46�, and �Snum=Snum−2��1−ln 2� for �=0.1 �dashed line�
and �=0.2 �dash-dotted line�, vs �=� /�0. The agreement improves
with an increase of � and �.
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FIG. 5. �Color online� Shown is the function f2��� determined
numerically; see text. The curves for �=0.04 �solid line�, �=0.1
�dashed line�, and �=0.2 �dash-dotted line� collapse into a single
curve as expected from Eq. �47�. The ��1 asymptote of f2���,
given by Eq. �49� �thick solid line�, agrees with the numerical result
at high frequencies. The inset shows a blowup of the high-
frequency region.
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we computed the action numerically by solving the Hamilton
equations. Rescaling time �=�0t and the coordinate Q
=�0q /�0=q /� in Eqs. �14�–�16�, one obtains rescaled
Hamilton equations

�Q

��
= �1 + 2p�Q − �1 + p�Q2 + ��1 + 2p�Q cos �� ,

�p

��
= − �1 + p�p + �2 + p�pQ − ��1 + p�p cos �� , �50�

which follow from the rescaled Hamiltonian

h�Q,p,�� = �p + 1�pQ −
1

2
�2 + p�pQ2 + ��p + 1�pQ cos �� .

The action along the perturbed instanton �Q*�t� , p*�t�� is
given by

S = ��
−	

	


− Q*���ṗ*��� − h�Q*���,p*���,���d� , �51�

where the integrand is fully determined by two dimension-
less parameters: the rescaled modulation amplitude � and
rescaled frequency �=� /�. The numerical solution is ob-
tained by shooting. We start at �=0 at a point �Q�0� , p�0��
lying on a small circle of radius ��1 centered in the unper-
turbed mean-field point A�Q=1, p=0�. The polar angle � of
the point �Q�0� , p�0�� on the circle serves as the only shoot-
ing parameter: it is varied until the numerical trajectory
reaches, at some time �=� f, �a close proximity of� the fluc-
tuational point B�Q=−1, p=0�. For the numerically found
instanton �Q*�t� , p*�t�� to be a good approximation to the
true perturbed instanton in its entirety, � must be sufficiently

small. On the other hand, too a small � causes a long � f �and
therefore a long computation time and possible accumulation
of numerical errors� because of the intrinsic logarithmic
slowdown near the fixed point. By repeating the computa-
tions for a smaller circle, �1
�, we checked that the same
numerical instanton trajectory is reconstructed with high ac-
curacy, apart from additional oscillations that appear in the
vicinity of the mean-field point of the unperturbed system
�see Figs. 6 and 7�. As long as � is chosen to be sufficiently
small, the contribution of these oscillations to the net action
along the instanton is small.

We used this algorithm to verify our perturbative theoret-
ical results; see Figs. 3–5. We also computed the perturbed
instanton numerically in the parameter region beyond the
validity of the perturbation techniques: ��1 and ��1.
These computations strongly suggest that the instanton con-
nection persists for any �
1 and any �. Figures 6 and 7
show examples of numerically found instantons, and action
along them, for nonperturbative values of parameters.

IV. ADIABATIC APPROXIMATION

Adiabatic approximation is nonperturbative in the modu-
lation amplitude �, and demands that the modulation fre-
quency be much smaller than the characteristic relaxation
rate of the system. Consider first a general single-species
birth-death process with time-independent rates which pos-
sesses a nontrivial quasistationary state and a single absorb-
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FIG. 6. �Color online� A nonperturbative instanton trajectory
obtained by solving numerically the rescaled Hamilton equations
�50� for �=0.6 and �=1. The trajectory first performs large-
amplitude oscillations around the mean-field fixed point A of the
unperturbed system �or, in other words, stays close to the perturbed
fixed point of the Poincaré map A��t0��, then leaves the vicinity of
the fixed point, and ultimately reaches �a close vicinity of� the fluc-
tuational point B�Q=0, p=−1� which, for the branching-
annihilation reaction, remains unperturbed.
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FIG. 7. �Color online� Projections on the �Q , p� plane of instan-
tons found numerically for four sets of parameters �the dashed
lines�. The parameters and the corresponding rescaled actions �see
Eq. �51�� S /� are �a� �=0.6, �=1, S /�=0.467 �b� �=0.9, �=1,
S /�=0.398 �c� �=0.6, �=2, S /�=0.576, and �d� �=0.9, �=2,
S /�=0.545. The solid line denotes the unperturbed instanton �10�.
For comparison, the unperturbed rescaled action is S0 /�=2�1
−ln 2�=0.6137. . .. The blowups in the vicinity of p=0 �the insets�
show that Q�p� oscillates before departing toward the fluctuational
fixed point. In these examples �=10−6.
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ing state at zero. At times much longer than the time of
relaxation to the quasistationary state, the extinction prob-
ability at time t can be represented as

P0�t� = 1 − Ce−rex
�0�t,

where rex
�0�=rex

�0���1 ,�2 , . . . � is the extinction rate: the lowest
excited eigenvalue E1, see, e.g., Refs. �15,21�. The extinction
rate depends on the reaction rates of the problem �1 ,�2 , . . ..
The constant C is determined by the initial conditions; for a
sufficiently large initial number of particles, C is close to
unity �15,21�.

Now we introduce an adiabatically slow variation into the
reaction rates so that the characteristic time of the variation is
much longer than the relaxation time of the system, but much
shorter than the MTE. The extinction probability can now be
written as

P0�t� = 1 − Ce−�0
t rex�t��dt�, �52�

where rex�t�=rex��1�t� ,�2�t� , . . . � is the instantaneous value
of the slowly time-dependent extinction rate. The average
extinction rate r̄ex can be defined via the relation

P0�t� = 1 − Ce−r̄ext. �53�

Comparing Eqs. �52� and �53�, we obtain

r̄ex =
1

T
�

0

T

rex�t��dt�, �54�

where T is much longer than the relaxation time but much
shorter than the MTE. For slow periodic rate modulations
with frequency � Eq. �54� can be rewritten as

r̄ex =
2�

�
�

0

2�/�

rex�t��dt�. �55�

The MTE is equal, in the adiabatic approximation, to 1 / r̄ex.
Now we illustrate the adiabatic approximation on our

branching-annihilation example. Here the periodic solution
of the mean-field equation �17� is q�t����1+� cos �t�: the
mean-field fixed point follows the slowly changing rate ��t�
adiabatically.

The extinction rate of the branching-annihilation system
with time-independent rates was found, including the pre-
exponent, in Refs. �13–15�:

rex
�0� =

�3/2

2��
e−S0, �56�

where S0=2��1−ln 2� and �=� /��1. We introduce a
slow sinusoidal modulation in the branching rate �, see Eq.
�13�, while keeping �=�0 constant. The instantaneous ex-
tinction rate becomes

rex�t� =
�3/2

2��
�1 + � cos �t�3/2e−S0�1+� cos �t�. �57�

For this result to be valid it is necessary that the argument in
the exponent be large: S0�1+� cos �t��1, which yields

1 − 	�	 � 1/� . �58�

The instantaneous extinction rate �57� can be also obtained,
with exponential accuracy, in the following way. One treats
the time in the time-dependent eikonal Hamiltonian �14� as a
parameter and looks for zero-energy trajectories as in the
time-independent case. In this way one obtains the “adiabatic
instanton”

q = qa�p;t� =
2��1 + p�

�2 + p�
�1 + � cos �t� , �59�

and finds the adiabatic action S0�t�=−�0
−1qa�p ; t�dp=S0�1

+� cos �t� which yields �the minus of� the logarithm of the
instantaneous extinction rate, in agreement with Eq. �57�.
This simple derivation yields a necessary condition for the
validity of the adiabatic approximation. Indeed, the adiabatic
picture demands that � be much less, at all times, than the
adiabatically varying relaxation rate ��t�=�0�1+� cos �t�.
Therefore we must require ���0�1− 	�	�, that is,

� � 1 − 	�	 . �60�

For small or moderate modulation amplitudes, 	�	�1, one
recovers the same low-frequency criterion ��1 that led to
Eq. �34�. As 	�	 closely approaches 1, however, the criterion
�60� becomes much more stringent. The criteria �58� and �60�
can be rewritten as

1 − 	�	 � max��−1,�� . �61�

To verify Eq. �57�, we solved numerically �a truncated
version of� the original master equation �2�. The numerical
instantaneous extinction rate was computed from
−�d /dt�ln�1−P0�t��. Figure 8 compares Eq. �57� with a nu-
merical result for a small rescaled frequency �=0.04 and �
=0.2, and good agreement is observed. The deviation in the
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FIG. 8. �Color online� Comparison of the adiabatic instanta-
neous extinction rate, given by Eq. �57� �the solid line� and the
instantaneous extinction rate determined from a numerical solution
of the master equation Eq. �2�. The numerical instantaneous extinc-
tion rate �the dashed line� was computed as −�d /dt�ln�1−P0�t��.
The parameters are �=25, �=0.2, and �=0.04.
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peaks is mainly caused by 1 /� corrections to the eikonal
theory: we checked that it goes down as � increases.

The average extinction rate �55� can be written as

r̄ex =
�3/2

4�3/2�
0

2�

�1 + � cos ��3/2e−S0�1+� cos ��d� . �62�

This expression is �-independent. For a comparison with the
LT prediction �see below�, it will be convenient to compute
−ln�r̄ex�: the total action which includes, in addition to the
leading-order contribution, a sub-leading contribution com-
ing from the pre-exponent.

The integral in Eq. �62� can be calculated analytically in
two limits. For 	�	��1 one can employ the saddle point
approximation and obtain

r̄ex =
��1 − 	�	�3/2

4��	�	�1 − ln 2�
e−S0�1−	�	�. �63�

The saddle point is located at t*= �� /� �for ��0, respec-
tively�; the effective width of the Gaussian is �
��2	�	��2�−1/2�� /�. The resulting action is

S = − ln�r̄ex� = S0�1 − 	�	� + ln� ��1 − 	�	�3/2

4��	�	�1 − ln 2�� .

�64�

The leading term S0�1− 	�	� coincides with the zero-
frequency limit predicted by the LT of Sec. III: see Eq. �34�
with the �2 term neglected. Its physical meaning is transpar-
ent: in view of the adiabatically slow rate modulation, the
effective “activation barrier” to extinction S0�1− 	�	� is deter-
mined by the minimal value of ��t�=�0�1+� cos �t� which
is equal to �0�1− 	�	�. Equation �64�, however, also includes
an important pre-exponent �recall that ��1�, missed by the
leading order of the eikonal expansion. Note that, because of
the additional pre-exponent, coming from the saddle-point
integration, the � dependence of the resulting pre-exponent
changes and becomes �� instead of ��3/2. Figure 9�a�
compares the prediction of Eq. �64� with the natural loga-
rithm of the MTE obtained by numerically solving the mas-
ter equation, and excellent agreement is observed.

In the opposite limit, 	�	��1, the integral �62� can be
calculated via a Taylor expansion of the integrand in ��.
Terms proportional to cos � vanish after the integration, and
the leading-order result is

r̄ex � rex
�0��1 + �2�2�1 − ln 2�2� . �65�

This yields

S = S0 − �2�2�1 − ln 2�2. �66�

Note that the strong inequality 	�	��1 in Eq. �64� coin-
cides with the validity criterion of the eikonal method in the
linear theory �LT�: the left inequality in Eq. �26�. Corre-
spondingly, when the opposite strong inequality 	�	��1
holds, the correction to S0 that appears in Eq. �66� is much
smaller than 1 and therefore strongly noneikonal. Figure 9�b�
shows a comparison between Eq. �66� and the numerical
solution of the master equation, and excellent agreement is
observed.

One can notice that the leading-order term in the action
�64�, S0�1− 	�	�, goes down linearly in 	�	 for all 	�	
1. The
linearity in 	�	 is nongeneric and stems from the fact that
��t� /�0 is linear in �, and so is the exponent in the instanta-
neous extinction rate �62�. In the general case, the 	�	 depen-
dence of the exponent that appears in the instantaneous ex-
tinction rate is nonlinear, and therefore the linear 	�	
dependence of the action �which also appears in the LT re-
gime of the eikonal approximation� will break down at 	�	
=O�1�. This is indeed what one observes if, instead of modu-
lating �, one modulates �:

��t� = �0, ��t� = �0�1 + � cos �t� . �67�

In this case, using Eq. �55�, we obtain the following action
for 	�	��1:
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FIG. 9. �Color online� �a� Comparison between the action S
given by Eq. �64� for ���1 �the dashed line� and the natural
logarithm of the MTE found by solving the master equation numeri-
cally �the solid line�, as a function of �. �b� A blowup of the small-�
region: shown are the ���1 asymptote of the action S �Eq. �66��
�the dash-dotted line�, the ���1 asymptote of the action S �Eq.
�64�� �the dashed line�, and the natural logarithm of the MTE found
by solving the master equation numerically �the solid line�, as a
function of �. The parameters in �a� and �b� are �=100 and �
=0.05. One can see that Eq. �66� breaks down when �� ceases to
be small, whereas for ���1 the � dependence becomes approxi-
mately linear, and the action is well described by Eq. �64�.
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S = − ln�r̄ex� =
S0

1 + 	�	
+ ln� �

4��	�	�1 + 	�	��1 − ln 2�� .

�68�

For 	�	�1 the leading-order term S0 / �1+ 	�	��S0�1− 	�	�
coincides with the leading term of Eq. �64�, or with Eq. �34�
where one must put �=0. For not small 	�	, however, the 	�	
dependence is nonlinear.

V. SUMMARY AND DISCUSSION

We have developed three complementary perturbation
techniques for an analytical calculation of the exponential
reduction in the mean time to extinction �MTE� in single-
species birth-death processes �or reaction kinetics� that occur
in a time-periodic environment. These are the linear theory
�valid at small modulation amplitudes�, the Kapitsa method
�valid at high modulation frequencies�, and the adiabatic ap-

proximation �valid at low modulation frequencies�. We pre-
sented our theory on the example of a simple branching-
annihilation process. Figure 10 shows different regimes of
this process on the parameter plane ���0,��.

The linear theory and the Kapitsa method, as we used
them, are rooted in the time-dependent eikonal theory that
employs a large parameter �: the average number of indi-
viduals in the quasistationary state at times short compared
with the MTE. The adiabatic approximation also employs the
large parameter �. It yields, however, a more accurate result
than the other two techniques as it yields a nontrivial
�-dependent pre-exponent of the MTE. The higher accuracy,
achieved in this way, is important in view of the fact that, at
low frequencies, the reduction in the MTE is the largest.

An important result of this work is that, at high modula-
tion frequencies and not too small modulation amplitudes,
the linear theory can greatly underestimate the true reduction
in the MTE. In this regime an accurate result is given by the
Kapitsa correction, calculated in this work.

Our calculations of the modulation-induced reduction in
the MTE are closely related to finding the optimal path to
extinction, or instanton connection �9–11�. Although in ge-
neric Hamiltonians the existence of an instanton connection
�a more standard mathematical term is a heteroclinic trajec-
tory� can be guaranteed only at very small modulation am-
plitudes �19�, our numerical results strongly indicate that, in
the birth-death processes with an absorbing state at zero, a
perturbed instanton persists at any reasonable modulation
amplitude and at any frequency. This remarkable fact must
be intimately related to the nongeneric structure of the birth-
death Hamiltonians. More specifically, a future proof of the
instanton persistence at arbitrary �physically reasonable�
time-dependent perturbations of the reaction rates will most
likely exploit the invariance of the zero-energy mean-field
line p=0 and the zero-energy extinction line q=0 in the per-
turbed Hamiltonian.
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