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A general self-consistency approach allows for a thorough treatment of the corrections to the mean-field
approximation �MFA�. The natural extension of standard MFA with the help of a cumulant expansion leads to
a point of view on the effective field theories. The proposed approach can be used for a systematic treatment
of fluctuation effects of various length scales and, perhaps, for the development of a coarse-graining procedure.
We outline and justify our method by some preliminary calculations. Results are given for the critical tem-
perature and the Landau parameters of the �4 theory—the field counterpart of the Ising model. An important
unresolved problem of the modern theory of phase transitions—the problem for the calculation of the true
critical temperature—is considered within the framework of the present approach. A comprehensive description
of the ground-state properties of many-body systems is also demonstrated.
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I. INTRODUCTION

This investigation is focused on the correspondence be-
tween microscopic models of phase transitions and their
quasimacroscopic �field-theoretic� counterparts. Here we
shall outline a self-consistency approach to a more accurate
derivation of effective field theories from microscopic mod-
els defined on lattices.

Our method is general and can be used for a wide class of
microscopic models but for a concreteness here we shall il-
lustrate our approach with the Ising model �IM�, given by

H�s� = −
1

2�
ij

N

Jijsisj , �1�

where s��si� denotes a lattice “field,” si= �1, and the inter-
action constant of ferromagnetic type Jij =J��i− j���0 de-
pends on the intersite distance �i− j� in a regular
D-dimensional lattice of N sites �“spins” or pseudospins�.
Note, that J�0��Jii=0.

We shall follow the main path of the phase transition
theory, where the effective �quasimacroscopic� field Hamil-
tonians �alias Ginzburg-Landau �GL� free energies	 are de-
rived with the help of two systematic methods: �i� Hubbard-
Stratonovich transformations �HST� and, �ii� a mean-field-
�MF-� like procedure �1–3	. Here we propose a more thor-
ough approach based on a convenient generalization of �ii�.

The known field theories exhibit both success and failure
in the description of many-body systems defined by micro-
scopic models. For example, we believe that the renormal-
ization group methods of the modern theory of phase transi-
tions �1	 based on the �4 theory yield a quite convenient
description of the scaling and universality properties of IM
but we cannot be certain that the field theory satisfactorily
describes important nonuniversal properties, such as, for ex-
ample, the critical temperature Tc and the lower critical di-

mensionality DL �for IM, DL=1, whereas within the �4

theory, DL=2�. In fact the field theory fails along this line of
studies. For example, the fluctuation shift ��Tc� f of Tc pre-
dicted within the one-loop approximation for the �4 theory is
very small and, hence, unrealistic, while in the higher orders
of the loop expansion this shift turns out to be infinite and its
calculation needs a special renormalization. As a result, the
problem for the value of Tc within the framework of the
present field theory of phase transitions remains unresolved.
Here we shall show the genesis of this problem and present a
satisfactory solution.

The reason for the mentioned difficulties of the field-
theory approach is in the quite simplified coarse-graining
procedures used in the derivation of the GL effective Hamil-
tonians from microscopic models. HST is applied together
with the long-wavelength approximation �LWLA�, namely,
�ka0���, where k= �k� is the magnitude of the wave vector
k= �k1 , . . . ,kD�, a0 is either the lattice constant or, generally,
the mean interparticle distance. LWLA leads to a correct ex-
pression for the Ornstein-Zernicke correlation function but
cuts the short-range �high-energy, 	�k�
k2, 
�k�� /a0	
interparticle correlations of fluctuation type that have the
main contribution to the shift ��Tc� f; 
�� /a0 is the upper
cutoff for k within LWLA.

Within the approach �ii� we usually mention that we ne-
glect the fluctuations of the physical quantities from their
equilibrium values. This, is not entirely true. It seems impor-
tant to emphasize that the latter are values in MF approxi-
mation �MFA� and, hence, they are incorrect. Thus, the fluc-
tuations are defined towards incorrect statistical averages,
and their contribution to the free energy of the system cannot
be accepted as an entire fluctuation effect. The latter can be
correctly evaluated, if we are able to define the fluctuations
as variations towards exact statistical averages calculated by
the Hamiltonian �1�. This task seems unsolvable, but the
present paper makes a step for improvement of the theory
along the same direction.

Note, that the methods �i� and �ii�, no matter of the dif-
ference between them, lead to the same GL effective field
theory. Both methods use LWLA. For the method �ii� LWLA
seems to me obligatory because of the following important
argument. HST can be applied only to positively definite
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matrices �Jij� but this condition is not satisfied by quite im-
portant lattice models, such as the nearest-neighbor �NN� IM.
In LWLA, however, the same interaction matrix Jij;nn of IM
is modified to a form that is positively definite. Besides, in
both methods, LWLA is used to help the derivation of the
quasimacroscopic �fluctuation� and macroscopic �thermody-
namic� properties, i.e., the LWLA is a tool of a “coarse-
graining” procedure for the many-body system. But in both
cases �i� and �ii�, the microscopic and mesoscopic interpar-
ticle correlations are ignored. Here we shall use a generali-
zation of the method �ii� in order to improve this disadvan-
tage of the theory. In this way we shall present more accurate
calculation of the LG parameters �vertices� of the effective
field theory of Ising systems. Besides, we shall show explic-
itly the mechanism of “statistical correlation” which leads
from the two-site �i− j� trivial correlation presented by the
initial interaction Jij to short-scale, mesoscale, and large-
scale effective multiparticle correlations of fluctuation
type—fluctuation correlations. Thus, we shall establish and
develop a “coarse-graining” procedure, and this is the main
aim of our paper. Besides, we shall show that the GL param-
eters of the �4 theory acquire �1 /z� corrections for both
short-range and long-range interactions J��i− j�� �1	. These
corrections will be presented to second order in �1 /z�2.

The 1 /z expansion has been introduced by Brout �4	 and
applied in calculations of Tc and thermodynamic susceptibili-
ties �5–13	. We are not aware of another relevant work along
this line of research except for our recent investigation �2,3	;
the latter will be used in our investigation. Remember, that
the �Brout� approach is a development of an older method—
the Kirkwood method of cumulants �semi-invariants� �14	;
hence, we shall follow a cumulant expansion which is well
known.

We shall generalize the Brout approach in a way that
makes it possible to derive effective field theories, and this
will allow us to reveal surprising features of many-body sys-
tems. In the Brout scheme, the mean �“molecular”� field is
spatially �i� independent. We find that there are no physical
reasons for this assumption and extend the “mean-field con-
cept.” Within our approach, the so-called mean field is spa-
tially dependent up to the moment when one should find the
actual ground state. Then the fluctuation phenomena occur
with respect to this ground state. In our approach the GL
parameters and, hence, the ground state have a more precise
evaluation.

Our consideration has been performed for interactions
J��i− j�� of a quite general type, namely for all interactions
that can be presented by the equality,

�
j

Jij = zJ0 � J , �2�

where J0 is an effective exchange constant, and z is an effec-
tive “coordination” number �number of interacting neigh-
bors�. In particular cases our results will be referred to as the
most common case of NN interactions �then n=2D for
simple lattices�. For a simplicity, here we shall assume that
IM is defined by a simple cubic �sc� lattice. The consider-
ation can be easily expended to other types of regular lat-
tices, as well as to irregular lattices with certain forms of

quenched disorder, for example, random potential �1	. We
introduce the interaction radius by Rint�z1/D—a quantity,
which is equal to the so-called zero-temperature correlation
length �see Sec. II�. Let us emphasize that our results can be
rederived without difficulties in the presence of an external
field �hi� conjugate to the lattice field �si�.

Other theories intended to improve the coarse-graining
procedures of many-body systems are, for example, the hi-
erarchical reference theory �15	 and a method of collective
variables �16	. The former is based on a particular renormal-
ization procedure and yields interesting results for the effec-
tive critical exponents of continuous phase transitions. The
latter theory uses a variant of cumulant expansion and col-
lective variables which, in certain limit, form the order pa-
rameter field. In these features the collective variable theory
�16	 resembles our approach but, generally, in contrast to the
latter, it significantly departs from the original Brout idea.
The mentioned theories do not use 1 /z expansion and for this
reason and apart from some common aims and general ideas,
cannot easily be compared with the present approach, which
is a very direct extension of the many-body theory beyond
the standard mean-field �“tree”� approximation.

In Sec. II we present a general approach to the treatment
of fluctuation correlations at various length scales and dis-
cuss aspects of the usual theory that corresponds to the
lowest-order approximation of a perturbation expansion of
cumulant type. In Sec. III we investigate the higher orders of
the mentioned perturbation expansion and demonstrate sev-
eral features of the effective field theory. Our main results are
summarized and discussed in Secs. III D–III G.

II. PRESENT STATUS OF THE EFFECTIVE FIELD
THEORY

A. General scheme

The equilibrium free energy of IM as a function of the
temperature T and the field configuration h= �hi� is given by

G�T� = − �−1 ln�Tr e−�H�s�� , �3�

where �−1=kBT, and the Trace is over the allowed lattice
configurations s= �si�. Note, that the equilibrium values of
the physical quantities are calculated as averages with re-
spect to the statistical ensemble based on the Hamiltonian �1�
and, in particular, the statistical averages of type �si¯sj
 are
obtained as derivatives of the partition sum whereas the irre-
ducible averages ��si¯sj

= ��si− �si
�¯ �sj − �sj
�
 are ob-
tained as derivatives of the Gibbs free energy �3�.

Let us introduce the shift

si = �i + 
si, �4�

where the lattice field �i is an arbitrary �auxiliary� field con-
figuration that is not necessarily associated with the averaged
spin �si
 at site i, and the “fluctuation” 
si is merely the
difference �si−�i�. The identification of �i with a statistical
average �¯
 over the full Hamiltonian �1�, or, with a statis-
tical average �¯
0 corresponding to another ensemble as
well as the interpretation of 
si as a fluctuation around �si

�or �si
0� may be a matter of further considerations. At this
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stage �i and 
si are auxiliary variables which obey Eq. �4�
and are not referred to as concrete physical quantities.

Following a standard procedure �see, e.g., Refs. �1,2	� we
obtain the following effective nonequilibrium free energy:

H��� = H0��� + H f��� , �5�

with ����i�,

H0��� =
1

2�
ij

Jij�i� j − �−1�
i

ln�2 ch��ai�	 . �6�

Here

ai = �
j

Jij� j �7�

is the “mean” �molecular� field, and

H f��� = − �−1 ln �exp��

2 �
ij

Jij�si − �i��sj − � j���
0

�8�

is the “fluctuation” part. As usual, we shall often call the free
energy �5� an “effective Hamiltonian” �see, also, Ref. �17	�.

In Eq. �8�, �¯
0 denotes a statistical average over an en-
semble defined by the auxiliary �“MF”� Hamiltonian

Ha��,s� = − �
i

aisi; �9�

the respective partition function and �nonequilibrium� free
energy are given by Za���=Tr�exp�−�Ha�	, and Ga���
=−�−1 ln Za���. For this simple ensemble, we have

�si
0 = th��ai���	 . �10�

The calculation of averages of type �si¯sj
0 as well as “ir-
reducible” averages of type ��
si¯
sj

0 is also straightfor-
ward. These averages represent a form of fluctuation corre-
lations, but they are just an auxiliary theoretical tool rather
than real objects. In contrast, the real objects, namely, �full�
statistical averages �¯
 and ��¯

 within the total Hamil-
tonian �1� cannot be exactly calculated.

B. Usual theory

In the framework of the usual theory, the “fluctuation”
term H f is ignored. This is the MFA. In the present general
format of the theory, we have N �self-consistency� equations
of state ��H /��i�=0 at fixed T �and h= �hi��=0—one equa-
tion per lattice vertex i,

�
j

Jij��̄ j − th��aj��̄�	� = 0, �11�

where �̄= ��i�. It is easy to see that the number �z−1� of
nonzero terms �i� j� in all N sums �11� is equal to the num-
ber of nonzero interaction constants acting on the site i:
J��i− j���0 for a0� �i− j��Rint; J��i− j�=0� for �i− j��R
�Rint. The “equations of state” �11� can be written in the
simple form

�̄i = th��ai��̄�	 . �12�

The equivalence of Eqs. �11� and �12� can be easily proven
for any number N�1.

From Eqs. �10� and �12� we obtain

�si
0 = th��ai��̄�	 = �̄i. �13�

Thus in this quite general form of MFA �H f �0�, we have
�si
0= �̄i, �¯
= �¯
0, and G�T ,h�=H0��̄� is the equilibrium
free energy that corresponds to extrema �including minima�
�̄ of H����H0���—the nonequilibrium MF free energy
given by the nonequilibrium �arbitrary� order parameter field
�i. By �̄i from Eq. �11� we denote the equilibrium configu-
ration of the latter; hereafter the “bar” of the equilibrium
value �̄i of �i will be often omitted. Now one may perform
a Landau expansion for small �̄i in order to obtain other
known forms of the MF theory.

However, at the present stage of consideration we are in-
terested in some more generality and for this reason we con-
tinue our discussion of the nonequilibrium free-energy func-
tional

G̃�T/�� � H�T/�� � H0�T/�� �14�

as given by Eq. �6�. In Eq. �14�, the dependence of the non-

equilibrium free energy G̃ on � is denoted by “/�” because
of the more special role of this variable, namely, the variation


G̃ should be zero at thermal equilibrium and from this con-
dition one obtains the possible thermal equilibria �̄ �alias
“self-consistency condition”�.

The expansion of the logarithm term in Eq. �6� up to
fourth order in �i yields the known result for the lattice �i

4

theory of the Ising model,

H0��� =
1

2�
ij

Jij�i� j −
�

2 �
ijk

JijJik� j�k

+
�3

12 �
ijklm

JijJikJilJim� j�k�l�m. �15�

One may apply LWLA to this form of the theory but we shall
follow a different path.

C. Continuum limit

Using the rule

� f i = �� dDxf�x� � �� dxf�x� , �16�

where �= �N /V�, we can write Eq. �2� in the form

J = �� dDRJ�R� , �17�

with R= �R�; R= �x−y�. Note, that the factor � in Eqs.
�19�–�21� can be avoided and this is the usual practice. In the
latter case the physical dimension of the respective physical
quantity is changed by a factor �V	
�L	D; for example,
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�L	D�f i	= �f�x�	. Of course, one may use both variants.
In the continuum limit the effective Hamiltonian �6� cor-

responding to a zero external field �h=0� takes the form

H0 =
�

2
� dDx��x�I���x�	 − ��−1� dDx ln ch��−1I���x�	� ,

�18�

where

I���x�	 = �� dDyJ�R���y� . �19�

Now we apply LWLA in the form

���x� − ��y�	2 � ���x���y�� �20�

and under this assumption truncate the Taylor expansion

��y� = ��x� + �
�=1

D
���x�
�x�

R� +
1

2 �
�,�=1

D
�2��x�
�x��x�

R�R� + ¯

�21�

to the second order in R= �R��.
Using the approximation �20� and �19� becomes

I���x�	 = J��x� +
J̃

2D
�2��x� , �22�

where J is given by Eq. �17�, and

J̃ = �� dDRJ�R�R2. �23�

Now we substitute Eq. �22� in Eq. �18�. We perform the
expansion up to order �4�x� and to second order in ���x�.
Besides, we should keep in mind, that in expansion in pow-
ers of �i we cannot distinguish between T and Tc0 except for
the �i

2 term where the difference between T and Tc0 should
be kept only to the lowest nonvanishing order; in our case,
this is the first order in �T−Tc0�: see, e.g., Ref. �1	. Following
these notes, we perform at a certain stage of the calculation
an integration by parts with the convenient boundary condi-
tion ���x�=0 and obtain the well-known GL effective
Hamiltonian

H0 = �� dDx� c̃0

2
����x�	2 +

r0

2
�2�x� + u0�4�x�� , �24�

with

c0 =
Rint

2

2D
J, r0�T� = kB�T − Tc0�, u0 =

J

12
. �25�

Here Tc0= �J /kB� and terms of order t0= �T−Tc0� /Tc0�1
have been neglected in c0 and u0 �2	, i.e., these two param-
eters are calculated at Tc0 �1,2	.

To clarify the results in Eqs. �24� and �25� we shall men-
tion that J�R� for R�Rint is very small and can be ignored.
Setting J�R�
J0 in Eq. �17�, comparing the result with J
=zJ0 from Eq. �2�, and noticing that �=1 /v
a0

D, one obtains
z
�Rint /a0�D as should be, and J�J0Rint

D . In the same way,

one obtains J̃�JRint
2 .

The results �24� and �25� show that the energy of the
spatially dependent configurations of the field depends on the
interaction radius. The latter serves as a coherence �correla-
tion� length of the field ��x�; see the parameter c0 given in
Eq. �25�. In order to clarify this point, let us consider the
so-called zero-temperature correlation length �1	, defined by
�0���T=0�= �−c0 /r0�0�	1/2. Using Eq. �25� and Tc0=J /kB

we obtain �0=Rint
�2D.

D. Discussion

Note that the temperature range of validity of these con-
siderations is t0�T��1 and �ka0���. The spatially depen-
dent fluctuations correspond to a higher energy than the uni-
form configuration, and hence the latter contains the deepest
�global� minima �̄ of the effective free energy nevertheless
we have written N “equations of state” as a result of the
minimization of the effective Hamiltonian. Now one can eas-
ily show that the variation of the Hamiltonian �24� with re-
spect to the field will give again spatially dependent solu-
tions but in the usual theory they are interpreted as “spatially
dependent fluctuations” which, together with the uniform
fluctuation 
�= ��− �̄� towards the stable state �̄, are all
fluctuations in the system in LWLA. But we know that this
picture contains the approximation �si

�si
0= �̄.

Our point of view is the following. The averages �¯
0
should not be taken very seriously. They are an auxiliary tool
in our consideration, and are not the final aim of our inves-
tigation. We have used these averages only because they ap-
pear along our way of obtaining an effective Hamiltonian H
�or H0 in the lowest order of the theory� in which the statis-
tical degree of freedom �i varies in a wide range of values
�−���i���. This is the only consistent interpretation of
our consideration performed so far. We can assume that up to
now we have obtained nothing else but an effective free en-
ergy �effective lattice Hamiltonian� in terms of the lattice
field �i. In a clear approximation, this effective model is
given by Eq. �6�; for the expansion in powers of �i, see Eq.
�15�.

Another important aspect of our consideration is that the
Hamiltonian contains more ij interactions than the original
model �1�. The mathematical form of Eq. �15� gives a clear
physical interpretation of these interactions: The first �i� j
term on the right-hand side �rhs� of Eq. �15� describes an
interaction that is quite similar to the original interspin inter-
action in Eq. �1� whereas the second term of the same type in
Eq. �15� describes an indirect two-site jk interaction that is
mediated by the “i spins.” This means that the latter interac-
tion JijJik has 2 times larger radius of action than the original
Jij exchange. The four-point interaction given by the third
term on the rhs of Eq. �15� can also be described in the above
style.

Therefore, even at this early stage of consideration �H
�H0� we see that the effective free energy exhibits effects of
“statistical extension of the original interparticle correlations
�interactions�.” This “principle of growth of statistical corre-
lations” is well known in the general phase-transition theory.
Here we show the concrete mechanism of the respective phe-
nomenon and a systematic way of description of growth of
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statistical correlations. This point will become more clear
from the results in the next section. We shall see that the
investigation along this path leads to a quite unexpected and
intriguing picture.

III. BEYOND THE STANDARD THEORY

A. Perturbation series

Here we consider the � contributions to the effective free
energy �Hamiltonian� H��� which are generated by the term
H f���. For obvious reasons, terms that are �i independent
will be omitted.

It seems convenient to rearrange our theory by introduc-
ing the auxiliary variables �i= �si0−�i�, and �i= �si−si0�,
where si0��si
0. Then H can be written as an infinite pertur-
bation series in powers of the �perturbation� Hamiltonian
part

Sf�s,�� = −
1

2�
ij

Jij�i� j − �
ij

�i� j . �26�

The respective series can be presented in the form

H f��� = −
1

2�
ij

Jij�i� j + �
l=1

�

H f
�l���� , �27�

where

H f
�l���� =

�− ��l−1

l!
�Sf

l�s,��
0c, �28�

�¯
0c denotes the so-called connected averages �1	; for ex-
ample, the average �Sf

2
0�Sf
2
0 is excluded from the connected

�Sf
4
0c. For this cumulant �semi-invariant�, expansion rules,

similar to the Wick theorem in the perturbation theory of
propagator type, are not available and one should perform
the calculations with some caution. The term H f

�1� is equal to
zero, and this leads to a reduction of some infinite series in
the next orders of the theory �l�1�.

B. Lowest-order correction

Let us consider the first term on the rhs of Eq. �27� and
neglect all others. This yields H= �H0+H f� in the form

H �
�

2 �
ijk

JijJik� j�k −
�2

2 �
ijkl

JijJikJjl�k�l

−
�3

4 �
ijklm

JijJikJilJim� j�k�l�m

+
�4

3 �
ijklmn

JijJjkJilJimJin�k�l�m�n. �29�

Performing this straightforward calculation one readily sees
a very important property of the present theory, namely, that
the first term on the rhs of Eq. �15� is totally compensated by
a respective counterterm coming from the contribution
�
�i� j� to the effective free energy. Besides, another term
twice compensates the second term in Eq. �15� so that the
term of type JJ�� now appears with a positive sign. The �4

part of the effective free energy also undergoes a drastic
change due to the �� correction coming from Eq. �28�.

The same result can be obtained in a more general and,
perhaps, more convenient way, if we add the �� term in Eq.
�27� to H0 from Eq. �6� before doing the expansion of Lan-
dau type. Then, within the same lowest-order approximation
for the series �27� we obtain a more general result for H,
namely

H = −
1

2�
ij

Jij th��ai�th��aj� + �
ij

Jij�i th��aj�

− �−1�
i

ln�2 ch��ai�	 . �30�

This form of H clearly shows the lack of the simple Jij�i� j
term describing the direct two-site exchange. In our further
considerations we shall be faced only with interparticle in-
teractions �correlations�, which are extended at distances
larger than Rint. In order to obtain Eq. �29� one must expand
the transcendental functions in Eq. �30�; ��ai��1.

The forms �29� and �30� of the effective free energy de-
scribe only indirect two-site interactions because the direct
two-site interaction disappeared from our consideration.
Now we are at a stage of description of correlations which
extend up to 2Rij and larger distances. The tendency of the
growing length scale of the interactions included in our ef-
fective free energy will be the main and unavoidable feature
of our further consideration.

Another very important feature of our findings is that in
the simplest variant of the theory when the field is uniform
��i��� as well as in the GL variant in LWLA given by Eq.
�24� the values of the Landau coefficients c0, r0, and u0 do
not change within the framework of accuracy of the effective
�4-field theory, where terms �Landau invariants� of order
O�t3� are ignored; t= �T−Tc� /Tc. This property seems to exist
for any order of the expansion �27� in the limit of an infinite-
range �z→�� initial interaction Jij. The 1 /z corrections to
the parameters �c0, r0, u0� of the effective field theory are
obtained from the �l�1� terms in the series �27�.

C. High-energy corrections of higher order

We have already mentioned that the �l=1� term in Eq.
�27� is zero. A calculation of the next two terms �l=2,3� in
Eq. �27� has been carried out in Ref. �2	. Following Ref. �2	
we can write H f

�2� in the form

H f
�2� = −

�

4 �
ij

Jij
2

ch2��ai�ch2��aj�
−

�

2 �
ijk

JijJik
� j�k

ch2��ai�
.

�31�

The result �31� gives the first �1 /z� corrections to the param-
eters c0, r0, and u0. Adding the result �31� to H��� we obtain
a form of the effective Hamiltonian H��� which is more
precise than the preceding ones. Let us write this quite
lengthy expression of the effective Hamiltonian as
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H =
�2

2 �
ijkl

JijJikJjl�k�l +
�3

2 �
ijkl

Jij
2 JikJil�k�l

−
�3

2 �
ijklm

JijJikJjlJkm�l�m +
�3

4 �
ijklm

JijJikJilJim� j�k�l�m

− �4 �
injklm

JinJijJikJilJnm� j�k�l�m

+
�5

3 �
inpjklm

JinJipJnjJnkJnlJpm� j�k�l�m

+
�5

2 �
inpjklm

JinJipJijJikJnlJpm� j�k�l�m

−
�5

3 �
injklm

Jin
2 JijJikJilJim� j�k�l�m

−
�5

4 �
injklm

Jin
2 JijJikJilJim� j�k�l�m. �32�

The result �32� shows that the indirect two-point interactions
of type JJ�� available in the effective Hamiltonian �29� do
not exist in this higher accuracy of the theory. The interac-
tions of type JJJ�� and JJJJ�� presented in the effective
Hamiltonian �32� extend up to distances 3Rint. The same is
valid for the four-point interactions included in Eq. �32�.

Within LWLA, Eq. �32� yields

H =
1

2�
k

�r + ck2����k��2

+
u

N
�

�k1,k2,k3�
��k1���k2���k3���− k1 − k2 − k3� .

�33�

In Eq. �33�,

c = �1 +
5

z
�c0, r = �1 +

3

z
�r̃0, u = �1 +

4

z
�u0, �34�

where r̃0=kB�T−Tc� is given by the “true” �renormalized�
critical temperature

Tc = Tc0�1 −
1

z
� . �35�

In deriving this lattice version of the effective Hamil-
tonian we have performed the lattice summations in Eq. �32�
in the reciprocal �k� space with the help of LWLA, J�k�
��J−c0k2�.

The present results demonstrate a type of renormalization
of the GL parameters �c0, r0, u0� of the effective Hamiltonian
due to 1 /z corrections. By a suitable choice of units, one of
these parameters can be kept invariant, for example, equal to
unity. Therefore, within a suitable normalization of the
theory, the field ��x� acquires a 1 /z correction as well �2	.

The term H f
�3� in Eq. �27� has the form

H f
�3� = −

�2

3 �
ij

Jij
3 th��ai�th��aj�

ch2��ai�ch2��aj�

−
�2

6 �
ijl

JijJilJjl

ch2��ai�ch2��aj�ch2��al�

− �2�
ijl

Jij
2 Jjl

�lth��aj�
ch2��ai�ch2��aj�

−
�2

2 �
ijln

JijJilJjn
�l�n

ch2��ai�ch2��aj�

−
�2

3 �
ijln

JijJilJin
� j�l�nth��ai�

ch2��ai�
. �36�

Let us consider the contribution of the term H f
�3� to the qua-

dratic ��2� part of the effective Hamiltonian �33�. In per-
forming the calculations for both short range �NN� and long
range �Rint�a0� we must evaluate again several lattice sums.
Here we shall mention a particular sum, namely,

1

N
�
ijl

JijJilJjl, �37�

which is equal to zero for NN interactions but gives a con-
tribution ��J3 /z� for interaction radius Rint�a0. Thus we
introduce the following interpolation formula: E=��z� /z,
where 0���z��1 is an interpolation parameter which is
supposed to be a smooth function of the coordination number
z. The limiting case �=0 corresponds to NN interactions and
the limiting case �=1 corresponds to interactions of larger
size. We suppose that the shape of the function ��z� depends
on details of the function J�R�.

Bearing in mind these notes, we have calculated the qua-
dratic ��i� j� contribution to the effective Hamiltonian H���
which comes from the Hamiltonian part H f

�3� ��� given by
Eq. �36�. Here we present the results for the parameters Tc0,
c, and r which define the quadratic part H2 of H,

H2��� =
1

2�
k

G0
−1�k����k��2, �38�

with the �bare� correlation function

G0
−1�k� = D1�z��T − Tc + D2�z�Tc�

2k2	 . �39�

Here

Tc = �1 −
1 + �

z
−

1 + 3�

3z2 �Tc0, �40�

D1�z� = 1 +
3 + 4�

z
+

22 + 60� + 30�2

3z2 , �41�

and

D2�z� = 1 +
2 + 3�

z
+

14 + 30� + 9�2

3z2 . �42�

The result �35� for Tc�z� has been presented �3	 in the case of
NN interactions ��=0�; note, that there are errors in Ref. �3	
for the functions D1�z� and D2�z�.
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The functions D1�z� and D2�z� renormalize the field ��k�
and the vertices c0, and r0. For a total renormalization of the
parameters of the theory up to the second order in the 1 /z
expansion we need to know the �1 /z�2 correction to the ver-
tex u0. We suppose that the calculation of this correction can
be accomplished in the manner described above; this “z
renormalization” has been discussed to first order in �1 /z� in
Ref. �2	. Here we wish to stress that within our extension of
the theory the magnetic susceptibility G0�0� is D1 times
smaller than the known MF susceptibility corresponding to
D1���=1.

The numerical coefficients in Eqs. �40�–�42� indicate that
real numbers z of NN like n=2,4 ,6 for simple lattices of
spatial dimensionalities D=1,2 ,3, respectively, give a good
expansion parameter 1 /z. The 1 /z corrections are more sub-
stantial for the case of short-range interactions �Rint
a0�,
and one may suppose that for such interactions the �1 /z�
series �40�–�42� are asymptotic; for the case of Tc, see a
discussion of this topic in Ref. �8	. But even in the case of
asymptotic types of these series they may give more reliable
results than the “bare” values �c0 ,r0 ,u0� of the Landau pa-
rameters; see arguments presented in Ref. �8	.

D. Critical temperature

The critical temperature Tc given by Eq. �40� can be com-
pared with exact and reliable numerical �MC� results. Let us
consider NN interactions ��=0�. For one-dimensional �1D�
IM, we know that Tc=0, MFA predicts Tc=2J0 /kB �in this
case, z=2D=2�, and Eq. �40� yields Tc=5J0 /6kB. This is a
quite good result for 1D systems with very strong fluctuation
effects. In two-dimensional �2D� systems the fluctuations are
not so strong and we find that Eq. �40� reproduces the exact
Onsager result �Tc=2.27J0 /kB� with an error of 22%, i.e., we
have Tc=35J0 /12kB. For three-dimensional �3D� systems our
result is Tc=89J0 /18kB, whereas the best series analysis and
MC results yield a difference of 9%, Tc=4.5J0 /kB �see, e.g.,
Refs. �18,19	�. Our results seem quite reliable. Let us empha-
size, that the 1 /z series, as almost all most-relevant series
known in theoretical physics, is an asymptotic series. There-
fore, one may expect, that the results for Tc will be worsened
after some order in 1 /z, for example, fourth order for
Tc�3D�, and third, or, even second order for Tc�2D�.

E. Ground state

The 1 /z2 correction to the vertex u0 has not been calcu-
lated as yet, although this calculation does not present diffi-
culties. In this situation we shall give notion for the ground-
state energy by using the first-order corrections to r0 and u0.
The equilibrium free energy per site f = �F /N� is given by
F=H and Eq. �33� for the �k=0� Fourier amplitude ��0�,
which minimizes f . Denote for convenience ��0�=�N��0
for the low-temperature ordered phase. From Eq. �33� we
obtain f =−�r2 /16u��0 whereas the “unrenormalized free
energy is f0= �H0 /N�=−�r0

2 /16u0��0. Thus, using Eq. �34�,
we have f�T�= �1+2 /z�f0�T�, which means that the effective
theory has a lower energy of the ordered phase. This is true
also in the case of T=0, where r0=−kBTc0=−J. For the zero
temperature �ground� state we have f0�0�=−3J /4 and f�0�

=−3�1+2 /z�J /4. This result is also along the correct direc-
tion because the MF theories �H0� give unreliable high val-
ues of the ground-state energy. The order parameter �2�T�
= �−r /4u� is �1−z� times smaller than the respective quantity
�0

2�T�= �−r0 /4u0� in the usual theory based on H0.

F. Effective interactions and growing of fluctuation correlations

We have explicitly shown the phenomenon of the growing
length size of the interparticle correlations in a classic system
of interacting particles. To see this we have already intro-
duced a interpretation of the terms in the effective Hamil-
tonian �see Sec. II D�. Let us consider the terms present in H
as terms describing certain intersite interactions. While the
initial interaction Jij in IM ensures only two-site correlations
�interactions�, the effective Hamiltonians �15�, �29�, and �32�
contain multisite effective interactions. In contrast to the
usual theory �15�, where only extremely short-range effective
correlations are contained, the more precise effective Hamil-
tonians contain long-range two-site ��i� j� and four-site
��i� j�k�l� correlations, and all of these correlations are in-
direct, i.e., the correlation, for example, between two sites
�ij� is mediated by one or more other sites �k , . . . �. A direct
�Jij� interaction is presented by the first term on the rhs of
Eq. �15� but also the system exhibits two indirect correla-
tions of type �i� j and �i� j�k�l given by the last two terms
on the rhs of Eq. �15�. In the more precise variants of the
theory, where a larger portion of the initial partition function
has been calculated, the direct intersite interaction vanishes,
and the particles are correlated only by indirect effective in-
teractions. The length scale of these correlations grows in a
monotonous way with the increase of the accuracy of the
calculation, i.e., with the increase of the number l of the
terms in the series �27�. If we take the two-site correlations in
the NN IM as an example, the maximal length of extension
of these correlations in Eq. �1� is a0; in Eq. �15�, 2a0; in Eq.
�29�, 3a0; in Eq. �32�, 4a0, i.e., �p−1�a0, where p is the
maximal number of the summation indices in terms of type
�i� j in a given effective Hamiltonian. Surely, the number p
tends to N. This means that the most accurate effective field
theory of many-body systems will correspond to �almost-�
infinite range of correlations.

The origin of these correlations is purely statistical. This
effect is known and has both general formulation and appli-
cation in many-body physics. Here we have established and
described in details the concrete mechanism of this effect
and, moreover, we have performed a demonstration of the
remarkable picture of successive growth of the correlation
length scale.

G. Final remarks

Obviously the �1 /z� corrections are not the main point of
discussion at the end of this paper. Let us mention that the
growth of the correlations discussed in Sec. III F is not re-
lated to the 1 /z corrections. It exists for any z, even in the
“MF limiting case” of z→�, when the GL parameters keep
their “initial” values �c0, r0, u0�. This effect follows from the
fact that the terms in the initial Hamiltonian are compensated
by the first “fluctuation” correction; see the first term on the
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rhs of Eq. �27�. At the next level of accuracy of the calcula-
tion, terms coming from the �l=2� term in Eq. �27� compen-
sate the available terms and this process continues up to the
incorporation of all particles in the correlation phenomenon;
remember that the term corresponding to l=1 is equal to
zero.

Here we emphasize that the terms in H0, actually one of
the most often used Hamiltonians, does not exist at all. They
vanish just after the inclusion of the first correction to the
usual theory; see �i� j correction in Eq. �27�. In place of
these terms, other terms with more complex structure come
from the perturbation series �27�. The outlined picture clearly
indicates, that the terms which finally remain in the �4

theory, are terms of type

1
2 ��M−1JM − �MJM+1��2, M 
 N , �43�

where obvious notations have been introduced; for example,
�1J2 denotes the first term on the rhs of Eq. �29�. The �4

terms behave differently, because a lowest-order term in J,
namely, a term of type �3J4�4 appear at any step of devel-
opment of the series �27�.

At any stage of this surprising picture of the infinite series
of successive modifications of the Hamiltonian, both �2 and
�4 terms keep their numerical coefficients equal to that in the
usual GL Hamiltonian H0. This is true within the whole
scope of validity of the expansion in powers of �.

An important note should be emphasized is the following.
While the sum �2� is invariant with respect to the site i in
regular lattices, the sum �7� depends on the site i. The reason
is that the field configuration ��i� which takes part in Eq. �7�
is not the equilibrium field. For the equilibrium field �̄i the
sum �7� will not depend on the site i. This is consistent with
the general notion that the equilibrium order in the volume of
a homogeneous system in lack of effects of external fields,
should be uniform.

Our consideration justifies the GL fluctuation Hamil-
tonian. However, we have presented a quite surprising pic-
ture of the interparticle correlations, which reveals remark-
able properties of the GL theory. Apart from the 1 /z
corrections to the GL parameters, the structure of this theory
is absolutely comprehensive as a tool for investigation of
large-scale correlation phenomena in many-body systems.
We are certain that our findings have an application beyond
the field of phase transitions.
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