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We study the Langevin dynamics of a two-dimensional discrete oscillator chain absorbed on a periodic
substrate and subjected to an external localized point force. Going beyond the commonly used harmonic
bead-spring model, we consider a nonlinear Morse interaction between the next-nearest neighbors. We focus
interest on the activation of directed motion instigated by thermal fluctuations and the localized point force. In
this context the local transition states are identified and the corresponding activation energies are calculated. It
is found that the transport of the chain in point force direction is determined by stepwise escapes of a single
unit or segments of the chain due to the existence of multiple locally stable attractors. The nonvanishing net
current of the chain is quantitatively assessed by the value of the mobility of the center of mass. It turns out that
the latter as a function of the ratio of the competing length scales of the system, that is the period of the
substrate potential and the equilibrium distance between two chain units, shows a resonance behavior. More
precisely there exists a set of optimal parameter values maximizing the mobility. Interestingly, the phenomenon
of negative resistance is found, i.e., the mobility possesses a minimum at a finite value of the strength of the
thermal fluctuations for a given overcritical external driving force.
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I. INTRODUCTION

Transport phenomena play a fundamental role in many
physical systems. For systems that evolve in an external po-
tential which possesses metastable states the thermally acti-
vated escape over potential barriers, as the precondition for
transport, is the most studied situation. The related escape
problem, often referred to as the Kramers problem �1�, has
been reviewed, e.g., in �2�. Due to its ubiquity and simplicity
a spatially periodic potential is employed in a number of
applications including Josephson tunneling junctions �3–5�,
phase-locked loops �6�, rotation of dipoles, charge-density
wave �7�, dislocation �8�, diffusion of atoms and molecules
on crystal surfaces �9�, and biophysical processes such as
neural activity and intracellular transport �10–12�. Exact ex-
pressions for the characteristic quantities of motion of one
single Brownian particle like the net-current and the diffu-
sion coefficient are given in �11�.

In the last decades, the interest in the theory of Brownian
motion of interacting particles �13–16� has grown in several
fields of science. In this context the study of the diffusion
process �17,18� and the mobility of strongly interacting at-
oms subjected to a periodic potential and driven by an exter-
nal force is a first step towards the understanding of solid
friction at the atomic level �19,20�. Recently some studies
have considered the transport of dimers in a one-dimensional
�1D� washboard potential under the impact of spatially uni-
form dc and ac forces �8,21–25� which are applied to all
particles. A complicated nonmonotonous behavior of the mo-
bility depending both on the external driving and on the ratio
between the competing length scales of the system is found.
The latter plays the role of an internal degree of freedom
which generates a ratchet effect �26–32�.

Particularly in biophysical contexts, the extension to
coupled multidimensional systems, e.g., the transport of long
and flexible polymers across membranes �33–35� or DNA

electrophoresis �36,37�, has recently attracted considerable
interest. Motivated by experimental advances in the manipu-
lation and visualization of single polymers using optical �38�
and magnetic �39� tweezers or scanning force microscopy
�40� the external driving acting on the system can also be
modeled by an external point force which is applied at one
single unit �41–43�.

In this paper we consider the noise assisted transport of a
two-dimensional �2D� discrete oscillator chain confined onto
a periodic substrate and subjected to an external localized
point force. Our theoretical study is related to single-
molecule experiments using scanning force microscopes. In
the commonly used bead-spring model the next-nearest
neighbors are coupled harmonically. This assumption is valid
only for small elongation from the equilibrium distance. In
order to take the nonlinear character of the coupling into
account, we introduce an interaction potential of Morse-type
which allows bond rupture �44,45�. Due to the imposed next-
nearest-neighbors coupling and the fact that the Morse inter-
action potential is rotationally symmetric all configurations
with the same distribution of distances between two coupled
units possess the same amount of energy independent of the
distribution of the angles between two coupled constituents
of the chain. Therefore the bending rigidity � and the persis-
tence length Lp=� /T, respectively, are equal to zero. Since
the chain is stretched during the motion as a result of applied
external forces and the substrate potential force we can ne-
glect excluded volume interactions.

In our present study we focus interest on the impact of the
ratio between the competing length scales of the system and
the external driving on the directed motion of the chain. The
latter is instigated by thermal fluctuations and quantitatively
assessed by the mobility. The main question is how both the
spatially localized driving and the nonlinear interaction po-
tential between the many degrees of freedom influence the
mobility of the chain? More precisely, under which condi-
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tions differs the mobility of the considered system strongly
from the one for the 1D dimer �8,24� and does there exit sets
of parameters for which the latter coincide?

This paper is organized as follows: In Sec. II we introduce
the model. The transition state configurations are identified
in Sec. III. Further, in Sec. IV we derive the scaling behavior
of the activation energy in the limit of weak coupling. The
parameter values influence on the mobility is studied in Sec.
V. We conclude with a summary and discussion of our
results.

II. MODEL

We study a two-dimensional nonlinear coupled oscillator
chain consisting of N particles of equal mass m evolving in a
2D substrate under the influence of an external dc point force
with magnitude F. The point force is applied at one single
constituent at site n0. The coordinates of the nth unit, n
=1, . . . ,N, in the x-y plane are given by q�n�t�
= �xn�t� ,yn�t��T.

The interaction of the particles with the substrate is mod-
eled by the on-site potential

U�xn� =
A

2
�1 − cos�2�

L
xn�� , �1�

with periodicity L, i.e., U�x+L�=U�x�, and potential height
A. Note that the on-site potential is translational invariant in
the y direction. The dc point force acting on the unit at site n0
is introduced by the additional potential term

− Fxn�n,n0
. �2�

A segment of the two-dimensional periodic on-site potential
U�xn� and the position of the chain is depicted in Fig. 1.

Each particle is connected to its two next-nearest neigh-
bors by nonlinear springs described by the Morse potential
�46�

W�rn+1,n� = D	1 − exp�− ��rn+1,n − l0��
2. �3�

The Euclidean distance between two units at site n and n
+1 is identified with rn+1,n=��xn+1−xn�2+ �yn+1−yn�2 and the
parameter l0 denotes their equilibrium distance. The dissocia-
tion energy of a bond and the inverse range of the potential
are determined by D and �, respectively �see Fig. 2�.

In the overdamped limit the inertia is omitted and the
dynamics at finite temperature T is described by the Lange-
vin equation �LE�

�q�̇n = −
1

m
�q�n

	W�rn,n−1� + W�rn+1,n� + U�xn� − Fxn�n,n0



+ ��n�t� . �4�

Here � is the viscous friction coefficient per unit mass.
For convenient rescaling we introduce suitable space qsc

=L /2�, energy Esc=A, and time units tsc=m�qsc
2 /Esc, respec-

tively, and define the dimensionless quantities

q̄� =
q�

qsc
, t̄ =

t

tsc
, T̄ =

kBT

Esc
, �̄

��t̄� = �tsc�
��t� ,

F̄ =
qsc

Esc
F, D̄ =

D

Esc
, �̄ = �qsc, l̄ =

l0

qsc
. �5�

Note that the new quantity l̄ determines the ratio between the
competing length scales of the system l0 /L. Below, we refer

to l̄ as the bond length and we omit the overbar in our nota-
tion. Finally the dimensionless equations of motion read as

ẋn = −
�W�rn,n−1�

�rn,n−1

�rn,n−1

�xn
−

�W�rn+1,n�
�rn+1,n

�rn+1,n

�xn
−

1

2
sin�xn�

+ F�n,n0
+ �n

x�t� , �6a�

ẏn = −
�W�rn,n−1�

�rn,n−1

�rn,n−1

�yn
−

�W�rn+1,n�
�rn+1,n

�rn+1,n

�yn
+ �n

y�t� .

�6b�

FIG. 1. �Color online� Schematic view on the potential land-
scape with a segment of the chain inside. The parameter values are
A=1 and L=2�.
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FIG. 2. �Color online� Morse potential W�r� for various inverse
interaction range �. The parameter values are D=10 and l0=1.
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The stochastic force ��n�t� represents random fluctuations
stemming from the influence of the environment. The latter

is Gaussian white noise with zero mean, ���n�t�=0, and au-
tocorrelation function ��i

x,y�t�� j
x,y�s�=2T�i,j�x,y��t−s�.

Throughout this work we impose open boundary condi-
tion �OBC�, i.e., x1−x0=xN+1−xN=0 and y1−y0=yN+1−yN
=0, and we use an odd number of units N. For the sake of
symmetry we fix the pulled particle as the one situated at the
center of the chain, i.e., n0= �N+1� /2. Without loss of gen-
erality we set �, A, and m equal to 1 and L=2� for the
periodicity. Consequently the scaling parameters equal qsc
=Esc= tsc=1.

We remark that the metastable �k even� and unstable �k
odd� states of the on-site potential, �U�xn� /�xn=0, are lo-
cated at

xU
k = �− 1�k arcsin�2F� + k� , �7�

as a result of the external point force. From this it follows
that in the limit of vanishing coupling the pulled oscillator
cannot be trapped by the on-site potential given in Eq. �1�
under any circumstances for a tilt larger than the critical
value Fcr=1 /2. In order to characterize the relative strength
of the interaction potential versus the on-site potential, we
introduce the coupling strength K,

K =
W���r��r=l

U���xn��xn=0
= 4D�2. �8�

Note that K depends quadratically on the inverse interaction
range � and linearly on the dissociation energy D.

In the remainder of the paper we investigate the motion of
the chain in the periodic substrate potential in dependence of
the noise strength and the external force strength. To this
end, the time evolution of our system is determined by nu-
merical integration of the set of LEs given in Eq. �6�.

Initiation of motion of the chain in the periodic substrate
potential necessitates escape of the chain initially locked at
the bottom of one potential well. Therefore we first focus our
interest on the escape dynamics of the 2D coupled nonlinear
oscillator chain. In this sense escape of a unit of the chain is
defined as overcoming the potential barrier separating two
adjacent potential bottoms. The activation energy Eact being
needed for barrier crossing is provided by the heat bath. Ob-
viously, the impact of the heat bath alone cannot yield di-
rected current since this requests that all the units of the
chain move in unison in one direction. With the application
of an additional external pulling force effectively a biased
periodic potential results which supports a nonvanishing net
current.

III. TRANSITION STATE

This section deals with the escape dynamics of the 2D
coupled nonlinear oscillator chain from a metastable state
over an energy barrier of the corresponding energy hypersur-
face. This progress requires the activation energy Eact which
coincides with the height of the energy barrier. We identify
the transition state and study the dependence of the associ-
ated activation energy on the system parameters.

According to the classical transition state theory �2,47�,
transition states are special points in the 2N-dimensional
phase space. More precisely, a transition state 	q†
 is a hy-
perbolic fixed point obtained from the stationary system of
the deterministic dynamical system given by Eq. �8� for
	ẋn
= 	ẏn
=0. The corresponding Jacobian possesses at least
one real positive eigenvalue which corresponds to the move-
ment along the reaction coordinate. All other eigenvalues are
negative. To calculate the transition state we apply a multi-
dimensional root finding algorithm using the Newton-
Raphson method to the stationary system corresponding to
the deterministic part of Eq. �6�.

As a result of the considered overdamped dynamics of the
system and the reflection of the periodicity of the on-site
potential U�xn� by the 2N-dimensional phase space instead of
one global basin of attraction, referred to as the running
state, multiple locally stable attractors exist �2,10�. Therefore
the phase space possesses many different transition states
which can be either linked with one required unique activa-
tion energy or different ones. Since the escape rate over an
energy barrier Eact is assumed to be described by the Van’t
Hoff-Arrhenius law �2,48�, resc�exp�−Eact /T�, we restrict
our analytical consideration of possible escape processes to
scenarios with a low amount of activation energy.

The energy of one configuration 	q
 is determined by the
energy functional V�	q
�,

V�	q
� = �
i=1

N

U�xi� + �
i=1

N−1

W�ri,i+1� − Fxn0
. �9�

Further, the activation energy Eact is defined as the difference
between the energy of the transition state configuration 	q†

and the energy of the chain at the initial metastable state
	qmin
,

Eact = V�	q†
� − V�	qmin
� . �10�

Below, we discuss the numerically calculated results for
the transition state configuration �TSC� of the initial escape
scenario in which only the pulled particle escapes from its
initial minima to the next well of the on-site potential in the
positive x direction. A sketch of this first escape scenario is
presented in Fig. 4�a� and is labeled by �1�. The numerically
calculated TSC are depicted in Fig. 3 for various values of
the bond length l and for two different coupling strengths K.

At first glance, one can see that for l	xU
1 , see Eq. �7�, the

escape process is governed by an individual escape of the
pulled unit independent of the coupling strength. At the TSC
the n0th oscillator is always placed at the top of the energy
barrier located at xU

1 while all other units rest at the minimum
of the on-site potential U�xn� without changes of the respec-
tive bond length l.

For l
xU
1 and all values of the coupling strength K, the

pulled particle is placed beyond the energy barrier of the
on-site potential and its neighbors are elongated in the x
direction. According to the deterministic part of the equa-
tions of motion Eq. �6b�, the condition 	ẏn
=0 is fulfilled
either if the distance between two neighboring particles
equals the bond length l or the displacement yn+1−yn is equal
to zero. Since the adopted distance between two neighboring
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units at the TSC differs from the bond length due to the
interaction with the substrate U��xn�, the obtained structures
resemble the shape of very thin needles, i.e., yn0�i−yn0

=0.
The observed reflection symmetry in the y direction, �yn0+i

−yn0
�= �yn0−i−yn0

�, results from the choice of n0 at the central
site of the chain. Note that as a consequence of the imposed
open boundary conditions all units of the chain are elongated
from their starting equilibrium positions at the transition
state configuration.

Comparing the obtained TSC for weak coupling in Fig.
3�a� and the ones for stronger coupling in Fig. 3�b�, one
recognizes that with increasing coupling the number of elon-
gated units involved in the transition state grows. In the case
of very weak coupling, the units of the chain tend to diffuse
via individual steps. Despite that there result large elonga-
tions, rn,n+1� l, during the process the units remain bound to
each other. With further increasing value of coupling K the
oscillators move like a rigid unit with rn,n+1� l and thus dis-
play organized collective behavior reflected in synchronized
escape.

Such a dependence of the diffusion type on the coupling
strength is already experimentally known �9,49� and theoret-
ical investigated �17,18,50� for dimers diffusing on a surface.
Nevertheless, due to the considered overdamped dynamics of
the chain multiple local domains of attraction exist for
F /Fcr
1. Hence the transport of the chain in point force
direction is determined by stepwise escapes of single units or
segments of the chain. These stepwise crossings are con-
nected with configurational changes of the chain.

IV. TRUNCATED TRIMER MODEL AND SCALING
BEHAVIOR OF THE ACTIVATION ENERGY

In the following we reduce the full system of the coupled
chain in the limiting case of weak coupling, K1, to an
effective system of a few degrees of freedoms in order to
determine analytically the transition states. Further, we study

separately the scaling behavior of the activation energy for
different escape steps in order to assess the time scales of the
latter. The characteristic time one particle needs to escape
from x0→x0+2� �x0 is one arbitrary reference point� is de-
termined by the first moment of the first escape time distri-
bution Tesc= �t�x0→x0+2���exp�Eact /T� �2,48�. Further
the average mean velocity of every unit of the chain vi
=2� /Tesc is determined by Tesc.

A. First escape scenario

We start with the first escape scenario. In the latter only
the pulled particle escapes from its initial minima to the next
well of the on-site potential in the positive x direction while
all other units remain close to their starting position. In order
to determine the scaling behavior of the activation energy for
the first escape scenario in the limit of weak coupling, K
1, we consider a truncated one-dimensional trimer model.
According to the TSC presented in Fig. 3�a�, the escape pro-
cess involves only three units for l
xU

1 , viz. the pulled unit
and its neighbors. All other units rest at the minimum of the
on-site potential xn=0 under maintenance of the bond length
l and hence do not contribute energy to the activation energy
of the escape process. The condition of stationarity in the y
direction 	ẏn
=0 is fulfilled by setting yn0

=yn0�1. Since we
observed hairpinlike crossing configurations in the simula-
tions for nonvanishing but sufficiently point force magnitude
F, we consider only reflection symmetry TSC, i.e., xn0+1

=xn0−1 and yn0+1=yn0−1. For l
xU
1 , we can assume that the

stationary TSC is adopted when the pulled unit of the chain
is situated close to � and the value of the coordinate xn0�1 is
almost zero. Hence we put

xn0
= � + �xn0

, �11a�

xn0�1 = 0 + �xn0�1 �11b�

into the deterministic part of Eq. �6a� and solve the linearized
system of equation 	ẋn
=0. Despite that we consider the
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FIG. 3. �Color online� Profile of the transition state belonging to the first escape process for different values of bond length l and of
inverse range parameters �. Only a segment of the chain is shown. The dashed line represents the position of the energy barrier xU

1 of the
pulled particle. The remaining parameter values are N=99, n0=50, D=10, F /Fcr=0.8, �=0.1 �a�, and �=0.4 �b�. The values of the coupling
strength are K=0.4 �a� and K=6.4 �b�.
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weak coupling limit, K1, further simplifications of the sys-
tem of equations by expanding the interaction potential
W�rn,n−1� up to the second order is not possible since the
bonds are stretched, rn0,n0�1� l, at the TSC Fig. 3. Substitut-
ing

A�x� = 2D��e−��x−l� − e−2��x−l�� , �12�

B�x� = 2D�2�e−��x−l� − 2e−2��x−l�� , �13�

we get

xn0

†�1� = � +
4B���F + 4A��� − 2F

1 + 2B���
, �14a�

xn0�1
†�1� =

4B���F + 2A���
1 + 2B���

. �14b�

For the first escape scenario, the energy of the chain at the
initial metastable state is almost close to V�1��	qmin
�=0.5�1
−�1−4F2−2F arcsin�2F�� regardless of the value of the
bond length. Using the expressions given in Eq. �14�, we
obtain the following scaling behavior of the activation en-
ergy for the first escape scenario Eq. �10�:

Eact
�1� � K�xU

1 − l − �xU
1 − l��const − F� , �15�

for K1, l
xU
1 , and F /Fcr
1. The numerical results for the

activation energy for the first escape scenario and the ana-
lytic one are depicted in Fig. 4�b� and labeled by �1�. Both
results match very well.

In the limit l	xU
1 , the transition state configuration is al-

ways given by xn0

†�1�=xU
1 and xn

†�1�=0, ∀n�n0, with rn,n+1
†�1� = l

regardless of the coupling strength. Then the corresponding
activation energy attains the saturation value

Eact
sat = �1 − 4F2 + 2F arcsin�2F� − F� . �16�

One recognizes that the curve, label �1�, of the activation
energy in Fig. 4�b� finally converges to the limit value Eact

sat

represented by the horizontal dashed line.

B. Second escape scenario

In the second escape scenario the n0�1th particles escape
from the first well to the next one while all other units re-
main close to their starting position. This case is sketched in
Fig. 4�a� and labeled by �2�. The configuration of the chain at
the initial metastable state can be described by an effective
two particle problem. By using the following ansatz for the
position of the particles,

xn0
= 2� + �xn0

, �17a�

xn0�1 = 0 + �xn0�1, �17b�

and solving again the linearized stationary system of equa-
tion, we get

xn0

min�2� = 2� +
4B�2��F + 4A�2�� − 2F

6B�2�� − 1
, �18a�

xn0�1
min�2� =

4B�2��F − 2A�2��
6B�2�� − 1

. �18b�

The transition state configuration in the second escape
scenario is determined by an effective three particle problem.
For l
xU

2 −�, we assume that the stationary configuration is
adopted when the pulled unit is located close to 2�, its
neighbors are located at the top of the energy barrier, situated
at �, and the n0�2th particles rest at the minimum of the
starting well. Hence we put

xn0
= 2� + �xn0

, �19a�
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FIG. 4. �Color online� Activation energy Eact as a function of the bond length l. The vertical dashed line represents xU
1 and the horizontal

dashed line Eact
sat given in Eq. �16�. The labels relate to the graphs of the activation energy to the corresponding first, second, and third escape

scenario sketched in �a�. Note that the saturation value Eact
sat attained by the activation energies Eact

�1� and Eact
�3� in the limit of large bond lengths

lies above zero represented by the dotted line. The remaining parameter values are N=99, n0=50, D=10, F /Fcr=0.8, and �=0.1.
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xn0�1 = � + �xn0�1, �19b�

xn0�2 = 0 + �xn0�2 �19c�

into the deterministic part of Eq. �6� and solve again the
linearized system of equation under the condition 	ẋn
= 	ẏn

=0. Finally we obtain for the correction terms �xi the solu-
tions

�xn0

†�2� =
�4A��� − 2F��1 + 2B���� + 8B���2F

4B���2 + 2B��� − 1
, �20a�

�xn0�1
†�2� =

2B���F + B����xn0

†�2�

1 + 2B���
, �20b�

�xn0�2
†�2� = F −

1

2
�xn0

†�2� + �xn0�1
†�2� . �20c�

In Fig. 4�b�, label �2�, we depict the graphs showing the
dependence of the activation energy on the bond length l for
the second escape process. The theoretical result matches
very well with the numerics for l�2�. In particular it has to
be emphasized that the position of the minimum of the acti-
vation energy as a function of the bond length is very well
reproduced by the analytic expression given in Eqs. �18� and
�20� and �30�. The analytical result deviates from the numer-
ics with further increasing value of the bond length since the
theory does not reproduce that the TSC is always given by
xn0

†�2�=xU
2 , xn0�1

†�2� =�, and xn
†�2�=0 with rn,n+1= l for l	xU

2 −�.
In addition the activation energy eventually attains the satu-
ration value Eact

�2�=2 in the limit of large bond lengths because
then the TSC is determined by the above given fixed
configuration.

C. Third escape scenario

At the end of the second escape process the pulled particle
and its two neighbors are located in the same well of the
on-site potential while all other constituents of the chain re-
main in the well behind Fig. 4�a�. Therefore the situation for
the pulled unit is similar to the initial condition in the first
escape process and the circumstances for its two neighbors
resemble the one at the beginning of the second escape sce-
nario. Thereupon, either the n0�2th units escape like in the
previously mentioned second case or the pulled particle es-
capes further forward. The last case is sketched in Fig. 4�a�
and is labeled by �3�. The dependence of activation energy
on the bond length is depicted in Fig. 4�b�. The latter is
similar to the results for the first scenario but is evidently
shifted to higher energies due to the fact that the bonds
rn0�1,n0�2 are stretched during the escape process which is in
contrast to the first case. Furthermore it is shown that the
activation energy reaches the limit value Eact

sat not until l
�xU

1 .
To sum up, it holds that, in general, the higher the force

strength F the lower is the activation energy, and for very
large bond lengths, l�2�, the particles escape individually
and the activation energy is independent of the value of K.

Further, we distinguish the following limiting regimes.
�i� The weak coupling limit, K1.
�a� The escape behavior of the chain is governed by con-

secutive individual escapes of single oscillators.
�b� For small bond length lxU

1 , the units of the chain
escape in force direction following the first and second es-
cape scenarios.

�c� For large values of the bond length, the second and
third escape scenarios are utilized by the units in an alternat-
ing manner.

�d� Compared to the other two escape scenarios the sec-
ond one requests a higher amount of activation energy and
hence determines the time scale of the chain translocation.

�ii� The strong coupling limit, K�1.
In the case of small bond lengths, lxU

1 , the activation
energy of the rigid chain �leading to collective escape� ex-
ceeds multiple times the value of the unbiased potential
barrier.

V. MOBILITY

Having studied the escape dynamics of the system which
is the precondition for transport, in the following we focus
our interest on the transport properties of a chain of interact-
ing nonlinear overdamped Brownian particles confined onto
a periodic substrate. In the case of a chain driven by a dc
point force oriented along a symmetry axis of a 2D substrate,
the stationary transport proceeds in force direction, whereas
transverse diffusion is not affected by the bias. When con-
sidering interacting Brownian particles, it is appropriate to
study the motion of their center of mass �c.m.�. The position
of the c.m. in force direction at time t is denoted by X�t�
defined as

X�t� =
1

N
�
i=1

N

xi�t� . �21�

Referring to Eq. �6a�, the LE reads as

Ẋ�t� = −
1

2N
�
i=1

N

sin�xi� +
F

N
+ Q�t� . �22�

With the �-correlated Gaussian white noise Q�t�
=�i

N�i
x�t� /N. The nonlinear behavior of X�t� results from the

term FS=�i=1
N sin�xi� / �2N� in Eq. �22�. The latter can be in-

terpreted as an effective sliding friction force FS which re-
sults from the interaction of the single units with the sub-
strate U�xn�. The motion of the chain is quantitatively
assessed by the net velocity of the c.m. X�t�,

vx � lim
t→�

�X�t�
t

, �23�

or, equivalently, by the related mobility

�x �
vx

F
. �24�

In the absence of the on-site potential, the characteristic free
net velocity is vx

free=F /N which is associated with the mo-
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bility of the chain as �0=1 /N. Below, the numerically cal-
culated results for the mobility �x are presented in units of
the characteristic free mobility �0 and this is equivalent to
expressing the net velocity vx in units of the characteristic
free net velocity vx

free, i.e., �x /�0=vx /vx
free.

The system of coupled LEs, Eq. �6�, has been integrated
numerically through a second-order Heun stochastic solver
scheme. Starting from a thermal equilibrated configuration in
which all constituents of the chain are located near the bot-
tom of one well of U�xn�, the external point force has been
applied at the n0th unit at t0=0. The stochastic trajectories of
the constituents have been integrated numerically from t0
with the time step �t=10−2 tchar up to tend=105. The char-
acteristic time tchar is given by the relaxation time for the
overdamped motion of one particle in the biased periodic
potential U�xn� in the case of vanishing coupling tchar
=2 /�1−4F2. Using Eq. �21� and averaging over an ensemble
of 100 trajectories in Eq. �23� we compute the mobility �x
according to Eq. �24�.

A. Role of the bond length

First we study the influence of the internal degrees of
freedom, viz. the bond length l, on the mobility �x. In Sec.
IV B we showed that in the limit of weak coupling the es-
cape rate resc and the mean first escape time Tesc of the domi-
nating second escape process, respectively, exhibits a reso-
nance behavior as a function of the bond length. Due to the
fact that escape of the units of the chain is necessary for
transport of the chain, we expect to observe a characteristic
dependence of the velocity of the system on the bond length.

Several authors �8,24� have shown that the transport of an
underdamped 1D dimer system in a periodic potential
strongly depends on its bond length l. In particular, it was
found that the mobility �x�l� is a reflection symmetric func-
tion which attains its maximum value at l��2k+1�� ,k�Z,

and varies periodically with mod�2�� regardless of the cou-
pling strength and force magnitude F �8,24�.

Interestingly, it turns out that the mobility of the 2D dis-
crete nonlinear coupled oscillator chain shows a resonance
behavior as a function of the bond length l with one single
maximum within a period of the substrate potential. This
means there exists a set of optimal parameter values maxi-
mizing the mobility and optimizing the transport properties
of the system, respectively. Further the mobility as a function
of system parameter exhibits properties which coincide with
the results presented in �8,24� but also shows several new
phenomena.

Let us first have a look at the influence of the coupling
strength K on the mobility as a function of the bond length.
In Fig. 5�a� the numerical results for the mobility versus the
bond length l for various values of � are depicted. We re-
mind one that the inverse interaction range � and the cou-
pling strength K are related according to Eq. �8�. It turns out
that there exist a finite interval of the bond lengths, lc

low
 l

 lc

up, in which translocation occurs. Further it is recogniz-
able that with increasing coupling strength K the lower limit
lc
low approaches from below the position of the unstable state

of the on-site potential xU
1 , see Eq. �7�. This is in compliance

with the results presented in Sec. IV A since for l	xU
1 the

activation energy of the first escape scenario is determined
by the saturation value Eact

sat Eq. �16� which is independent of
the coupling strength K. In contrast, in the range l
xU

1 , the
number of units participating in the first escape event, and
therewith connected to the activation energy, grows with in-
creasing coupling strength. Hence the mean first escape time
Tesc�exp�Eact

�1� /T� increases with the value of K and thus the
mobility goes to zero in the limit K→�. The upper limit lc

up

turns out to be independent of the coupling strength. Hence
the larger the value of K the narrower is the interval of the
bond lengths where the chain is mobile for a given F and T.

In addition, it is shown that the mobility grows monotoni-
cally with increasing value of l from lc

low until the bond
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FIG. 5. �Color online� The c.m. mobility versus the bond length l �a� and the mobility versus the mean distance �r �b� for different values
of the inverse interaction range � as indicated in the plot and with the relation in Eq. �8� the values of the assigned coupling strength K are
0.4, 3.6, 10, and 32.4. The horizontal solid line represents the value of �x of one single overdamped Brownian particle. The remaining
parameter values are N=9, n0=5, D=10, F /Fcr=0.8, and T=0.1.
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length is equal to lpeak, where the mobility possesses its
maximal value �x

max. With growing bond length, l� lpeak, the
mobility decays until l� lc

up. It turns out that the value of lpeak
depends on the coupling strength K. In the case of weak
coupling, K
1, the position lpeak is left from � which is in
contrast to the results obtained for the 1D underdamped
dimer �8,24�. With increasing coupling strength K the posi-
tion lpeak approaches from below �.

Further it is demonstrated that the peak height of the mo-
bility �x

max increases with the coupling strength until K
reaches the value Kcr. For K�Kcr, the maximum value of the
mobility remains almost constant upon changing K for a
given value of F and T. Note that the shape of the mobility
graph is asymmetric with respect to lpeak which is in contrast
to the results obtained for the 1D underdamped dimer �8,24�.

Furthermore, the mobility of one single overdamped
Brownian particle can be calculated by means of the Stra-
tonovich formula �16,51�. Comparing the mobility of a
monomer, represented by the horizontal solid line in Fig.
5�a�, with the presented maximum values of �x�l�, one con-
cludes that the response of the extended 2D chain to the
external driving is less than the one of the monomer; but in
the limit of strong coupling both responses nearly coincide.
This indicates that the chain consisting of a nonlinear
coupled oscillator synchronizes and thus behaves like one
heavy Brownian particle with mass N.

Due to the mutual impact of stochastic forces, the point
force, and the interaction with the substrate, the bonds of the
chain experience dynamical alterations. Therefore the
adopted distance between two adjacent units mostly differs
from the bond length l during the motion of the chain. To
gain more insight, we discuss the mobility versus the mean
distance �r between two neighboring units in the long time
limit averaged over all sites �r=limt→��i=1

N−1�ri,i+1�t� / �N
−1�. In Fig. 5�b� the numerical results for the c.m. mobility
�x versus �r for various coupling strengths are presented. In
contrast to the results shown in Fig. 5�a�, the mobility always
reaches the maximal value at �rpeak=� regardless of the
value of K. Assuming that the position of a particle xi+1=xi
+ �r can be described by means of the averaged distance
between two units, one finds that for �r=� the effective
sliding friction force FS, see Eq. �22�, possesses its minimum
value and thus the mobility reaches its maximum value.

Subsequently we study the influence of the point force
magnitude F on the mobility �x for given coupling strength
and temperature. The results are presented in Fig. 6. It is
shown that the value of the lower limit value lc

low is strongly
influenced by the point force magnitude F, more precisely
the larger the value of F the less is the value of lc

low. Refer-
ring to the scaling behavior of Eact

�1� given in Eq. �15�, the
activation energy of the first escape process decreases lin-
early with the value of F for a given bond length l. Hence the
lower limit value lc

low goes to zero for F /Fcr→1. In contrast,
it turns out that the upper limit value lc

up is not influenced by
the point force magnitude F. Thus the region where the mo-
bility differs significantly from zero strongly depends on F.
Similar to the previously discussed results, we find that the
adopted mean distance at the maximum value of the mobility
�rpeak is equal to �. �The corresponding panel is not pre-
sented.� Since the deviation of the bond length l from �r

grows with increasing value of F, one notices that the value
of lpeak gets smaller when enlarging the point force magni-
tudes F. In addition the corresponding peak height increases
monotonically with the point force magnitude F.

Finally, we present the results for the impact of the tem-
perature T on the mobility in Fig. 7. For low temperature,
ratios of l /2� exist where escape and therefore translocation
is impossible. Upon increasing T, the region around l��,
where the mobility of the chain is significantly different from
zero, becomes broader. Eventually for high enough T, the
chain is considerably mobile for all values of l. In addition, it
is illustrated that the peak height at lpeak increases monotoni-
cally with T, remaining always smaller than �0.

In Fig. 7 the influence of the bond length on the mobility
for a broader interval of values of l is depicted. It is shown
that �x varies periodically with mod�2��. It is found that the
peak height at lpeak decreases upon increasing bond length l.
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FIG. 6. �Color online� The c.m. mobility versus the bond length
for different values of the point force magnitude F. Parameters
values are N=9, n0=5, D=10, �=0.1, and T=0.1.
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This effect is independent of the value of the remaining sys-
tem parameters. As pointed out in Sec. IV, the sequence of
occurring escape processes depends on the value of l. For l
+n2�, l� �0,2��, the escape rate resc of the first n escape
processes is determined by resc�exp�−Eact

sat /T� where Eact
sat is

given in Eq. �16�. After the time t1=nT�n exp�Eact
sat /T� the

subsequent escape processes are similar to the first and sec-
ond escape scenario, respectively, for l� �0,2��. Then the
system needs the time t2�n	exp�Eact

�1��l� /T�+exp�Eact
�2��l� /T�


until the next escape process occurs similar to the one that
has taken place before for l� �0,2��. Since the mean time
until the oscillator escapes, utilizing the second escape sce-
nario, increases with the bond length l the peak height at lpeak
decreases with the latter.

B. Locked-running transition

Now we study the impact of the point force magnitude F
on the mobility for a fixed value of the bond length. In the
case of one single overdamped Brownian particle, �x and F
are connected by the Stratonovich formula �16,51�. A locked-
running transition of the system occurs if F�Fd with the
depinning force Fd. The latter is defined in such a way that a
small change of the external driving strength F=Fd+�, �
1, results in a significant enhancement of the mobility.

In Fig. 8 the dependence of �x on F is presented for
different temperatures T. The value of the bond length is
fixed at l=3.1, a value for which the chain is considerably
mobile regardless of the coupling strength K. In general,
since one cannot find a preferential direction of the random
Brownian motion in a spatially periodic potential at thermal
equilibrium �52� the velocity vx attains the smallest value for
F=0 independent of the value of T. The occurrence of a
directed motion vx�0 would be in contradiction to the sec-
ond law of thermodynamics. Note that for F=0 the mobility
is not defined, see Eq. �24�. With further increasing the value
of F the mobility grows monotonically and finally goes to �0
in the limit F→�.

From Fig. 8 we deduce that the value of the depinning
force Fd goes to zero with increasing temperature T. In par-
ticular for T=0.25, the mobility attains a nonzero value re-
gardless of F. For a sufficiently weak point force magnitude,
F /Fcr
1, the mobility increases for stronger thermal fluc-
tuations, that is higher temperatures. In this parameter region
the motion of the chain is mainly instigated by the thermal
fluctuations. Additionally, it turns out that in the limit of
overcritical external driving, F /Fcr�1, the slope of the mo-
bility as a function of the point force decreases for higher
temperatures, i.e., we observe a noise-induced suppression of
the mobility.

Since the escape rate and therewith connected the mobil-
ity increases with the growing value of the temperature ac-
cording to the Arrhenius-Van’t Hoff law, the observed result
seems to be counterintuitive. By applying the point force at
the n0th unit, its effective energy landscape changes. The
motion of the particles, which are close to the pulled one,
proceeds preferably in point force direction due to the lower
energy barrier. The situation for units located nearby the end-
ings of the chain is different. Due to the symmetry of the
on-site potential the probabilities, respectively, the rates to
escape forward or backward, are equal. Hence it is possible
that single units or a segment of the chain escape in the
direction opposite to the one determined by the point force.
Due to the fact that the mean time which the center of mass
needs to move forward a certain distance grows with increas-
ing value of T, the effective c.m. velocity in force direction
becomes lower.

Finally we study the dependence of the mobility on tem-
perature for certain fixed point force magnitudes F. The re-
sults are presented in Fig. 9. In the limit of small values of F,
F /Fcr�1, the motion of the chain is instigated by thermal
fluctuations and thus the c.m. mobility �x strongly depends
on the temperature T. For T=0 the mobility is equal to zero.
With further increasing value of the temperature T the mo-
bility �x grows slightly linear. In contrast, in the limit of a
sufficiently strong external driving, F /Fcr�1, the motion of
the chain is purely induced by the external point force F and
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thus �x�0 for T=0. Upon increasing the temperature the
mobility decreases and finally reaches a minimum at a finite
temperature. By further enhancing the strength of the thermal
fluctuation T, �x grows slightly linear regardless of the point
force magnitude. This phenomenon is called negative resis-
tance �53–55�. Comparing the curves for F /Fcr=1.5 and
F /Fcr=2, it turns out that the value of the critical tempera-
ture depends on the point force magnitude, more precisely,
the latter is shifted to higher values for stronger point force
magnitudes F.

VI. SUMMARY

In summary, we have considered the thermal activated
motion of an extended two-dimensional discrete oscillator
chain absorbed on a periodically structured substrate under
the influence of a localized point force. Attention has been
paid to the escape dynamics of the chain from the metastable
states of the substrate potential which is accomplished by the
adaption of kinklike excitations—also referred to as the tran-
sition state. The shape of the latter and the corresponding
activation energies have been calculated. Due to the fact that
the bending rigidity is equal to zero, the obtained transition
structures resemble the shape of very thin needles. We have
found that the transport of the chain in point force direction
is determined by stepwise escapes of a single unit or seg-
ments of the chain due to the existence of multiple locally
stable attractors. In the limit of strong coupling, K�1, the
units exhibit an organized collective behavior and the chain
escapes like a rigid unit from one domain of attraction to the
subsequent one. In contrast for weak coupling, K1, it has
been found that the escape behavior of the chain is governed
by consecutive individual escape steps of single oscillators.
Therefore we have identified the first three possible escape
scenarios with the lowest amount of activation energy. Inter-
estingly, it has been shown that the vital second escape sce-
nario, which requests a higher amount of activation energy
compared to the other two scenarios and thus governs the
time scale it takes for the chain to be transported by one
period of the substrate potential, possesses a minimum at a
certain value of the bond length l. From this follows that for

unfavorable ratios of the bond length the escape will be
highly improbable while other ratios will bear good condi-
tions for the chain to escape. The complicated dependence of
the activation energy, respectively, of the escape rate on the
bond length is reflected in a nonmonotonous behavior of the
center of mass mobility. The latter exhibits features which
previously have been found in models considering one har-
monically coupled one-dimensional dimer �8,24�, viz. the
mobility reflects the periodicity of the substrate potential and
the latter reaches its maximum value if and only if the mean
distance between the two coupled units equals an odd integer
number times the value of the half periodicity of the periodic
potential. In comparison we have presented several transport
phenomena. For sufficiently weak external driving, F /Fcr

1, the mobility shows a resonance behavior as a function
of the bond length l with one single maximum within each
period of the substrate potential whose position lpeak depends
on all system parameters. In general it turned out that the
mobility attains its maximum value if and only if the mean
distance �r between the coupled units equals �rpeak= �2k
+1��, k�Z. The connection between lpeak and �rpeak is de-
termined by the interplay of different acting forces. Further
we have shown that the maximal value of the mobility �x

max

at lpeak decays upon increasing bond length. Lastly, the role
of the thermal fluctuations and the external driving played
for the activated motion of the chain has been considered.
While it has been found that for sufficiently weak point force
magnitude the mobility grows monotonically with increasing
temperature, for a given overcritical external driving force
the phenomenon of negative resistance has been found, i.e.,
the mobility possesses a minimum at a finite value of the
strength of the thermal fluctuations. In particular our theoret-
ical results for the occurrence of negative resistance could
stimulate further experiments on single molecules based on
recent developments of micromanipulation techniques.
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