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The Lynden-Bell statistics has been proposed to explain common features among galaxies, which are not in
thermal equilibrium. The statistics is not successful to reproduce energy distribution in the one-dimensional
self-gravitating sheet model except for initial states near the virial equilibrium. The breakdown is caused by
dynamically accelerated high-energy sheets, and hence a modified statistics is examined by focusing on low-
energy sheets in order to clarify validity of the basic idea of the Lynden-Bell statistics. The modification
improves agreement between the theoretical and numerical energy distributions in a wide interval of the initial
virial ratio.
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I. INTRODUCTION

In a galaxy, the two-body relaxation time is typically of
order 1017 yr, and is much longer than the life time of the
universe, which is of order 1010 yr. The galaxy is hence not
in the thermal equilibrium, but common features are ob-
served in galaxies, for instance, brightness profiles in ellipti-
cal galaxies. To explain the common features, a nonequilib-
rium statistical mechanics is expected.

One of such statistical mechanics has been proposed by
Lynden-Bell �1�. Collisions between stars can be neglected in
a short time region comparing with the two-body relaxation
time, and hence temporal evolution of a galaxy is approxi-
mately governed by the Vlasov equation. The Vlasov equa-
tion preserves area elements in � space, and the statistical
mechanics is based on exclusivity between the area elements.
Entropy led by the exclusivity is maximized by distribution
of Fermi-Dirac type. It is worth noting that the distribution
depends on initial states, while equilibrium distribution does
not, and the distribution is completely determined by the
initial state. The initial distribution must be a stepwise func-
tion on � space.

The Lynden-Bell statistics has been mainly examined in
the one-dimensional self-gravitating sheet model. We refer to
this model as the sheet model. Advantages of the sheet model
are that no evaporation occurs due to compactness of an
energy surface and that temporal evolution is exactly dis-
cretized for accurate numerical computations. In the begin-
ning agreement between the Lynden-Bell statistics and
N-body simulations has been reported in the sheet model for
two-level �2� and three-level �3� initial distributions. How-
ever, the agreement tends to break as initial virial ratio be-
comes large. Disagreement is observed both in the N-body
simulations �4,5�, and in simulations of the Vlasov equation
�6�. After many reports on disagreements, the Lynden-Bell
statistics is regarded as an inapplicable theory to self-
gravitating systems.

Nevertheless, similar statistical mechanics have been de-
veloped for Hamiltonian systems having long-range interac-
tions. Such a system is frequently trapped at a long-lasting

quasistationary state �QSS� before relaxing towards thermal
equilibrium. QSSs are numerically observed in the sheet
model �7�, in free electron lasers �8�, and in the Hamiltonian
mean-field model �9�. In magnetized pure-electron plasma,
QSSs are observed numerically �10,11� and experimentally
�12–14�. Relaxation from an initial state to QSS is approxi-
mately described by the Vlasov equation �15,16�, and the
Fermi-Dirac-type distribution based on the exclusivity suc-
cessfully explain distribution in QSS in the free electron la-
sers �8� and in the Hamiltonian mean-field model �17,18�.
The exclusivity is also useful in the two-dimensional inviscid
incompressible fluid �19,20�, and in pure electron plasmas
�21�. Analogy between the two statistical treatments for the
collisionless self-gravitating systems and for the two-
dimensional Euler fluids is discussed in Ref. �22�. The
Lynden-Bell statistics is expected to catch a part of statistical
properties even in the self-gravitating systems.

In the sheet model, sheets are classified into core and
halo, which are sets of low- and high-energy sheets, respec-
tively. Halo is generated by dynamical acceleration of the
sheets �4�, and energy distribution has several peaks in a
high-energy interval, which never appear in the Fermi-Dirac-
type distribution. Due to the dynamical acceleration halo
does not obey the entropy maximum principle, and hence a
statistical theory possibly breaks. On the other hand, density
of sheets is high enough in core as the exclusivity must be
effective, and a core may be formed by the entropy maxi-
mum principle. The main purpose of this paper is to examine
the usefulness of the exclusivity in the sheet model. Distri-
butions derived from a modified Lynden-Bell statistics fit
numerically obtained ones if we focus on the core only.

This paper is constructed as follows. The sheet model and
the associated Vlasov equation are introduced in Sec. II, and
a family of initial distributions is shown in Sec. III. The
Lynden-Bell distribution for the whole system and for core
are derived in Secs. IV and V, respectively. Section VI is
devoted to summary and discussions.

II. MODEL

The sheet model is represented by the Hamiltonian*yyama@i.kyoto-u.ac.jp
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H�X,P� = �
j=1

N
Pj

2

2mj
+ 2�G�

j�k

N

mjmk�Xj − Xk� , �1�

where Xj and Pj are the position and its conjugate momen-
tum of the jth sheet, respectively, and G is the gravitational
constant. We use the simple expressions which are similar to
X= �X1 , . . . ,XN� and P= �P1 , . . . , PN� in this paragraph. For
simplicity we assume that each sheet has an identical mass,
i.e., mj =m. To recover the extensivity of the system, we
perform the canonical transformation

X =
x

a
, P = ap, a = �2�GN�1/3m �2�

and the transformed Hamiltonian is

H�x,p� =
a2

m��
j=1

N
pj

2

2
+

1

N
�
j�k

N

�xj − xk�� . �3�

The overall factor a2 /m can be neglected by changing time
scale, and hence we consider the following simple Hamil-
tonian system:

H�x,p� = �
j=1

N
pj

2

2
+

1

N
�
j�k

N

�xj − xk� . �4�

The factor 1 /N in the potential term makes the system ex-
tensive and hence specific energy U, the energy per one par-
ticle, is finite in the limit N→�.

Later N-body simulations are performed by using an exact
discretization code. Each sheet freely falls to the center of
mass unless collisions happen, and hence canonical equa-
tions of motion for the sheet model �4� are exactly solved in
a time region between two consecutive collisions. We can
therefore discretize the canonical equations of motion as a
mapping from a collision to the next, without the aid of any
integration schemas.

The discrete N-body system �4� is approximated by the
associated Vlasov equation

�f

�t
+

�H1

�p

�f

�x
−

�H1

�x

�f

�p
= 0, �5�

where x , p�R, the one-body Hamiltonian H1�x , p , t� is de-
fined as

H1�x,p,t� =
p2

2
+ ��f��x,t� �6�

and the one-body potential ��f��x , t� is

��f��x,t� =	 	
R2

�x − y�f�y,p,t�dydp . �7�

The Vlasov equation �5� conserves the following three quan-
tities:

1 =	 	
R2

f�x,p,t�dxdp , �8a�

U =	 	
R2

 p2

2
+

��f��x,t�
2

� f�x,p,t�dxdp , �8b�

P =	 	
R2

pf�x,p,t�dxdp . �8c�

The first quantity is the normalization condition for f , and
the second and the third represent conservations of specific
energy and specific momentum, respectively. It is straightfor-
ward to show that the above three quantities are constants of
time by using the Vlasov equation �5� and integration by
parts with the assumption that f rapidly goes to zero in the
limits �x�→� and �p�→�. Note that the integrand of Eq. �8b�
differs from the one-body Hamiltonian �6�, since the one-
body potential � explicitly depends on time through distri-
bution f .

The three quantities are constants of time, and hence their
values are determined by a given initial condition. In Sec. IV,
maximization of an entropy will be subject to these con-
straints.

III. INITIAL DISTRIBUTION

We consider a family of waterbag initial distributions on
� space, since it is the simplest type to which the Lynden-
Bell statistics is applicable. The waterbag distribution is a
two-level function expressed as

f�x,p,0� = � f0 ��x,p� � D � R2� ,

0 �otherwise� .

 �9�

We limit D in rectangles such that

D = ��x,p� � R2��x� � �x, �p� � �p� . �10�

The initial density f0 is determined from the normalization
condition �8a� as

f0 =
1

�D�
=

1

4�x�p
, �11�

where �D� represents the area of D.
For this family of initial distributions, initial values of the

one-body potential � and energy U are computed as

��f��x,0� = � x2 + ��x�2

2�x
��x� � �x� ,

�x� ��x� 	 �x�
� �12�

and

U =
��p�2

6
+

�x

3
, �13�

respectively. From the symmetry with respect to p, the spe-
cific momentum takes zero, i.e., P=0.

The family of initial distributions has two parameters, the
pair of �x and �p or equivalently the pair of f0 and U.
However, the number of parameters is reduced to 1 thanks to
invariance of canonical equations of motion of the system �4�
and the Vlasov equation �5� under the scaling
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xj � cxj, pj � �cpj, t � �ct �c 	 0� . �14�

The initial virial ratio, which is defined by

r =
2K�0�
V�0�

=
��p�2

�x
�15�

is invariant under the scaling �14� and hence is suitable to
parametrize the family of initial distributions. Here K�0� and
V�0� represent initial kinetic and potential energy, respec-
tively. The specific energy U is irrelevant, and we set U=1
without loss of generality.

IV. LYNDEN-BELL DISTRIBUTION FOR THE WHOLE

The Lynden-Bell distribution is obtained by maximizing
the entropy

S�f� = − f0	 	
R2
� f

f0
ln

f

f0
+ 
1 −

f

f0
�ln
1 −

f

f0
��dxdp ,

�16�

with the three constraints �8�. Here f is a coarse-grained dis-
tribution, and the second term of the right-hand side comes
from the exclusivity of area elements �1�.

Introducing three Lagrange multipliers 
, �, and �, which
correspond to the constraints �8a�–�8c�, respectively, the
variational problem of the entropy �16� is solved by the dis-
tribution

f�x,p,t� =
f0

e
+�H1�x,p,t�+�p + 1
. �17�

Values of the three Lagrange multipliers are determined by
substituting the distribution �17� into the three constraints
�8�. The vanishing specific momentum P=0, implies �=0
and the distribution is hence simplified as

f�x,p� =
f0

e
+�H1�x,p� + 1
. �18�

We omitted the argument t in f and H1, since the distribution
�18� is a stationary solution to the Vlasov equation �5�. The
remaining two multipliers 
 and � are determined by the two
constraints �8a� and �8b�, which are rewritten as follows.

Let ��f��x� have the symmetry ��f��−x�=��f��x�, and
f�x , p� have the same symmetry accordingly. The symmetry
implies that the one-body potential ��f��x� is an increasing
function in x	0, since

d�

dx
�x� =	 	

R2

x − y

�x − y�
f�y,p�dydp

= 	
R

dp
	
−�

−x

+ 	
−x

x

+ 	
x

� � x − y

�x − y�
f�y,p�dy

= 	
R

dp	
−x

x

f�y,p�dy 
 0. �19�

The distribution f�x , p� also has the symmetry with respect to
p, f�x ,−p�= f�x , p�, and hence the domain of integration in

Eqs. �8a� and �8b� is reduced from R2 to �0,��� �0,��. To
this end, the transformations �=��x� in x	0 and k
=�p2 /2 in p	0 are validated, and the two constraints be-
come

1 = 4
 f0
2

2�3�1/4

�F1/2����1/2, �20a�

U =
1

2�

 f0

2

2�3�1/4

�2IK��� + IV���� +
1

2�
I���� . �20b�

The first term of Eq. �20b� represents kinetic energy, and the
sum of the second and the third terms is potential energy.
Here IK���, IV���, and I���� are defined as

IK��� = 	
0

� F1/2�� − ��
�F1/2��� − F1/2�� − ���1/2d� , �21�

IV��� = 	
0

� �F−1/2�� − ��
�F1/2��� − F1/2�� − ���1/2d� , �22�

and

I���� = 	
0

� �
 F1/2���
F1/2��� − F1/2�� − ���

1/2
− 1�d� , �23�

respectively, and Fn�x� is the Fermi-Dirac integral defined as

Fn�x� = 	
0

� kn

ek−x + 1
dk . �24�

The new variables � and � are defined as

� = − 
 − ��0, � = ��� − �0� , �25�

respectively, and the zero-point potential energy �0
=��f��0� is expressed as

�0 =
1

�
I���� . �26�

We used the relation for the Fermi-Dirac integral

d

dx
Fn�x� = nFn−1�x� �n 	 0� �27�

to derive Eqs. �20a� and �26�.
The normalization condition �20a� solves � as a function

of � as

� = �27�f0F1/2����2�1/3 �28�

and, substituting this expression of � into Eq. �20b�, we ob-
tain an equation for �. A solution � to the equation deter-
mines � by Eq. �28�, �0 by Eq. �26� and 
 by 
=−�−��0.

We observe energy distribution instead of distribution on
� space itself. Energy � represents the value of the one-body
Hamiltonian H1�x , p� and energy density D��� is computed
as �5�
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D��� = 
 �

2f0
2�1/4	

0

���−�0� ���� − �0� − ��−1/2d�

�F1/2��� − F1/2�� − ���1/2 .

�29�

The energy distribution g��� is then written as

g��� = f���D���, f��� =
f0

e
+�� + 1
. �30�

The energy distribution is exhibited in Fig. 1 for r=0.1, 1, 3,
and 10. The theoretical curves do not agree with the numeri-
cally obtained ones except for the case r=1. We note, for r
=1, that the initial state is near from the virial equilibrium
where the virial ratio is unity, and that the energy distribution
in QSS is almost the same as the initial one. The Lynden-Bell
distribution for the whole system is therefore good when the
initial waterbag distribution is near the distribution in the
virial equilibrium.

We remark on the simplification of the energy constraint
�20b� by using the virial theorem. The virial theorem, in the
sheet model, states that the time average of potential energy
is equal to twice of the time average of kinetic energy. The
Lynden-Bell distribution is a stationary solution to the Vla-
sov equation, and hence we may replace the time averages
with ensemble averages over the distribution. The replace-
ment simplifies the energy constraint �20b� as

U =
3

�

 f0

2

2�3�1/4

IK��� �31�

and the simplified constraint is used in Refs. �4,5�. The sim-
plified constraint �31� gives almost the same values of 
 and
� with ones computed from the original constraint �20b� as
shown in Fig. 2. In the next section we will investigate a core
distribution, and the virial theorem cannot be expected for
the core only. We will therefore adopt the original constraint
�20b� and modify it.

V. DISTRIBUTION IN CORE

We define core C which is a set of sheets whose energy is
less than the threshold �th, i.e.,

C = �jth sheet�� j = pj
2/2 + ��xj� � �th� . �32�

The complement of core is called halo. The number of ele-
ments of C is denoted by Ncore. We introduce the ratio of core
sheets to the all as R=Ncore /N, and the core energy Ucore
which is defined as

Ucore =
1

N
�
j�C

� pj
2

2
+

1

2N
�
k=1

N

�xj − xk�� . �33�

The factor 1 /2 is multiplied in the potential part to equally
divide interaction energy into core and halo. The core-halo
structure in QSS is shown in Fig. 3 with initial waterbag
distribution, where the values of �th are chosen from phase
portraits on � space at QSSs. In Figs. 3�e� and 3�g�, the
number of sheets belonging to the halo at QSS is asymmetric
with respect to the half rotation around the origin, but this
asymmetry depends on initial conditions.

Core and halo distributions, which are denoted by fcore

and fhalo, are introduced by dividing the whole distribution f
as
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FIG. 1. Energy distribution for r=0.1 �a�, 1 �b�, 3 �c�, and 10
�d�. In each panel, the solid curve represents the Lynden-Bell dis-
tribution and points averaged numerical distributions at 107 colli-
sions over 100 realizations. N=103.
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f = fcore + fhalo. �34�

We will derive a stationary core distribution fcore�x , p� by
modifying the two constraints �8a� and �8b�.

�1� Normalization. Integration of fcore over � space must
be the same with the ratio of core sheets to the all, R. We
hence modify Eq. �8a� as

R =	 	
R2

fcore�x,p�dxdp . �35�

�2� Energy constraint. The core energy �33� in the discrete
system is associated with

Ucore =	 	
R2

 p2

2
+

��f��x�
2

� fcore�x,p�dxdp �36�

in the continuous system.
Sheets which belong to the halo in the QSS are initially

almost confined around the edges of rectangle D �see Fig. 3�,
and hence initial density f0 for core is not modified. The core
energy constraint �36� includes the halo distribution through
the whole distribution f , and hence we must approximate
Ucore to close the variational problem for the core distribu-
tion.

The one-body potential is linear with respect to the distri-
bution, and hence it is also divided into core and halo parts
as

��f��x� = ��fcore��x� + ��fhalo��x� . �37�

The modified energy constraint �36� is hence written as

Ucore =	 	
R2

 p2

2
+

��fcore��x�
2

� fcore�x,p�dxdp + Vcore-halo,

�38�

where the second term of the right-hand side

Vcore-halo =
1

2
	 	

R2
��fhalo��x�fcore�x,p�dxdp

=
1

2
	 	

R2
dxdp	 	

R2
�x − y�fhalo�y,p��

�fcore�x,p�dydp� �39�

represents gravitational interactions between core and halo.
To eliminate the halo distribution fhalo from the potential
term Vcore-halo, we approximate that the position of halo sheet
y is greater than the position of core sheet x for y	0 and
y�x for y�0. This approximation and the symmetry
fhalo�−y , p��= fhalo�y , p�� lead to

Vcore-halo =
1

2
	 	

R2
fcore�x,p�dxdp	

R
dp�	

0

�

2yfhalo�y,p��dy

=
1

2
R	 	

R2
�y�fhalo�y,p��dydp� = R

�0
halo

2
, �40�

where �0
halo=��fhalo��0�. To this end, the modified energy

constraint �38� is approximated as

Ucore =	 	
R2

 p2

2
+

��fcore��x�
2

� fcore�x,p�dxdp + R
�0

halo

2

�41�

and fhalo has been eliminated.
By using two Lagrange multipliers 
core and �core associ-

ated to the two constraints �35� and �41�, respectively, the
core distribution is written as

fcore�x,p� =
f0

e
core+�core�p2/2+��fcore��x�+�0
halo� + 1

. �42�

The term �core�0
halo in the denominator of the right-hand side

is extracted from 
core for adjusting the zero-point potential
energy to �0. The two Lagrange multipliers are determined
by the two modified constraints

R = 4
 f0
2

2�core
3 �1/4

�F1/2��core��1/2, �43a�

Ucore =
1

2�core

 f0

2

2�core
3 �1/4

�2IK��core� + IV��core��

+
R

2

 1

�core
I���core� + �0

halo� , �43b�

where �core=−
core−�core�0, �0=�0
core+�0

halo, and
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FIG. 2. Lagrange multipliers 
 �a� and � �b� as functions of
initial virial ratio r �log scale�. Symbols of cross ��� and square ���
represent values computed by Eqs. �20b� and �31�, respectively.
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�0
core = ��fcore��0� =

1

�core
I���core� . �44�

The multiplier �core is solved as

�core = �27�f0F1/2��core��2

R4 
1/3

�45�

by the modified normalization condition �43a� and the value
of �core is computed as a solution to Eq. �43b�.

According to the core distribution �42�, one particle en-
ergy in core can be defined as

� =
p2

2
+ ��fcore��x� + �0

halo. �46�

The energy distribution in the core gcore��� is hence ex-
pressed as

-4
-3
-2
-1
0
1
2
3
4

-4 -2 0 2 4

p

x

r=0.1 Core
Halo

-4
-3
-2
-1
0
1
2
3
4

-4 -2 0 2 4

p

x

r=0.1 Core
Halo

-4
-3
-2
-1
0
1
2
3
4

-4 -2 0 2 4

p

x

r=1 Core
Halo

-4
-3
-2
-1
0
1
2
3
4

-4 -2 0 2 4
p

x

r=1 Core
Halo

-4
-3
-2
-1
0
1
2
3
4

-4 -2 0 2 4

p

x

r=3 Core
Halo

-4
-3
-2
-1
0
1
2
3
4

-4 -2 0 2 4

p

x

r=3 Core
Halo

-4
-3
-2
-1
0
1
2
3
4

-4 -2 0 2 4

p

x

r=10 Core
Halo

(b)(a)

(c) (d)

(f)(e)

(g) (h)

-4
-3
-2
-1
0
1
2
3
4

-4 -2 0 2 4

p

x

r=10 Core
Halo

FIG. 3. Initial states �a�,�c�,�e�,�g�, and QSSs after 107 collisions �b�,�d�,�f�,�h� on � space. The initial virial ratio is r=0.1 ��a�,�b��, 1
��c�,�d��, 3 ��e�,�f��, and 10 ��g�,�h��, and the threshold energy is chosen as �th=2.2, 2.6, 2.6, and 2.0, respectively. Big square and dot
represent a sheet belonging to halo and to core after 107 collisions, respectively. N=103.
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gcore��� = fcore���Dcore��� , �47�

where

fcore��� =
f0

e
core+�core� + 1
�48�

and

Dcore��� = 
�core

2f0
2 �1/4

�	
0

�core��−�0� ��core�� − �0� − ��−1/2d�

�F1/2��core� − F1/2��core − ���1/2 .

�49�

We shortly summarize the procedure to compute the core
energy distribution. The value of �0 is obtained from the
procedure to compute the whole distribution, shown in Sec.
IV. A solution to Eq. �43b� gives a value of �core and �core
gives �core by Eq. �45� and �0

core by Eq. �44�. The other
Lagrange multiplier 
core is computed by the relation 
core
=−�core−�core�0. Finally �0

halo is obtained by the relation
�0

halo=�0−�0
core.

Two parameters R and Ucore, introduced in the two modi-
fied constraints, are not determined in this procedure. We
hence compute their values by numerical N-body simula-
tions, and the values are arranged in Table I.

In the computation of core distribution, we used the value
of �0, which is obtained from computations of the whole
distribution. The whole distribution does not agree with nu-
merical simulations, but the value of �0 agrees as shown in
Fig. 4. The discrepancy between the theoretical curve and the
numerical one is up to 0.06 in the computed interval of r,
which is not large compared to the fixed specific energy U
=1.

The values of �0 is also observed in Fig. 1 as energy
where the energy distribution starts to increase. Distributions
in QSSs are symmetric with respect to the change in sign of
x �see Fig. 3�, and hence ��f��x� is an increasing function in
x	0 as shown in Sec. IV. Accordingly,

� =
p2

2
+ ��f��x� 
 ��f��0� = �0 �50�

and hence g���=0 for ���0. In Fig. 1, the starting energy �0
of the theoretical curve is in good agreement with numerical
one. We remark that the minimum value is also �0 for one-
particle energy in the core, Eq. �46�, thanks to the extracted
term �0

halo in the core distribution �42�.

To this end, the core energy distribution gcore��� is com-
pared with the numerically obtained one in Fig. 5. The the-
oretical distribution agrees with numerical one in the ex-
pected energy interval �0����th. This agreement suggests
�i� that the core is formed by a statistical mechanism rather
than the dynamical mechanism which generates the halo and
�ii� that the basic idea of exclusivity is valid to derive distri-
butions in QSSs if we focus on the core only.

Finally we mention the relation between Ucore and R. A
fixed value of the threshold �th determines a pair of
�Ucore ,R�, and we compute many pairs of �Ucore ,R� by
changing the value of �th. The pairs are pointed on the two-
dimensional R-Ucore plane in Fig. 6, and they are approxi-
mately on a line. The least square method for R	0.7 gives
the relation Ucore=1.84R−0.86, and the relation is reasonable
since Ucore is near 1 for R=1, that is, all the sheets are in
core. This relation implies that we can compute Ucore and can
predict the core distribution by counting the numbers of
sheets in the core and halo.

VI. SUMMARY AND DISCUSSIONS

We studied the sheet model to examine validity of the
Lynden-Bell statistics. The Lynden-Bell distribution is not
suitable to fit the whole distribution when initial virial ratio r
is much smaller or much larger than 1, where r=1 implies
that the initial distribution is near the virial equilibrium. In
the sheet model sheets are classified into core and halo. Halo
is dynamically constructed, and hence its distribution cannot
be predicted by a statistical treatment. However, a modified
Lynden-Bell statistics describes the core distribution and
hence the essence of the Lynden-Bell statistics is still effec-
tive even in the sheet model.

To construct the core energy distribution, we required two
parameters, which are core energy Ucore and the number ratio
R for a fixed value of threshold energy �th. Thanks to a linear
relation between the two parameters, we can reduce the num-
ber of unknown parameters to 1. However, the value of the
parameter is not determined from a given initial condition,
and hence the procedure proposed in this paper is not self-
contained. Qualitative analysis on the dynamical construc-

TABLE I. Parameters for the core part. N=103 and U=1. Values
of Ucore and R are averages over 100 sample orbits.

r �th Ucore R

0.1 2.2 0.5833 0.7986

1 2.6 0.9315 0.9628

3 2.6 0.7948 0.9118

10 2.0 0.4831 0.7362 0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0.1 1 10

φ 0

r

Theory
Numerics

FIG. 4. The zero-point potential energy �0 as a function of the
initial virial ratio r �log scale�. Solid line represents the theoretical
curve. Points and error bars represent averages and standard devia-
tions over the samples which are taken in the interval from 5.106 to
107 collisions for 100 realizations. N=103.
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tion of the halo has been discussed �4�, and the quantitative
analysis may determine the value of the parameter.

The value of threshold energy �th is chosen from phase
portraits in � space. The threshold energy is hence a free
parameter, but theoretical core energy distributions are simi-
lar if the values of �th are close. The abovementioned quan-
titative analysis may also give a systematic criterion to de-
termine the value of �th.

In Fig. 5�d�, the numerical distribution increases around
energy threshold �th=2.0, while the theoretical curve mono-
tonically decreases. This increase is produced by the edge of
halo, since halo is not perfectly disconnected from the core.
To remove the unexpected increase of distribution in the core
energy region, one can redefine the value of threshold en-
ergy, for instance, �th=1.9, but no solution could be found to
solve constraint equations in the range of computations. This
failure may come from numerical difficulties to handle Fermi
degeneracy in the core, in other words, divergence of �core.

The statistical mechanics introduced in this paper is based
on the approximation of the discrete N-body system by the
continuous Vlasov equation. The approximation is verified
by a theorem due to Braun and Hepp �23�. The theorem
requires that the potential function expressing the two-body
interaction is smooth enough, but it is not smooth at collision
in the sheet model. It is up to future work to study whether
the nonsmoothness prevents us from constructing the statis-
tical mechanics for the whole system. The theorem also re-
quires one to take the limit N→�, and N=1000 performed in
this paper is possibly small. Performing numerical computa-
tions with larger N is another future work.
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FIG. 5. Energy distribution for r=0.1 �a�, 1 �b�, 3 �c�, and 10
�d�. In each panel, the solid curve represents the theoretical core
distribution and points numerical distributions which are the same
with ones reported in Fig. 1. The vertical lines mark the threshold
�th. N=103.
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