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The origin of anomalous or non-Fickian transport in disordered media is the broad spectrum of transition
rates intrinsic to these systems. A system that contains within it heterogeneities over multiple length scales is
geological formations. The continuous time random walk �CTRW� framework, which has been demonstrated to
be an effective means to model non-Fickian transport features in these systems and to have predictive capaci-
ties, has at its core this full spectrum represented as a joint probability density ��s , t� of random space time
displacements �s , t�. Transport in a random fracture network �RFN� has been calculated with a coupled ��s , t�
and has subsequently been shown to be approximated well by a decoupled form ��s , t�=F�s���t�. The latter
form has been used extensively to model non-Fickian transport in conjunction with a velocity distribution
���� ,��1 /v, where v is the velocity magnitude. The power-law behavior of ��t�� t−1−�, which determines
non-Fickian transport, derives from the large � dependence of ����. In this study we use numerical CTRW
simulations to explore the expanded transport phenomena derived from a coupled ��s , t�. Specifically, we
introduce the features of a power-law dependence in the s distribution with different ���� distributions �in-
cluding a constant v� coupled by t=s�. Unlike Lévy flights in this coupled scenario the spatial moments of the
plumes are well defined. The shapes of the plumes depend on the entire ���� distribution, i.e., both small and
large � dependence; there is a competition between long displacements �which depend on the small � depen-
dence� and large time events �which depend on a power law for large ��. These features give rise to an
enhanced range of transport behavior with a broader scope of applications, e.g., to correlated migrations in a
RFN and in heterogeneous permeability fields. The approximation to the decoupled case is investigated as a
function of the nature of the s distribution.
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I. INTRODUCTION

The theory of transport in disordered systems has been an
active subfield of a number of areas of science and engineer-
ing for decades �1�. The applications cover an enormous
range of length and time scales. A system that contains
within it intrinsic heterogeneities over multiple length scales
is geological formations �2–4�. Chemical plumes migrating
in the complex saturated flow fields of these formations have
been observed to exhibit highly anomalous or non-Fickian
forms. Recent theoretical approaches have emphasized that
the cause of the latter behavior is due to the broad spectrum
of rates or transition times engendered by these heterogene-
ities �5�. In this spectrum, statistically rare events, such as an
encounter with a low velocity transition, have an especially
large effect on the dispersion of the migrating plume. This
fundamental feature of the disordered system clearly demon-
strates the need to take into account the full spectrum of
these transition times and not just the aggregate average rate
at each length scale. We have used the approach of a con-
tinuous time random walk �CTRW� �5�, which has at its core
a spectrum represented as a joint probability density ��s , t�
of random space time displacements �s , t�. What is the origin
of ��s , t� and how does it relate to the spectrum of rates?

The nonlocal-in-time transport equation that embodies
��s , t� has been shown to be the ensemble average of the
master equation, which contains all of the aforementioned
rates, denoted w�s ,s�� for a transition between s and s� �6�.
The ��s , t� is a functional of w�s ,s�� �Appendix B of Ref.

�5�� and has been determined analytically �7� for sets of
w�s−s��. Numerical simulations of a spectrum of local tran-
sits �derived from local displacements and velocities� have
been used to obtain ��s , t� on the field scale �8�, the pore
scale �9�, two-dimensional random fracture networks �RFNs�
�6� and idealized conductivity fields �10–12�. In the CTRW
framework the entire plume can be calculated and has been
characterized by a few features of ��s , t� as shown in Fig. 1
�5�; namely, the power-law �dependence� region of the zeroth
spatial moment of ��s , t�, ��t�� t−1−�, where 0���2 and
the cutoff or transition region to ��2. Both regions are a
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FIG. 1. Log-log plot of dimensionless ��t� vs dimensionless
time 	. The power-law ���t�� t−1−�� region and the cutoff behavior
���2� region depend on the disorder parameter 
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function of the system disorder, which is determined by the
parameter 
 �in the context of electron hopping in a random
array of sites �Eqs. �22�, �23�, of Ref. �5�� with an electron
transfer rate of wm exp�−�s−s�� /r0�, and 
=4�Nsr0

3, where Ns
is the site density�. The extent of the power-law region de-
termines the observational duration of the anomalous or non-
Fickian transport and the extent of the cutoff region deter-
mines the time span of the transition to normal transport.

The emphasis in this picture has been on the significant
effect of statistically rare large time transitions, e.g., due to
an encounter with a low velocity zone, i.e., a high inverse
velocity � ���1 /v ,��0, where v= �v� is the absolute par-
ticle velocity�. This encounter is enhanced if the � depen-
dence of the velocity distribution function ���� is a power-
law tail. However, another possibility for a significant
statistically rare event is a large displacement �compared to
the median displacement� if a system, e.g., a RFN, has a
power-law s distribution. The contribution of such displace-
ments to the plume transport at a given time would depend
on a sampling of the higher velocities, i.e., the small � end of
����. These types of events clearly demonstrate the need for
a coupled ��s , t� between a power law in time and a Lévy
�13,14� walk in space �15–17�. An efficient and flexible tech-
nique for dealing with the coupling of various distributions
of s and � is numerical simulation of CTRW �18�. In Sec. II
we present the coupled CTRW, in Sec. III we develop the
simulation technique, in Sec. IV we specify the spatial dis-
tribution and the ���� that comprise the coupled ��s , t�,
and in Sec. V follow with the details of our results and
discussion.

II. COUPLED CONTINUOUS TIME RANDOM WALKS

Simply stated, in the CTRW a particle undergoes a ran-
dom walk in space and time. The CTRW can be developed
by analytical or numerical solution of a temporally nonlocal
transport equation �5� and equivalently by numerical simula-
tion �18� of the equation of motion of a particle in space-
time. In the following we formulate a space-time coupled
CTRW model and develop a Lagrangian formulation in
terms of the spatiotemporal particle trajectories.

In this formulation of particle trajectories, if at each step
the spatial and time increments are selected from indepen-
dent distributions F�s� and ��t�, respectively, the walk is
denoted as the decoupled case. In the coupled case the dis-
tributions are not independent. There are many couplings and
correlations that can be accommodated by the simulation
methodology, defined below, due to its basic simplicity.
There can be a direct mechanistic relation t�s�, e.g., t
�s
�15� or through the introduction of the distribution of veloci-
ties �the case considered in this paper�. The conditional dis-
tribution of �� ,s� is ��� �s�, or as we assume � independent
of s, ��� �s�=����. The basic coupling between the distribu-
tions occurs with the space-time link of t=s�. For the ����
case especially there is no waiting time �or particle immobil-
ity�. There are constant incremental transitions with random
rates �i.e., velocities� between sites. Further examples can
describe a nonstationary case both in space and/or time, e.g.,
�s���, and correlation between successive steps, e.g., a

choice of � depends on the choice at the previous step. This
latter correlation has been studied in log permeability models
�19�. These considerations as well as others are reserved for
future studies.

Specifically, particle transport derived from fluid flow in
disordered media can be characterized statistically by distri-
butions of transition length, particle velocities and transition
times. These distributions are in general coupled. We con-
sider simulations that are determined by two given probabil-
ity distributions functions �PDFs�, one in s and the other in �;
the angular direction of �, �, is chosen to be that of v, which
is the direction of s.

A. Spatial transitions

The angular dependence is associated with the velocity to
best represent the effect of the bias �i.e., the pressure gradient
across the flow domain�, however, the � dependence will be
included in integrals over s �6�. The PDF for s is the mar-
ginal distribution

F�s� = �
0

�

dt��s,t� , �1�

which we specialize to

F�s�ds = sd−1p�s�ds����d� , �2�

where the angle vector � is distributed according to ����.
We work in spherical coordinates and we have simplified the
� dependence to a product form. A more elaborate version of
treating angular dependence was used to model the velocity
histogram of a RFN �6�. In this coordinate system it is un-
derstood that sd−1p�s� is the transition length distribution and
we concentrate on forms for p�s� below. The Cartesian coor-
dinates xi of the position vector s are given by

xi = sf i��� �3�

with i=1, . . . ,d, f i��� the direction functions. For d=2 di-
mensions �2D�, f1���=cos��� and f2���=sin���; for d=3,
�= �� ,��T and f1���=cos���sin���, f2���=sin���sin���, and
f3���=cos���.

We present expressions using the latter forms but all our
simulation results here are performed in 2D domains. For the
2D case we use two normalized versions of ����: a uniform
distribution

�u��� =
2

�
�	�2

16
− �2
 �4�

and a normal distribution

�n��� = exp�− �2/2�n
2�/�n

�2� , �5�

where ���� is the Heaviside function.
In this work we study the effects of different types of

distributions of p�s� and ����. The distributions F�s�, ����
are each normalized and
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��s,t� = F�s�
��t/s�

s
, �6�

where we used the relation ��s�− t�=���− t
s � /s. The spatial

moments of ��s , t� are

�i
�1��t� = ai�

�1��t�, �ij
�2� = bij�

�2��t� , �7�

where

�����t� = �
0

�

dssd−2s�p�s���t/s� �8�

and

ai =� d�����f i���, bij =� d�����f i���f j��� . �9�

For 2D and Eqs. �4� and �5�, respectively, ai
=�i,1�2�2 /� , exp�−�n

2 /2�� and bij =�i,jbi ,b3/2�1/2
= �1 /2�1 /� ,1 /2�exp�−2�n

2� /2�, where �i,j is the Kro-
necker delta function. The marginal transition time distribu-
tion is given by �note that �d�����=1�

��t� =� dssd−2p�s���t/s� . �10�

Frequently in the literature, decoupled CTRW models are
used �5�. For these models the joint transition length and
time distributions are independent according to

�dc�s,t� = F�s���t� , �11�

where the subscript dc denotes decoupled. The spatial mo-
ment factor �8� of Eq. �11� varies only with F�s�

�dc
����t� = ��t��

0

�

dssd−1s�p�s� . �12�

In Ref. �5� the conditions are discussed whereby a coupled
model can be approximated by Eq. �11�. In the following we
investigate this extensively and compare fully coupled mod-
els and their decoupled counterparts.

B. Space-time random walk

The defining distribution of the CTRW ��s , t� forms the
kernel of a nonlocal transport equation for the probability per
time and space for a particle to just arrive at �s , t� after N
+1 steps, RN+1�s , t� �20�:

RN+1�s,t� = �
Ld

dds��
0

t

dt���s − s�,t − t��RN�s�,t�� ,

�13�

where Ld denotes the d-dimensional transport domain. To
derive an expression for the spatial distribution of particles,
we define the probability per time and space for a particle to
just arrive in �s , t� by summation of RN�s , t� over all N:

R�s,t� � 

N=0

�

RN�s,t� . �14�

Thus one obtains from Eq. �13� by summation over N �20�:

R�s,t� = ��s���t� + �
Ld

dds��
0

t

dt���s − s�,t − t��R�s�,t�� ,

�15�

where we specified the initial condition R0�s , t�=��s���t� of
the CTRW.

The normalized resident concentration c�s , t� is defined by
the probability a solute particle can be found at s at time t.
Thus, in terms of a CTRW, c�s , t� is given by the sum over
all probabilities that a solute particle reaches s at some time
t� and the transition to the next site takes longer than t− t�
�20�:

c�s,t� = �
0

t

dt���t − t��R�s,t�� , �16�

��t� = �
t

�

dt���t�� . �17�

In the following, we focus on vertically integrated particle
distributions

c̄�x1,t� =� dyc�s,t� , �18�

where y= �x2 , . . . ,xd�T. The pressure gradient over the do-
main is assumed to be in the one-direction. The first and
second moments of c̄�x1 , t� give valuable information on the
position of the center of mass of the particle distribution and
its overall spread. They are defined by

m�1��t� =� dx1x1c̄�x1,t� , �19a�

m�2��t� =� dx1x1
2c̄�x1,t� , �19b�

respectively. The standard deviation measures the plume
width and is defined by

��t� = �m�2��t� − m�1��t�2�1/2. �20�

III. NUMERICAL RANDOM WALK SIMULATIONS

In principle, Eqs. �15� and �16� can be solved analytically
or numerically for a given ��s , t� and domain boundary con-
ditions. One technical difficulty sometimes encountered is a
numerical evaluation of the inverse Laplace transform. An-
other complementary approach is numerical simulation �18�
via the application of the equations of motion given by the
coupled Langevin equations

s�N+1� = s�N� + ��N�, �21�

t�N+1� = t�N� + 	�N�, �22�

where �s�N� , t�N�� denotes the location of a particle in space-
time after N steps. The spatial and temporal random incre-
ments ��N� and 	�N� are distributed according to the joint tran-
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sition displacement and time distribution ��s , t�. The
analytical and simulation approaches were compared in Ref.
�18� and the agreement is excellent. In the simulation method
of solution for the particle distribution �21� and �22� after N
steps, RN�s , t� �13� can be expressed in terms of the particle
trajectories in space time �21�

RN�s,t� = ���s − s�N����t − t�N��� , �23�

where the angular brackets denote the average over all real-
izations of ���N�� and �	�N��. Expression �23� is the represen-
tation of RN�s , t� in the context of random walk simulations,
which will be determined in this paper. Using definition �14�
of R�s , t� and the representation �23� of RN�s , t�, we derive

c�s,t� = 

N=0

� �
0

t

dt���t − t�����s − s�N����t� − t�N��� . �24�

Knowing the entire time history of the flux �aggregate
trajectories� entering a small volume around s one can, in
principle, compute the time integral in Eq. �24� to determine
c�s , t�. We “slice” the computation in another way. At a given
observation time t we record the positions of all the trajec-
tories and adjust for the last step with an interpolation de-
tailed below.

The random walk simulations are based on numerical so-
lution of the equations of motion �21� and �22�, in space and
time, for R different realizations of the joint random pro-
cesses ���N� ,	�N��N=1

� . To suppress large fluctuations of the
data, it is necessary to perform the transport simulations for a
large number of realizations; we use R=106 realizations.
The distributions specifying ��N� and ��N�, where 	�N�

=��N���N�, are discussed in Sec. II and are generated numeri-
cally along with their cumulant distributions �e.g., ���� and
the integral of ���� ,C��� respectively�. The selection from
����, as an example, is chosen using the cumulant distribu-
tion: a random number r is generated in the uniform interval
�0,1� and set equal to the cumulant r=C��� and inverted for �.

A. Concentration

The determination of the plume at a particular time pro-
ceeds as follows: each particle moves as described above
through multiple transitions, and at a certain observation
time t the position is recorded. In general, the observation
time t is within an interval formed by two successive times,
i.e., t�N�� t� t�N+1��. A linear interpolation is used such that
the particle position at time t is determined according to

s�t� = s�N� +
t − t�N�

	�N� ��N�. �25�

B. Breakthrough curves

For breakthrough curves �BTCs� or first passage time dis-
tributions, a similar method is employed. Particles are re-
leased at �0, 0�, and move as described in Eqs. �21� and �22�.
Once a particle reaches the observation plane at position x1,
the time is recorded. In general, the observation plane lies in
the interval formed by successive particle positions x1

�N�

�x1�x1
�N+1�. The actual time t�x1� when the particle first

passes through the observation plane at x1 is obtained by
linear interpolation according to

t�x1� = t�N� +
x1 − x1

�N�

��N� cos���N��
	�N�. �26�

IV. THE DISTRIBUTIONS

In this section we specify a choice of distributions for
��s , t� appearing in Eq. �6�. For flexibility we use a truncated
power-law �TPL� form for p�s� and a modified one for ����.
A change in the parameters of these forms can allow a large
variation in the character of the distributions, e.g., finite or
infinite moments. For the spatial transitions

p�s� = Cs
exp�− s/�2�
�cs + s�1+� , �27�

where Cs is the normalization constant, cs is a constant, and
�2 is a cutoff. For �2→� for finite moments to exist �see the
spatial integral in Eq. �12�� ��d−1+ �. In 2D, ��1 for p�s�
to be normalizable. For 1���2 no moments exist and p�s�
is called a Lévy flight distribution. Hence for normal trans-
port �in 2D� for the decoupled case �12�, ��3. For a slow
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power law ��3 a coupled ��s , t� plays a crucial role as we
examine in detail.

A. Velocity distributions

1. Constant velocity

We consider the case for which the velocity is the same
for all spatial transitions

���� = ��� − �0� . �28�

If the form of p�s� is a Lévy flight �power-law tail; see
above�, this type of delta-coupled CTRW model �28� has
been studied in the literature under the name Lévy walk
�15,22–25�. Inserting Eq. �28� into Eq. �6� the coupled PDF
is

��s,t� = p�s�������t − s�0� �29�

and the marginal transition time distribution and spatial mo-
ments are

��t� = tp�t/�0�/�0
2, �i

�1��t� = ait
2p�t/�0�/�0

3,

�ij
�2� = bijt

3p�t/�0�/�0
4. �30�

The moments always exist for this coupled CTRW with con-
stant velocity. Examination of Eq. �29� shows that for any
finite value of t the delta function causes ��s , t� to vanish
when s� t /�0. Hence, in particular, for large s, i.e., s� t /�0,
even for a Lévy flight distribution there is an effective cutoff
at large s �we return to this issue in the more general case in
Sec. IV A 2�.

For the corresponding decoupled model, the behavior
characterized by

�dc�s,t� = F�s�tp�t/�0�/�0
2 �31�

is different. For example, the first moment is given by

�i
�1��t�dc = aitp�t/�0� � dss2p�s�/�0

2. �32�

The conditions for finite moments of Eq. �32� are discussed
for the TPL form of p�s� following Eq. �27� �in Eq. �32�, p�s�
must decay faster than s−3�. Thus, for a Lévy flight type of
transition length distribution, the moments of �dc�s , t� and
hence c�s , t� for the decoupled model do not exist �unlike
what is claimed in Ref. �26�, for example�.

The concentration distribution has a clearly defined sharp
front in Fig. 2. This reflects the fact that the maximum par-

ticle displacement at time t is given by smax= t /�0, which is
realized if all the increments ��n� have �=0. The minimum
�vertically projected� distance x1

min=smax /�2 �all ��n� have �
=� /4 for Eq. �4��. In Fig. 2 this spread is seen clearly for the
uniform distribution �4�. The intermediate paths with varying
� must have 	�n�=��n��0 adding up to t and hence all the ��n�

adding to smax. For the normal distribution �5� the front of the
plume is less sharp because �n��� is peaked about �=0 but
falls off faster around �=0 than Eq. �4�.

Any strongly peaked distribution in velocity such as a
Gaussian �basically a broadened version of Eq. �28�� will
give rise to plume similar to the ones in Fig. 2, however, with
a larger spread due to the width of ����. The transport asso-
ciated with such plumes is normal.

2. Distributed Velocity

We emphasize a different type of ����, one that gives rise
to the power-law in time shown in Fig. 1 and the cutoff
region; namely, a truncated power law in �. A full range of
simulated transport is explored with a ���� encompassing a
wide spectrum of velocity

���� = C� ���
exp�− �/�1�
�c� + ��1+� , �33�

where we use for  ��� two different types of dependence for
the low � behavior,

 e��� = exp�− �0/��,  !��� =
��/�1�!

1 + ��/�1�! , �34�

where C� is the appropriate normalization constant, c� is a
constant and �1 is a cutoff. The forms for ���� in Eqs. �33�
and �34� are chosen to provide flexibility in the character of
the velocity spectrum. The high � dependence has the form
of a truncated power law �TPL�, which gives rise to a power-
law time dependence associated with non-Fickian transport
�18�, i.e., it replicates the form, derived analytically, in Fig.
1. The power-law time dependence has been established in a
number of studies �5� and discussed in Sec. I. In contrast a
power-law tail with velocity for the velocity spectrum would
not exhibit this behavior. In addition to being in disagree-
ment with numerical studies of the latter, e.g., Ref. �9�, it
would suppress the role of the statistically rare low velocities
that limit the transport—a key feature giving rise to non-
Fickian transport �5�. The cutoff at �1 in the TPL form in Eq.
�33� is a control of the width of this time power-law tail. The
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 ���→1 for � /�0�1 or � /�1�1 and most importantly

 ���→0
�→0

. The importance of the latter behavior can be seen
by examining Eqs. �7� and �8� for a p�s� with a power-law
tail �the integrals with p�s� �27� without the effective cutoff,
�2→�, for large s, can diverge�. The forms  ��� in Eq. �34�
were chosen to allow an ability �with one parameter �0 or !�

to vary the approach to the physical limit  ���→0
�→0

.
For the Lévy flight case of p�s�, the moments in Eqs. �7�

and �8� are all finite if ���� �or as we insert ��t /s� /s� ap-
proaches zero sufficiently fast. This certainly is the case for
 e��� and for  !��� for !�d−2+ �−� in Eq. �34�. Hence,
the small � behavior of ���� controls the finite values of the
spatial moments for the coupled case in Eq. �7� for a Lévy
flight. It is the high � behavior of ���� that controls the
non-Fickian behavior associated with the statistically rare
long time transitions. The small � dependence of ���� addi-
tionally can enhance the probability of long displacements
by providing enough high velocities to include these transi-
tions in any given time interval t. For Lévy behavior of p�s�
�even when �2��� the range of transport phenomena de-
pends on the entire velocity spectrum, not only the high �
tails as has been emphasized for many cases in the literature
�5�. For these cases, however, the p�s� has a compact or finite
range and the high � tail dominates the transport, so much so
that a decoupled approximation is valid �as we will examine�

and a TPL form of ��t� is acceptable ���t� →
t→0

const, which
implies an infinite velocity but with finite displacements�.
The finite spatial moments for the coupled ��s , t� for Lévy
spatial power tails indicate that we can use these types of
joint distributions in Eqs. �24�–�26� of Ref. �5� that define a
partial differential equation form of CTRW. Here we now
investigate plume shapes and BTCs for ��s , t� in Eq. �6�—
for ���� and p�s� in Eqs. �33�, �34�, and �27� as a function of
the parameter space formed by �0 ,�1 ,! ,�1 ,�2 ,� ,�—in or-
der to study the competition between long displacement and
long time transitions and the range of validity of the decou-
pled approximation �11�.

V. RESULTS AND DISCUSSION

A. Forward and backward tails

In Figs. 3–10 we explore the transport phenomena gener-
ated by the coupled ��s , t� as defined by Eqs. �33�, �34�, and
�27� through the coupling t=s�. Unless stated otherwise the
value of �1,2=105 and we use  e in Eq. �34�. In Fig. 3,
c̄�x , t�, the vertically integrated plume �subsequently referred
to as plume� evolution at three different times is compared
with �=1.8 and �=0.8,1.5. The plumes behave in the ex-
pected way �5� with this variation in the time power law
�18�, however, with the added forward displacement tails due
to the Lévy-like contribution of p�s� with �=1.8. This con-
tribution can be more clearly discerned in Fig. 4 as we de-
crease the contribution of the Lévy-like p�s� by varying �
from 1.8 to 2.5. With fixed �=0.8 the long time tail transi-
tions should dominate the plume shape but the change in �
alone changes the character of the plume shape significantly.

B. The entire velocity spectrum plays a role

In Fig. 5 we vary the effect of  e���, i.e., �0. The increase
in the high velocity component ��0=0.1� leads to a larger
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FIG. 6. First passage time distribution �at x0=100� resulting
from a variable � for the p�s�, and �����TPL with �=0.8 �Fig. 4�.
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profile displacement. The high velocity portion of Eq. �33�,
controlled by Eq. �34�, enables large displacements from Eq.
�27� to contribute within the time window. It is evident now
that with a coupled ��s , t� and a Lévy-like p�s� the entire
velocity spectrum plays a role in shaping the plume propa-
gation. The BTCs �or first passage time distributions� are a
sensitive measure of the degree of forward tailing. In Fig. 6
the variation of the spatial power-law with � changing from
1.5 to 2.5 �Fig. 4� produces a major redistribution of the
particle arrival time at a control plane �x0=100�. The softer
tail ��=1.5� causes the BTC to peak at a significantly earlier
time than the �=2.5 resultant shape. In Fig. 7 the effect of
changing the high velocity component of Eq. �33� in Fig. 5
can be seen clearly. The degree of forward tailing causes a
large shift in the BTC peak position. Hence, a feature of
��t /s� not associated with the long time power-law tail can
have a strong effect on the character of the c̄�x , t� propaga-
tion. The results with  ! in Eq. �34� with !=2 are nearly
identical to the �0=0.1.

C. Spatial cutoff: Coupled versus decoupled

In Fig. 8 we exhibit the effect of varying the extent of the
spatial tail by changing the cutoff �2 from 10 to 105 at a fixed
value of ��=1.5�. The character of c̄�x , t� is dramatically dif-
ferent with a “compact� p�s� vs a long Lévy tail p�s�. The
significance of this difference is shown in Figs. 9 and 10. In
Fig. 9 a comparison is made between the coupled and decou-
pled case for the same parameters. For a compact p�s�
��2=5� the coupled and decoupled case are similar. However
in Fig. 10 a comparison is made between the coupled and
decoupled case for the same parameters for a Lévy-like p�s�
��2=105�. The plume for the coupled case is the same shown
on the left side of Fig. 3 and was discussed above. The de-
coupled case shown in Fig. 10 differs considerably from the
one in the literature �for �=0.8� �18�. The latter has a decou-
pled p�s� of a Gaussian form while in Fig. 10 the correspond-
ing p�s� is a power law ��=1.8� with a large cutoff
��2=105�, which enhances the plume propagation with un-
constrained large displacements. For the coupled case these
displacements are constrained by the link s= t /�. The main
point is to contrast the two cases and they are definitely
dissimilar. This is a basic result: the decoupled ��s , t� ap-
proximation used extensively in the literature holds well if
the spatial distribution has a limited or compact range. For
those applications that involve a large extent of a soft power-
law in the spatial distribution, ��s , t� must be used in the
coupled form. The compactness of p�s� can be quantified by
the agreement of the approximation

�����t� � �
0

�

dssd−1s�p�s���t/s̄�/s̄ + ¯ , �35�

to Eq. �8�, where the dots denote subleading contribution of
the order of the variance of p�s� and s̄ is the first moment of
p�s� �the spatial integral in Eq. �12� with �=1�. Expression
�35� decouples all of the moments of ��s , t�. The distribution
that is actually characterized by the moments �35� is pre-
cisely the decoupled distribution

�dc�s,t� = F�s���t/s̄�/s̄ . �36�

D. Moments

In Table I we show the time dependence of the first mo-
ment and standard deviation of c̄�x , t� in the form
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FIG. 9. Coupled vs decoupled time evolution. For both cases,
p�s��TPL ��=2.5�, and for the coupled �����TPL ��=0.8�, for
the uncoupled ��t��TPL ��=0.8�. The � cutoff for both p�s� is 5.
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FIG. 10. Coupled vs decoupled time evolution. For both cases,
p�s��TPL ��=1.8�, and for the coupled �����TPL ��=0.8�, for
the uncoupled ��t��TPL ��=0.8�. The � cutoff for both p�s� is
105.

TABLE I. The exponents of the time dependence of the spatial
moments of the vertically integrated plume c̄�x , t�, m1�t�� t"1 and
the standard deviation ��t�� t"2 for various � and �.

Parameters "1 "2

�=1.8,�=0.8 0.70 0.50

�=2.5,�=0.8 0.68 0.57

�=1.8,�=1.5 0.77 0.47

�=2.5,�=1.5 0.87 0.64
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m1�t� � t"1, ��t� � t"2, �37�

where ��t� is defined in Eq. �20�. For the values of � and �,
corresponding to Figs. 3 and 4 the exponents show that the
transport is anomalous or non-Fickian. The exponents are
determined numerically from these plumes. The relations
among the exponents are not the same as those derived from
plumes generated in the decoupled case with ��t�� t−1−�

�18�. In that case the first moment m1�t�� t� and the standard
deviation �� t� for 0���1 and m1�t�� t, �� t�3−��/2 for
1���2. We emphasize that we are comparing the relative
values of the exponents "1,2 for a coupled case �Table I�,
with power laws for both space and time, with the usual
decoupled case with a compact p�s� and a power-law in time
�18�. For �=0.8 in Table I there is a close proximity to the
latter result with "1��, however, this is not the case for the
standard deviation with "2��. The slower growth in time of
the standard deviation is a subtle effect and could be due to
the competition between long time tail behavior and large
displacements constrained by s= t /�. The large time tail
tends to both promote solute localization �near the origin�
and a freely moving forward tail. The p�s� power-law
changes the mix with the addition of constrained large dis-
placements, i.e., less localization near the origin. For �
=2.5 with the same ��=0.8� the main change is in the growth
of the time dependence of ��t� �i.e., less large displace-
ments�. For �=1.5 the effects of the time tail are less domi-
nant �for �=1.8, "1�1� and the Lévy contribution is more
discernible, i.e., there is an increase in the non-Fickian be-
havior. There is a larger change in "1,2 with the change in �
to 2.5: "1�1 and the standard deviation �"2=0.64� ap-
proaches the decoupled value of 0.75. The overall effect of
the coupling of a power-law in both space and time is to
enlarge the range of anomalous transport behavior.

E. Potential applications

This enlarged range of behavior opens up application pos-
sibilities. We have alluded to two potential applications in
the abstract. There are others for a coupled CTRW with
power laws in space and time, but we concentrate on those
generated by a velocity distribution, i.e., the particle transi-
tions are “carried� by a moving fluid. In Ref. �27� we ana-
lyzed a RFN by limiting the particle transitions to fracture
fragments, i.e., the displacements were between fracture

junctions. We conjectured about possible correlations due to
the higher velocities in a portion of the fragments. At these
velocities the sequential particle could be correlated �it could
involve a change from a diffusive condition at the junction to
a streamline one�. The coupled ��s , t� we have been discuss-
ing in Sec. IV A 2 can provide a statistical correlation of this
type whereby the range of higher velocities can provide
larger displacements than the nominal ones. This would re-
quire relating the statistics of these events into the character-
ization of ��s , t�.

In Ref. �19� a study was made of correlation lengths and
times of the Lagrangian flow velocity in log normal perme-
ability model fields; Refs. �28,29� also consider highly het-
erogeneous media. The aim is to relate these correlations,
coupled by the relation s�= t, to transport behavior. A natural
place to relate the statistical basis of correlation lengths as a
function of velocity and link to the correlation time is the
coupled ��s , t�.

F. Concluding remarks

The CTRW with a coupled ��s , t� with both a power-law
in time as well as in space, with finite spatial moments, has
enriched the scope of transport behavior. Subtle features of
the entire velocity spectrum, e.g., the small � component,
have demonstrable effects on the first passage time �BTCs�.
The Lévy spatial power law adds to the dispersion even in
presence of a soft power law in time. The decoupled approxi-
mation is valid with a decrease in this added dispersion, i.e.,
a more compact p�s�. The enhanced transport features of this
coupled ��s , t� give rise to a broader scope of applications,
e.g., to correlated migrations in RFN and in heterogeneous
permeability fields �19� discussed in the previous section.
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