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Non-Markovian quantum jump with generalized Lindblad master equation
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The Monte Carlo wave function method or the quantum-trajectory—jump approach is a powerful tool to
study dissipative dynamics governed by the Markovian master equation, in particular for high-dimensional
systems and when it is difficult to simulate directly. We extend this method to the non-Markovian case
described by the generalized Lindblad master equation. Two examples to illustrate the method are presented
and discussed. The results show that the method can correctly reproduce the dissipative dynamics for the
system. The difference between this method and the traditional Markovian jump approach and the computa-

tional efficiency of this method is also discussed.
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I. INTRODUCTION

Since the pioneering work of Albert Einstein, who ex-
plained the phenomenon of dissipation and Brownian motion
in his annus mirabilis of 1905 by use of statistical methods,
a rich variety of methods to tackle quantum fluctuations and
quantum dissipation in open systems has been proposed
[1,2]. Among them, the quantum master equation (QME) ap-
proach and the quantum Langevin description (QLE) [3] are
two powerful functional integral techniques for the study of
the time evolution of open quantum systems. The quantum
master equation can be divided into two categories: Markov-
ian and non-Markovian. The Markovian master equation [4]
(especially in the Lindbald form) can be derived with the
weak-coupling limit (or the Born approximation) and the
Markovian approximation. It can be solved analytically [5]
for some special cases, but for most cases we have to solve
and simulate it numerically by the Monte Carlo wave func-
tion method or quantum-trajectory—jump approach [6—11].
This method is very effective for qubit systems even with a
large number of qubits—say, n=24 [9].

However, the dynamics of an open system is not always
Markovian. Strong system-environment couplings, correla-
tion and entanglement in the initial state, and structured res-
ervoirs may lead the dynamics far from Markovian. Many
methods have been proposed to describe the non-Markovian
process, including the Lindblad equation with time-
dependent decay rates [12], generalized Lindblad equation
[13] obtained from the correlated projection superoperator
techniques [ 14,15], phenomenological memory kernel master
equation [16,17], and the post-Markovian master equation
[18-20]. The first two methods are local in time, while the
last two involve an integral of time. For the first method, the
only difference from the Markovian master equation is that
the decay rates in the equation are time dependent. These
decay rates may take not only positive values, but also nega-
tive ones. When decay rates are positive, the Markovian
Monte Carlo wave function method can directly be used.
However, the method is not available when the decay rates
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are negative. This problem was solved in Ref. [21] by intro-
ducing reversed jumps.

The generalized Lindblad master equation can well de-
scribe the dynamics of an open system beyond the Markov-
ian limit; especially, it is very effective for an environment
composed of spins [22-24] and structured reservoirs [25].
However, the extension of the Monte Carlo simulation to this
equation remains untouched. In this paper, we will explore
the unraveling and quantum trajectory approach for the gen-
eralized Lindblad equation. The structure of this paper is
organized as follows. In Sec. II we briefly review the gener-
alized Lindblad equation. In Sec. III we give the unraveling
of this equation and generalize the Monte Carlo method to
this equation. Two examples are presented in Sec. IV. Fi-
nally, we conclude our results in Sec. V.

II. GENERALIZED LINDBLAD MASTER EQUATION

The equation that governs the dynamics of an open quan-
tum system can be derived by means of the projection super-
operator technique [12,14]. The form (Markovian or non-
Markovian) of the master equation crucially depends on the
approximation used in the derivation, reflected in the projec-
tion superoperator chosen. When we project the total system
state onto a tensor product, we can obtain the Markovian
master equation, whereas a non-Markovian master equation
can be obtained when we use a correlated projection. The
following is the master equation derived by this method, and
it is called the generalized Lindblad master equation [13]:

d , 1
L= 0,0+ S (Rop R TR 1))
n\

(1)

o A .
where H,, are Hermitian operators and R}, are arbitrary sys-

tem operators depending on the form of system-environment
interactions. If we have only a single component pg=p;, this
equation obviously reduces to the ordinary Markovian mas-
ter equation. In this paper we will focus on the case where
we have at least two components. The state of the reduced
system in this case is pg=2,,p,,; we recall that Tr p,,<1.
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III. QUANTUM JUMP

For clarity, we define the jump operators W» =R and
nonjump operators W?nm=l—i7-(mdt, where the non-
Hermitian effective Hamiltonian is given by H,=H,
- %iE,,}\sznR,’;m. There are two subscripts and one superscript
for the operator W . The first subscript m denotes the index
of the component corresponding to p,,, while the second sub-
script n denotes the index of the component for the operation
acted on; the superscript A represents the jump mode. Ini-
tially we assume that each operator p,,(f,) can be written as
Pu(t0) =, (o) X h(to)|, where |i,(2)) is a non-normalized
wave function. After an infinitesimal time dz, it evolves into
the state

Pulto + ) = 2 [ X hldph, + W oDl s (2)
na

where the new states are defined by

gy = a0

3
W o) ©
and
b, WP
0 me mm|¢m(t)>
=, 4
o) =18 L0 @
with probabilities
1
Apiyn = nt0) Wi Wo, (101,
1
dp?nm = p_<l//m(t0)|W9nTmW§Lm| lr/,m(to»’ (5)

respectively. In Egs. (3) and (4),
Pm= E <¢n(t0)|Wz\nLW£\nn| 'ﬂn(fo»df + (l//m(tO)|ng;l1Wf1)1m|¢m(t0)>
n\
(6)

is the weight for the component p,, that satisfies

P =Trp,(t+dr1). (7)

Note that the jumps for p,, depend on the other components
p, (n#m) of the reduced density matrix p. This makes our
method different from the traditional quantum jump method.

We can prove this unraveling by putting the jump and
nonjump states (3) and (4) and the probabilities (5) and (6)
into Eq. (2),

i+ dt) = 2 Wh | (D)X, ()| Wi dr + WO, 1,,(2))
n\

X (1) WO (8)

Simple algebra shows that in the limit dt— 0, Eq. (8) reveals
Eq. (1). The evolution governed by Eq. (1) can be simulated
numerically by the so-called Monte Carlo wave function ap-
proach according to the unraveling given above. We start the
time evolution from the state  p(7))=2,,0,(t)
=3, Ut W, (to)|, where p,, (m=1,2,3,...) are the com-
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Environment two-state system

FIG. 1. (Color online) A two-state system coupled to an envi-
ronment consisting of two energy bands with a finite number of
levels.

ponents for p. At time #y+dt, where dtf is much smaller than
the time scale relevant for the evolution of the density ma-
trix, a random number €, which is randomly distributed in
the unit interval [0, 1], is used to determine the jump. Note
that all the components are controlled by this random num-
ber. For each component |¢,,), if 0<e< dp! |» it jumps to
[l ), if dpl, <e<dp) +dp? . it jumps to |1211), and so on.
These jumps are all operated on the component p;; if
S\dp), <e<Z,dp) +dp!,, it jumps to the component
2—namely, ¢,1nz>. Jumps to the other components can be
established in a similar way. If e> Enkdp;‘m, a nonjump takes
place and the state ends up in |14, ). This operation is acted
on the component p,, itself. We define a generalized jump
superoperator VV;, which denotes all jumps for all the com-
ponents controlled by this random number. We repeat this
process as many times as n=A¢/dt for all components, where
At is the total evolution time. We call this single evolution a
generalized quantum trajectory. This trajectory contains all
the components of the density matrix. Given an operator A,
we can write its mean value (A)(r)=Tr[Ap(7)] as an average
over N trajectories as

N
(A)() = lim > D (U j(OIA] (). 9)

=% j=1 m

IV. APPLICATION

In this section, we use the model and the generalized mas-
ter equation given in Refs. [23,25] as two examples to illus-
trate our method. First consider a two-state system coupled
to an environment. The environment consists of a large num-
ber of energy levels which are arranged into two energy
bands with the same energy spacing (see Fig. 1). The lower-
energy band contains N, levels, while the upper one N, lev-
els. This model can be understood as a “many-level” envi-
ronment or “container,” of which only the relevant parts of
the spectrum enter the model. For details of this model, we
refer the reader to [26,27]. The total Hamiltonian for a qubit
coupled to such an environment in the Schrodinger picture is
H=H,+V [25] with (we set A=1)
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)
= —wo: + E n1|n1>(n1| + > (cu + Ivenz)
)

n

V=, c(ny,ny)at|n)n,| + Hee.,

njny

where the index n; denotes the levels of the lower-energy
band and n, denotes the levels of the upper band, and o, and
o~ are Pauli operators. \ is the overall strength of the inter-
action, and c(n,n,) are coupling constants; they are inde-
pendent of each other and are identically distributed, satisfy-
ing

(e(ny,n,y)) =0,

(c(ny,ny)c(ng,ny)) =0,

<C(n1’n2)C*(ni7né)> = 5;11,71; 5n2,n£'

According to Hj, one can transform the problem into the
interaction picture and, with the help of the projection super-
operator technique, obtain the non-Markovian evolution
equation as

d )
d—p(sl)(f) = y0p$ (o~ {0 o5 (1)},
d @ (e A &)
P (1) = y0pg’(t)o" - {0 otps’ (1)}, (10)
where
27NN,
vi=———— (i=1,2).
Oe

With the definitions of IT,=X, [n,}(n,| and I1,=%
IT,+1I,=1, the two non-normalized density matrices can be
obtained by pSi =Trg(Il,py), i=1,2, where py is the total den-
sity matrix for the system and environment. The reduced
density matrix for the system is then given by p= p(l) p(z)
We note that in Eq. (10), there are no environment operators
other than the two (c-number) parameters y; and 7y,. The
initial state of the environment is taken into account by
means of the distribution of the initial p(l) and p ; its effect
on the system dynamics is plotted in Figs. 2 and 3. This
equation can be written in_the form of Eq. (1) by setting
H;=0, R;;=R»=0, Rlz—\yla and R,;=\Vy,0”. In this
model, there is only one ]ump operator for each component,
ie., le Vy,ot and Wzl—\yzo and nonjump operators
W(,)nm—Jl iH,,dt, with H,= 2720' o~ and sz—%ylo’o".
We consider two types of initial condition in the following
simulation. First, only the lower band of the environment is
populated—i.e., p(sz):O. Under this condition, the reduced
system can be solved analytically. Another case is where the
two bands of the environment are all populated. With this
initial condition, we solve the master equation numerically.
In both cases, we choose initial states |¢(0))=|e) and
|(0))=7 |e)+ ) for the system, where |e) and |g) denote
the exc1ted state and ground state, respectively. We compare
the analytic solution and the numerical simulation (solve the
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FIG. 2. (Color online) Comparisons of the analytic solution to
Eq. (10) to the results given by the quantum trajectory approach.
The initial state of the system is chosen as |(0))=|e) in the top
figure, while |¢(O))=%(|e}+|g}) in the bottom one. Initially only
the lower band of the environment is populated. The other param-
eters chosen are y;=7y,=1. The time ¢ is plotted in units of 1/%.

equation by the Runge-Kutta method) to the results obtained
from the quantum-jump-trajectory approach in Figs. 2 and 3.
The trajectory number in this quantum jump approach is A
=400. We can see from the figures that the quantum trajec-
tory approach correctly reproduces the system evolution. The
errors are sufficiently small, although we choose a small
number of trajectories, showing that this method is efficient.

Another example is a qubit coupled to a spin bath [23].
The full system consists of a central spin interacting with a
bath of N spins. Such a system can be described by

N

H—ga' + > d- Gy, (11)
k_

where ¢ denotes the Pauli matrix for the central spin, which
is the system we are interested in, and &, stands for the kth
spin in the bath. After deﬁning an unperturbed part H,
=50,+20.K_, where K = Ek_lakojz‘, the Hamiltonian can be
transformed into the interaction picture. Assuming the pa-
rameters are real and time independent, the master equation

reads
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FIG. 3. (Color online) Comparisons of the numerical solution to
Eq. (10) to the results given by the quantum trajectory approach.
The initial state of the system is chosen as |¢(0))=|e) in the top
figure, while |(0))= é(|e)+ |g)) in the bottom one. Initially the two
bands of the environment are populated. The two parameters are
y1=7v,=1. The time 7 is plotted in units of 1/%. Note that in the
bottom figure we plot the off-diagonal element p,, of the reduced
system.

d

_ _ 1 _
Epm =gm+lo-+pm+lo- +fm—10- pm—10-+_ Efm{0'+()' ’pm}

1
- Egm{0_0-+’pm}’ (12)

where p,,=Trgz(p71L,), pr is the density matrix for the total
system (the central spin plus the bath), and I1,, is a projection
superoperator that projects the z component of the bath an-
gular momentum into an eigenvector with eigenvalue m. We
take N=2 as an example; then, the density matrix of the
central spin has three components, denoted by p;, py, and
p_1, respectively. Each component has two jump operators,
which act on the other two components, and a nonjump op-
erator, which acts on itself. The comparison between direct
numerical simulations (by the Runge-Kutta method) and the
quantum trajectory method is shown in Fig. 4. Here the tra-
jectory number is chosen to be N'=4000. We can find that as
the number of jump operators and components increases, the
number of quantum trajectories with which we can obtain a
correct result increases.
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FIG. 4. (Color online) Comparisons of the numerical solution to
Eq. (12) to the results given by the quantum trajectory approach.
The initial state of the system is chosen as p1=p0=p_1=%|e>(e\. All
parameters in the equation are set to be equal. The time ¢ is plotted
in units of 1/%.

V. CONCLUSION AND DISCUSSION

In this paper, we have developed an efficient unraveling
for the generalized Lindblad master equation. Based on this
unraveling, a generalized Monte Carlo wave function
method is presented. It is worth addressing the fact that in
this Monte Carlo wave function method, we need only to
store M non-normalized wave functions—i.e., M length-N
vectors (M denotes the number of the components for the
reduced density matrix and N stands for the dimension of the
Hilbert space) instead of the density operator, which are M
N X N matrices—hence this method saves the computer time
and space. The difference between the ordinary quantum
jump method and the present one is that the latter describes a
non-Markovian dynamics. In addition, the point that each
component p; of the density matrix is non-normalized and
jumps along the component p; depends on a component other
than p;, which is also different. By successfully simulating
the coupling among those components, this method can
simulate the non-Markovian dynamics efficiently. Further
examination shows that the computational complexity in-
creases with the number of the components. The increased
complexity due to the increase of the components and jump
operators can by analyzed as follows. Assume the jump op-
erators and the number of jump operators are restricted to be
the same for each component; the possible jump mode for
0=(py,pz,...) or the number of generalized jump superop-
erators W is

A=MUI-1)+1. (13)

Here J is the number of jump operators for each component
(including the nonjump operator). The role that A plays is
similar to the number of jump operators in the ordinary Mar-
kovian master equation. It is well known that one downside
of the quantum jump approach is the complexity growth as
the jump operators proliferate. From Eq. (13), we can find
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that this downside still exists in the presented method. Still,
our method is effective when one simulates the decoherence
governed by the non-Markovian master equation, as well as
for a system with Hilbert space of high dimension.
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