
Confirming and extending the hypothesis of universality in sandpiles

Juan A. Bonachela and Miguel A. Muñoz
Departamento de Electromagnetismo y Física de la Materia and Instituto de Física Teórica y Computacional Carlos I,

Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
�Received 25 June 2008; published 1 October 2008�

Stochastic sandpiles self-organize to an absorbing-state critical point with scaling behavior different from
directed percolation �DP� and characterized by the presence of an additional conservation law. This is usually
called the C-DP or Manna universality class. There remains, however, an exception to this universality prin-
ciple: a sandpile automaton introduced by Maslov and Zhang, which was claimed to be in the DP class despite
the existence of a conservation law. We show, by means of careful numerical simulations as well as by
constructing and analyzing a field theory, that �contrarily to what was previously thought� this sandpile is also
in the C-DP or Manna class. This confirms the hypothesis of universality for stochastic sandpiles and gives rise
to a fully coherent picture of self-organized criticality in systems with conservation. In passing, we obtain a
number of results for the C-DP class and introduce a strategy to easily discriminate between DP and C-DP
scaling.
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I. INTRODUCTION

Aimed at shedding some light on the origin of scale in-
variance in many contexts in nature, different mechanisms
for self-organized criticality �SOC� were proposed during the
last two decades following the seminal work by Bak and
others �1–3�. Sandpiles, ricepiles, and earthquake toy models
become paradigmatic examples capturing the essence of self-
organization to scale-invariant �critical� behavior without ap-
parently requiring the fine-tuning of parameters �4–6�.

Sandpiles played a central role in the development of this
field �1–3�. They are metaphors of real systems �as earth-
quakes, snow avalanches, stick-slip phenomena, etc.� in
which some type of stress or energy is accumulated at some
slow time scale and relaxed in a much faster way. In sand-
piles, grains are slowly added until eventually they relax if a
local instability threshold is overcome; then, they are trans-
mitted to neighboring sites, which, in their turn, may become
unstable and relax, generating avalanches of activity. Consid-
ering open boundaries to allow for energy balance, a steady
state with power-law distributed avalanches is eventually
reached.

In order to rationalize sandpiles in particular and SOC in
general and to understand their critical properties, it was pro-
posed �7–9� to look at them as systems with many absorbing
states �10,11�. The underlying idea is that, in the absence of
external driving, sandpile models get eventually trapped into
stable configurations from which they cannot escape—i.e.,
absorbing states �10�. The concept of fixed-energy sandpiles
�FESs� was introduced to make this connection more ex-
plicit. FESs share the microscopic rules with their standard
�slowly driven and dissipative� counterparts, but with no
driving or dissipation. In this way, the total amount of sand
or energy becomes a conserved quantity acting as a control
parameter. Calling Ec the average density of energy of a
standard sandpile in its stationary �self-organized� critical
state, it has been shown that the corresponding FES exhibits
a transition from an active phase to an absorbing one at,
precisely, Ec, while it is absorbing �active� below �above� Ec.

It can be argued that slow driving and dissipation acting
together at infinitely separated time scales constitute a
mechanism able to pin a generic system with absorbing
states and a conservation law to its critical point �4,6–9,12�.

Using the relation with transitions into absorbing states
�13�, a Langevin equation describing FES stochastic sand-
piles was proposed �8,9� in the spirit of Hohenberg and Hal-
perin �14�. The Langevin equation is similar to the well-
known directed-percolation �DP� Langevin equation
describing generic systems with absorbing states �10,15�, but
it is coupled linearly to a conserved nondiffusive energy
field, representing the conservation of energy grains in the
sandpile dynamics �8,9�:

�t��x,t� = a� − b�2 + ��E�x,t� + �2� + �����x,t� ,

�tE�x,t� = D�2� , �1�

where D, a, b, and � are constants, ��x , t� and E�x , t� are the
activity and the energy field, respectively, and � is a zero-
mean Gaussian white noise. The universality class described
by this Langevin equation, which includes sandpiles as well
as all other systems with many absorbing states and a non-
diffusive conserved field, is usually called the Manna or
C-DP class �8,9,16,17�. As an important side note, let us
remark that the original Bak-Tang-Wiesenfeld model, being
deterministic, has many other conservation laws �toppling
invariants� and is therefore not described by the present sto-
chastic theory �9,18�.

Incidentally, even if it has been clearly established that
DP and C-DP constitute two different universality classes
�19–21�, most of their universal features �critical exponents,
moment ratios, scaling functions, etc.� are very similar, mak-
ing it difficult to discriminate numerically between both
classes in any spatial dimension.

Despite the fact that the critical behavior of stochastic
sandpiles is accepted to be universal and described by Eqs.
�1�, there are a few sandpile models which, despite being
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conservative, have been argued to exhibit a different type of
critical behavior �22,23�—namely, DP—violating the conjec-
ture of universality.

�i� The Mohanty-Dhar �MD� sandpile �22�, in which
grains have some probability to remain stable even if they
are above the instability threshold. It was argued, based on
numerical simulations and on exact results for an anisotropic
version of it, that the �isotropic� MD sandpile should exhibit
DP behavior.

�ii� The Maslov-Zhang �MZ� sandpile �23�, in which not
only the grains of unstable sites are redistributed among
nearest neighbors. Instead, all the grains in the local neigh-
borhood of unstable sites are randomly redistributed or “re-
shuffled.” Various versions of the model �called “charitable,”
“neutral,” and “greedy”� were defined depending on the bias
in the local redistribution rule �“charitable” if the central site
receives less than each nearest neighbor, “neutral” if all the
sites in the neighborhood are treated alike, and “greedy” oth-
erwise�. On the basis of Monte Carlo simulations this sand-
pile �in its neutral version� was argued to be DP-like.

Aimed at clarifying this puzzling situation, in a recent
work we provided strong numerical and analytical evidence
that, contrarily to what previously thought, the �isotropic�
MD sandpile is actually in the C-DP class �24� �see �26� for
a discrepant viewpoint�. To further substantiate our claim, in
�25� we proposed a strategy to easily discriminate between
DP and C-DP consisting in introducing a wall �either absorb-
ing or reflecting�; systems in the DP and in the C-DP classes
behave in �qualitative and quantitatively� very different ways
in the presence of walls, providing an easy criterion to dis-
criminate between both classes.

Our goal in the present paper is to scrutinize the last re-
maining piece in the puzzle—i.e., the MZ model—by em-
ploying extensive numerical simulations as well as field-
theoretical considerations. For the numerics, we take
advantage of the previously introduced discrimination crite-
rion and, also, present another method to easily discriminate
between DP and C-DP, based in the introduction of aniso-
tropy in one spatial direction.

The analyses presented in what follows show in a clean-
cut way that the MZ model, in any of the three versions
above, is actually in the C-DP class. This leaves no dangling
end in the sandpile universality picture and, as a by-product,
confirms the general validity of the absorbing-state approach
to rationalize SOC. Results for the C-DP class are also ob-
tained.

II. MASLOV-ZHANG SANDPILE

The �neutral� MZ sandpile �23� is defined as follows.
�i� Driving: an input energy �E�1 is added to the central

�or to a randomly chosen� site i of a d-dimensional lattice,
and the site is declared active.

�ii� Relaxation: energy is locally redistributed �“re-
shuffled”� between the active site and its nearest neighbors,
according to

Ei =
ri

� j=1
2d+1rj

�
j=1

2d+1

Ej , �2�

where ri are uniformly distributed �ri� �0,1�� random vari-
ables and the sums are performed over the site i and its 2d

nearest neighbors. This rule needs to be slightly modified for
the “charitable” and “greedy” versions of the model that we
will not explore in detail here.

�iii� Activation: each of the sites involved in the reshuf-
fling is declared active with a probability given by its own
energy, triggering the generation of avalanches of activity.

�iv� Avalanches: new active sites are added to a list and
relaxed in a sequential way.

�v� Dissipation: energy arriving at the open borders is
removed from the system.

�vi� Avalanches proceed until all activity ceases, and then
a new external input is added. Eventually a critical stationary
state is reached.

Monte Carlo simulations by Maslov and Zhang revealed
exponents compatible with those of directed percolation in
two dimensions and above, while in one dimension some
anomalies in the scaling were reported �23�. Later, simula-
tions of the FES counterpart of the MZ sandpile led to very
similar results �8�.

Before entering a more careful numerical analysis of the
MZ sandpile, we take a detour to construct explicitly a
Langevin equation for such a model. This will allow us to
better understand what the main relevant ingredients of the
MZ model are and in what sense it differs from other C-DP
models and from Eqs. �1�.

III. LANGEVIN EQUATION FOR THE MASLOV-ZHANG
SANDPILE

The main difference between the MZ cellular automaton
and other sandpiles in the C-DP universality class is that,
while in the C-DP class as the Manna model, the only energy
redistributed by the dynamics �by topplings� is that accumu-
lated in active sites, in the MZ dynamics of both the energy
of active sites as well as that of its nearest neighbors is re-
distributed. This leads to a more severe local redistribution of
energy, which we quantify in what follows in terms of a new
set of Langevin equations, first in a phenomenological way
and then by deriving it from the microscopic rules.

A. Phenomenological Langevin equation

Diffusion of energy occurs in the C-DP class by means of
activity relaxation. At a mesoscopic level, this implies that
the rate of change of the energy density E�x , t� at a given
position is proportional to minus the divergence of a current,
�tE�x , t�=−� · j�x , t�, where j�x , t� is given by the gradient of
the activity field,

j�x,t� = − D � ��x,t� , �3�

leading to �tE�x , t�=D�2��x , t� in Eqs. �1�.
Instead, in the MZ model, changes of energy are con-

trolled by the reshuffling rule; i.e., energy does not need to
be at an active site �but in its neighborhood� to be redistrib-
uted. Hence, at a mesoscopic level the current is given by
gradients of the energy in the presence of nonvanishing ac-
tivity. More specifically, �tE�x , t�=−� · j�x , t� where now
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j�x,t� = − D̃ � E�x,t� , �4�

and the diffusion D̃ is not a constant but a functional propor-

tional to ��x , t�, D̃(��x , t�)=D��x , t�, capturing the require-
ment that local reshuffling of energy only occur in the pres-
ence of activity. This enforces the absorbing state condition
that dynamics ceases if �=0. Finally,

�tE�x,t� = D � · ���x,t� � E�x,t�� . �5�

On the other hand, the equation for the activity is not ex-
pected to change in any relevant way, so one obtains

�t��x,t� = a� − b�2 + �2� + ��E�x,t� + �����x,t� ,

�tE�x,t� = D � · ���x,t� � E�x,t�� , �6�

representing the MZ dynamics at a mesoscopic level. This is
to be compared with Eqs. �1�.

B. Microscopic derivation of the Langevin equation

To gain more confidence in the phenomenological set of
equations �6� we present here an explicit microscopic deri-
vation. We consider a parallel version of the MZ model in
which all active sites are relaxed at every time step. To do so,
we assume that each site uses a fraction 1 / �2d+1� of its total
energy for eventual redistributions with each of the sites in
its local neighborhood. At the mean-field level, the energy
evolves according to

Ei,t+1 =
1

2d + 1
Ei,t �

j=1

2d+1

�1 − 	�� j,t��

+
1

2d + 1 �
j=1

2d+1

	�� j,t� �
k=1

2d+1
Ek,t

2d + 1
, �7�

where j �k� runs over the nearest neighbors of i �j� and 	 is
the Heaviside step function �	�z�=0 if z�0�. For any inac-
tive site in the local neighborhood �i.e., � j =0�, the central
site does not redistribute the corresponding fraction of its
energy �first term in Eq. �7��. For any active site in the local
neighborhood �i.e., � j 
0� the central site receives on aver-
age a corresponding fraction of energy �second term�. Equa-
tion �7� is a mean-field equation to which fluctuations should
be added to have a more detailed description. Such fluctua-
tions appear as a �conserved� noise for the resulting energy
equation and can be easily argued to constitute a higher-
order, irrelevant, correction.

Regularizing the Heaviside step function in Eq. �7� by
means of a hyperbolic tangent and expanding it in power
series up to first order in � �24�, we obtain

Ei,t+1 =
1

2d + 1
Ei,t �

j=1

2d+1

�1 − � j,t� +
1

2d + 1 �
j=1

2d+1

� j,t �
k=1

2d+1
Ek,t

2d + 1
.

�8�

Introducing the d-dimensional discrete Laplacian �2Ei

=� j=1
2d �Ej −Ei� the first term can be rewritten as

Ei

2d + 1 �
j=1

2d+1

�1 − � j� = Ei −
Ei

2d + 1 �
j=1

2d+1

� j = Ei − Ei�i −
Ei

2d + 1
�2�i. �9�

Similarly, the second term can be expressed as

1

�2d + 1�2 �
j=1

2d+1

� j� �
k=1

2d+1

Ek� = Ei�i +
1

�2d + 1�
�2�Ei�i� +

1

�2d + 1�
�i�

2Ei +
1

�2d + 1�2�2��i�
2Ei� . �10�

Putting these two contributions together and reorganizing the discrete derivatives, one obtains

Ei,t+1 = Ei,t +
2

2d + 1
�i,t�

2Ei,t +
2

2d + 1
� �i,t · �Ei,t +

1

�2d + 1�2�2��i,t�
2Ei,t�

= Ei,t +
2

2d + 1
� · ��i,t � Ei,t� +

1

�2d + 1�2�2��i,t�
2Ei,t� , �11�

which in the continuous-time limit becomes

�tEi =
2

2d + 1
� · ��i,t � Ei,t� +

1

�2d + 1�2�2��i,t�
2Ei,t� .

�12�

The second term in this last equation can be argued to be
naively irrelevant in the renormalization-group sense �as it

includes higher-order derivatives� and hence dropped out.
Identifying D with 2 / �2d+1� we recover the phenomeno-
logical equation �5� as the leading contribution.

As said above, this is to be compared with the standard
Langevin equations �1� for the C-DP class, in which the flux
of energy is given by the gradient of the activity itself. The
following questions pop up naturally: Does Eq. �6� lead to a
critical behavior different from that of Eq. �1�? Could this be
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the reason why the MZ sandpile was claimed to differ from
the C-DP class? Is this new form of conserved energy dy-
namics irrelevant at the DP fixed point, supporting the MZ
sandpile to be DP like?

To properly answer these questions one should resort to a
full renormalization-group calculation. Given that even for
the C-DP class this has proven to be a, still not satisfactorily
accomplished, difficult task �27�, we will leave aside such a
strategy here. Instead, in Sec. IV we will give an answer to
these question by means of computational studies of the mi-
croscopic MZ model as well as of its equivalent Langevin
equations �6�.

C. Naive power counting

A power-counting analysis is not helpful in elucidating
the relevancy of the energy-diffusion term, Eq. �5�. Actually,
as there is a linear dependence on the energy field on both
the right- and left-hand sides of Eqs. �1�, there is no way to
extract the energy field naive dimension or, hence, to make
any statement about the relevancy of the coupling term
w��x , t�E�x , t� at the DP fixed point.

On the other hand, it is easy to cast Eqs. �6� into a gen-
erating functional following standard procedures, to set the
basis of a perturbative expansion. However, one soon real-
izes that technical difficulties similar to those encountered
for the analysis of Eqs. �1� �including the presence of generi-
cally singular propagators �8,27�� show up, hindering the
perturbative calculation. It is our believe that some type of
nonperturbative technique, or nonconventional perturbative
expansion, is required to elucidate the renormalization-group
fixed point of this type of problems.

The analytical understanding, at a field theory level of
C-DP as well as the MZ-Langevin equation, remains an open
challenging task.

IV. MONTE CARLO SIMULATIONS OF
THE MASLOV-ZHANG SANDPILE

We have performed extensive Monte Carlo simulations of
the MZ sandpile �and variations of it� and scrutinized its
asymptotic �long-time and large-system-size� properties. We
report on two different types of numerical experiments.

�i� “SOC” or avalanche experiments. By iterating slow
addition of grains in the sandpile with open boundaries, the
system self-organizes to a state with average energy Ec.
Then, the avalanche size distribution P�s� and the avalanche
time distribution Pt�t� can be estimated and their correspond-
ing exponents � and �t �28� measured.

�ii� Absorbing state experiments. At the stationary state,
we perform spreading experiments from a localized seed,
and we measure �a� the mean quadratic distance to the initial
seed, R2	 tzspr, in active runs, �b� the average number of
active sites as a function of time, N�t�	 t�, and �c� the sur-
viving probability up to time t, Ps	 t−�. We also study the
decay at criticality of a homogeneous initial activity ���t�
	 t−�� in the fixed-energy case �10,28�.

Scaling laws relating avalanche to spreading exponents
were described systematically in �28�; two of them are �
= �1+�+2�� / �1+�+�� and �t=1+�. We measure the expo-
nents independently and use scaling laws as a check for con-
sistency.

We simulate the MZ automaton in one-dimensional lat-
tices up to size L=215. The stationary critical energy density
is Ec=0.4928�2�, and contrarily to what reported in �23�, we
do observe clean scaling at criticality, even if it emerges only
after significantly long transients �results not shown�, justi-
fying why smaller-scale simulations can lead to erroneous
conclusions.

The resulting critical exponents are gathered together in
Table I. They are closer in all cases to the C-DP values than
to DP ones. The exponents measured explicitly in �23� are 

�
dt N�t� / Ps�t�	 t
� and the fractal dimension Df, which
take also very similar values in both cases �
=1.47�1�, Df
=2.32�1� for DP, 
=1.52�1�, Df =2.36�1� for C-DP�. Still,
given the similarity between the numerical values in both
classes, it is not safe to extract a definitive conclusion from
these results. Higher numerical precision would be required
to produce fully convincing evidence. As said above, the
numerical values of DP and C-DP exponents are closer and
closer as the dimensionality is increased �they coincide
above dc=4�. Therefore, performing numerical simulations,
as the ones above, to discriminate between both classes by
using larger and larger times and system sizes in d�2, is not
a clever idea. Instead, it is advisable to use and devise more
effective numerical strategies to discriminate between DP
and C-DP in a simple, efficient, and numerically inexpensive
way. For this we use �a� the method devised in �25� consist-
ing in analyzing how the system responds to the presence of
a wall or �b� a strategy, which exploits the fact that systems
in these two classes react in remarkably different ways to the
introduction of anisotropy in space.

Both of these strategies allow to obtain clean-cut results,
as shown in the forthcoming two subsections.

A. Boundary-driven experiments

The influence of walls in systems in the DP class has been
profusely analyzed in the literature �29�. In particular, it is

TABLE I. Critical exponents for DP, C-DP, and the MZ sandpile in one dimension. DP and C-DP values
taken from �28,20,25�.

d=1 � � � �t zspr �

DP 0.313�1� 0.159�1� 1.108�1� 1.159�1� 1.265�1� 0.159�1�
C-DP 0.350�5� 0.170�5� 1.11�2� 1.17�2� 1.39�1� 0.125�1�
MZ 0.32�5� 0.20�5� 1.13�5� 1.20�5� 1.40�5� 0.13�1�
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well known that, if spreading �and SOC� experiments are
performed nearby a wall, the surviving probability is signifi-
cantly affected, and avalanche and spreading exponents
change in a nontrivial way with respect to their bulk coun-
terparts �29�. It is also known that in the DP class, both
reflecting and absorbing walls lead to a common type of
universal “surface critical behavior,” which we call surface-
directed percolation �SDP�, characterized �in one dimension�
by the exponents shown in Table II.

In contrast, the effect of walls in C-DP systems has been
studied only recently �25�. Contrarily to the DP case, absorb-
ing and reflecting walls induce different types of surface
critical behavior. As illustrated in Table II, all spreading and
avalanche exponents take distinct values for an absorbing
and for a reflecting wall. Furthermore, the numerical differ-
ences between the exponents for either type of wall with
respect to their corresponding SDP counterparts are very
large, allowing for easy numerical discrimination �25�. Fi-
nally, in the C-DP class, the exponents in the presence of a
reflecting wall coincide with their bulk counterparts �25�.
These features imply that, by introducing a wall in a given
system with absorbing states, it becomes straightforward to
distinguish if it is in the DP or in the C-DP class, with mod-
erate computational cost.

Following this strategy, we simulated the one-dimensional
MZ sandpile, as defined above, in the presence of both re-
flecting and absorbing walls. In both cases a wall is intro-
duced at the origin �position i=0� and the sandpile is studied
in the positive half lattice. In the reflecting case, the energy
that should go after reshuffling, to the leftmost site, at i=0
�whose energy is fixed to zero�, is instead added to its closest
nearest neighbor to the right, i=1. On the other hand, the
absorbing condition is imposed by fixing the energy of the
leftmost site to zero after every iteration of the microscopic
sandpile rules—i.e., by removing from the system at every
iteration all the energy received by the leftmost site.

Figures 1 and 2 show the results of simulations performed
in lattices of system size L=215, averaging over up to 8
�107 runs. The corresponding exponents are summarized in
Table II. All of them coincide within numerical accuracy
with the expected values for the C-DP class in the presence
of reflecting or absorbing walls, respectively, and differ sig-

TABLE II. One-dimensional critical exponents for DP and
C-DP without walls �20,28� and in the presence of absorbing and
reflecting walls �25�. Values in rows 1 �DPref� and 2 �DPabs� coin-
cide within error bars. Note also that values in row 3 �C-DPref�
coincide with those for C-DP �Table I�. Results for the MZ sandpile
in the presence of reflecting and absorbing walls are reported in the
last two rows.

d=1 � � � �t zspr

DPref 0.046�2� 0.425�2� 1.25�3� 1.43�3� 1.257�2�
DPabs 0.045�2� 0.426�2� 1.28�3� 1.426�2� 1.276�2�
C-DPref 0.35�1� 0.16�1� 1.11�2� 1.15�2� 1.41�1�
C-DPabs −0.33�2� 0.85�2� 1.56�2� 1.81�2� 1.43�2�
MZref 0.37�5� 0.15�5� 1.09�5� 1.14�5� 1.30�5�
MZabs −0.36�5� 0.84�5� 1.57�5� 1.84�5� 1.25�5�
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FIG. 1. �Color online� Avalanche exponents for the one-
dimensional MZ sandpile in the presence of a reflecting wall. �a�
Spreading experiments; N�t� is the total number of active sites and
Ps�t� is the surviving probability; system size L=215 and number of
runs, 500. �b� Avalanche size �main plot� and time �inset� distribu-
tions; system size L=212 and number of runs, 105. Green �red� lines
mark DP �C-DP� scaling �see numerical values in Table II�.
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FIG. 2. �Color online� As in Fig. 1 but for an absorbing wall
�numerical values summarized in Table II�. System size L=215 and
8�107 runs.
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nificantly from those of SDP. For example, in the presence of
a reflecting �absorbing� wall, the measured value of � is 0.37
�−0.37�, in good agreement with the C-DP expectation �
=0.35 �−0.33� and in blatant disagreement with the corre-
sponding DP value ��0.046 ��0.045�, which is one order
of magnitude smaller �and of opposite sign in the case of an
absorbing wall�. Similar large differences are measured for
all the exponents �see Table II�. Note also that, as is the case
in the C-DP class �25�, the exponents in the presence of a
reflecting wall coincide within error bars with their bulk
counterparts. In conclusion, studying the influence of walls
we conclude that the one-dimensional MZ sandpile exhibits
C-DP scaling.

B. Anisotropic experiments

It is well known that systems in the DP class are invariant
under Galilean transformations: if particles have a tendency
to move anisotropically in one preferred spatial direction,
that does not alter the critical properties �10�. The presence
of any degree of anisotropy in DP-like systems is an irrel-
evant trait, or in other words, anisotropic DP (A-DP) is just
DP.

The role of anisotropy in sandpiles has also been pro-
fusely studied after the pioneering exact solution by Dhar
and Ramaswamy �30� of the totally anisotropic or “directed”
counterpart of the Bak-Tang-Wiesenfeld sandpile. Aniso-
tropic stochastic sandpiles have also been studied using gen-
eral principles �31� and through interfacial representations
�32�. The conclusion is that all anisotropic sandpiles, as long
as they are stochastic �33�, belong to the same universality
class, which we call anisotropic C-DP �A-C-DP� �34�. The
critical exponents of models in this class were first measured
numerically �34� and then exactly calculated in any dimen-
sion �35� �see Tables III and IV�.

The strategy to be used is straightforward: take the MZ
sandpile model and switch on anisotropy; if the isotropic
model was in the DP class, anisotropy should be an irrelevant

ingredient and the anisotropic counterpart should also be DP-
like. If, instead, the isotropic model is in the C-DP class, then
anisotropy is a relevant ingredient and critical exponents
change from C-DP to A-C-DP values.

The simplest way to define an anisotropic MZ �A-MZ�
model is by fixing one of the rj in Eq. �2�—say, the one to
the right—to its maximum possible value rj =1 and letting
the others rj to take randomly distributed values in �0,1�.
This generates an overall energy flow towards the preferred
direction �to the right, in this case�. Anisotropy can be intro-
duced in other ways, including full anisotropy or directness,
but this does not affect our conclusions in any significant
way.

Figure 3 and Table III show our main results for the one-
dimensional MZ model with anisotropy. Both avalanche and
spreading exponents are very different from their isotropic
counterparts. They also differ notoriously from DP values,
but coincide within error bars with the expected values for
the A-C-DP class. The same conclusion holds in two dimen-
sions �see Table IV�. In this way, as the anisotropic MZ
model belongs to the A-C-DP class, the original, isotropic,
MZ sandpile model can be safely concluded to be in the
C-DP universality class, confirming the result above.

V. NUMERICAL INTEGRATION OF THE MZ LANGEVIN
EQUATION

In this section we verify that the Langevin equations �6�
are a sound description of the MZ model and that, despite of
its different form, it behaves asymptotically as Eq. �1�. For

TABLE III. One-dimensional critical exponents for DP �20,28�,
C-DP with a preferred direction �analytical results from �35��, and
the anisotropic MZ model.

d=1 � � � �t zspr

DP 0.33�2� 0.14�2� 1.09�3� 1.14�3� 2.00�2�
A-C-DP 0 1 /2 4 /3 3 /2 2

A-MZ −0.02�3� 0.51�3� 1.35�5� 1.48�5� 1.98�3�

TABLE IV. Two-dimensional critical exponents for anisotropic
models: A-DP �i.e., DP�, A-C-DP �analytical results�, and
anisotropic-MZ.

d=2 � � � �t zspr

DP 0.230�1� 0.451�1� 1.268�1� 1.451�1� 1.13�2�
A-C-DP 0 3 /4 10 /7 7 /4 2

A-MZ −0.07�5� 0.75�5� 1.49�5� 1.70�5� 1.93�5�
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FIG. 3. �Color online� Avalanche exponents for the anisotropic
MZ sandpile model in one dimension, averaged over 8�106 runs
�system size L=218�. �a� Spreading experiments �see Table III�. �b�
Avalanche size �main plot� and time �inset� distributions. Green
lines mark DP scaling, while red ones correspond to C-DP scaling.
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that we perform a numerical analysis �again, both SOC and
absorbing state experiments� using Eqs. �6�. A direct integra-
tion of Eqs. �6� in one dimension, using the recently intro-
duced integration scheme for Langevin equations with
square-root noise �21�, produces the exponents reported in
the first row of Table V �plots not shown�. All of them are
compatible with those of the microscopic MZ model and the
C-DP class �see Table I�. Changing the boundary conditions
during the integration we implement the reflecting or the
absorbing wall. For the former, we impose ��−x , t�=��x , t�
and E�−x , t�=E�x , t�, while for the absorbing walls ��x
�0, t�=0 and E�x�0, t�=0. The measured exponents, per-
forming avalanche and spreading experiments nearby a re-
flecting �absorbing� wall at 0 �results not shown�, are sum-
marized in the second and third rows of Table V. Again, the
exponents coincide within error bars with their correspond-
ing C-DP counterparts and exclude DP scaling �see Table II�.

Finally, we have studied an anisotropic version of the
equations by introducing a term proportional to ���x , t� into
both the activity and the energy equations �6�, obtaining
again excellent agreement with the one-dimensional C-DP
values �Table III�.

In summary, we have integrated numerically Eqs. �6� and
implemented the necessary modifications �i.e., include
boundaries or anisotropy� to perform the tests described in
the previous section. The obtained results are in excellent
agreement with those for the microscopic model, confirming
that �a� the Langevin equation derived in Sec. II is represen-
tative of MZ model and that �b� the MZ model is in the C-DP
class.

VI. CONCLUSION AND DISCUSSION

We have shed some light on the picture of universality in
stochastic sandpiles by confirming that, indeed, they all share
the same universal critical behavior. As hypothesized some
years ago, their critical features are captured by the set of
Langevin equations �1�, C-DP, describing in a minimal way
the phase transition into a multiply degenerated absorbing
state in the presence of a nondiffusive conserved field.

We have shown that the Maslov-Zhang sandpile, believed
before to exhibit a different type of scaling �directed perco-
lation like�, is actually in the C-DP class, in agreement with
the universality hypothesis. To reach this conclusion we have

performed large-scale simulations and introduced numerical
strategies to easily discriminate between DP and C-DP. In
particular, we have benefited from the fact that the, otherwise
very similar, DP and C-DP classes behave in radically differ-
ent ways both in the presence of walls and when anisotropy
is switched on.

We have also derived, in two different ways, an alterna-
tive set of Langevin equations �6� describing the Maslov-
Zhang sandpile. This set of equations is characterized by a
different form of local energy diffusion �the corresponding
current is proportional to energy gradients and not to activity
gradients as is the case in Eqs. �1��. By direct integration of
the stochastic differential set of equations �6�, we have
shown that it describes the same universality class as Eqs.
�1�—i.e., C-DP—despite of the formal differences in their
respective equations for the conserved field, hence leading to
a coherent global picture for the universality of sandpiles.
This result actually enlarges the C-DP universality class, al-
lowing one to embrace also different types of energy relax-
ation or redistribution dynamics, which includes also “chari-
table” versions of the MZ model. Instead, the “greedy”
version, characterized by “antidiffusion” �i.e., energy accu-
mulates on active sites�, is expected to be highly anomalous.

Our analyses have several general implications for the
C-DP universality class.

�i� Reflecting walls are not a relevant perturbation in this
class: avalanche and spreading exponents measured in the
vicinity of a reflecting wall coincide with their corresponding
bulk counterparts. The underlying reason for this remains to
be well understood.

�ii� Absorbing walls are relevant ingredients and affect the
corresponding surface critical behavior. In particular, ava-
lanches and spreading experiments performed nearby the
wall are characterized by exponents that differ from their
bulk counterparts.

�iii� Anisotropy in space is also a relevant ingredient. The
corresponding critical behavior is described by the set of
Langevin equations �1� �or, equivalently, Eqs. �6�� with an
extra term ���x , t� in both equations. Contrarily to the iso-
tropic case, the critical exponents in the anisotropic class are
known exactly in any dimension. The results coincide with
those of anisotropic interfaces in random media, confirming
once again the equivalence between the absorbing state and
the interface pictures for SOC sandpiles �13�.

It would be highly desirable to have a working
renormalization-group calculation allowing one to put all the
results discussed here on solid analytical grounds.
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TABLE V. Critical exponents for Eqs. �6�, with a reflective wall,
Eqs. �6� with an absorbing wall, and Eqs. �6� with an anisotropic
term.

d=1 � � � �t zspr �

Eqs. �6� 0.28�5� 0.21�5� 1.14�5� 1.21�5� 1.25�5� 0.14�2�
Eqs. �6�ref 0.36�5� 0.18�5� 1.12�5� 1.18�5� 1.29�5� 0.11�5�
Eqs. �6�abs −0.39�5� 0.85�5� 1.58�5� 1.85�5� 1.22�5� 0.15�5�
Eqs. �6�anis −0.01�2� 0.50�2� 1.39�5� 1.64�5� 1.98�2� 0.51�2�
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