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Short-time memories in a network with randomly distributed connections
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Coupled map lattices are able to store short-term memories when an external periodic input is applied. We
consider short-term memory formation in networks with both regular (nearest-neighbor) and randomly chosen
connections. The regimes under which single or multiple memorized patterns are stored are studied in terms of

the coupling and nonlinear parameters of the network.
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Coppersmith and co-workers have shown the existence of
a novel collective effect in lattices of coupled dynamical sys-
tems forced by external inputs: the system “remembers” the
inputs it receives for a transient period, but it coarsens and
eventually “forgets” those inputs [1]. This effect has been
called self-organized short-time memory and observed in a
sliding charge density wave experiment in NbSe; [1]. A
simple model for this situation consists of an overdamped
chain of masses connected by linear springs, one of its ends
being clamped and the other subjected to a periodic sequence
of impulses [2]. The short-time memories are the synchro-
nized response of the chain to the repeated train of driving
pulses: multiple memories (i.e., values of the input strength
which are echoed by the chain) are encoded during a tran-
sient time period.

The mass-spring chain with periodic impulses can be
mathematically described by a coupled map lattice (CML),
in which both space and time are discrete variables, but with
a continuous state variable [3]. A CML is composed basically
of a local dynamical unit that undergoes a discrete temporal
evolution, interacting with other units through a given cou-
pling prescription. The state variable may be interpreted as
the position of each mass inside a deep potential well with
respect to its equilibrium value. The coupling prescription is
given by the net Hookean force provided by the springs con-
necting nearest-neighbor masses, which also accounts for the
linear dynamical process at each discrete position.

Let xﬁl’) be the particle position at the ith potential well,
where i=1,2,...,N for a one-dimensional chain at discrete
time n=0,1,2,.... We consider linear springs of force con-
stant K and an external input signal consisting of impulsive
kicks applied at discrete times with strength (1+A,). The
sequence of A,, is assumed to have a given periodicity in time
and it constitutes the pattern that the network is supposed to
memorize. This memory is short termed because it lasts only
while the inputs are being applied, unlike a Hopfield type of
memory which minimizes an energy function in neural net-
works [4]. The corresponding CML is given by [1,2]

XD = XD in KD - 24D 4 (1440 (1)

n+ n

where int{z} is the largest integer less than or equal to z. For
linear springs the entire sequence of inputs is retrieved dur-
ing a transient period and just a few inputs are memorized
for long times. This limitation has been proved to be circum-
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vented by the use of slightly nonlinear springs: the CML (1)
has to be modified by replacing the state variable x inside the
int prescription by f(x)=x+Rx> with a small parameter R
<1 [5]. In this case multiple memories can be encoded for
long times, an effect also obtained using chains of linear
springs with small noise [6].

Although short-time memories were first described in
overdamped mass-spring chains, they have been shown to
occur in other systems like inductively coupled circuits [7],
and lattices with nonlocal couplings where the particles in-
teract with all other particles, their mutual interaction decay-
ing with the lattice distance in a power-law fashion [8]. The
common feature of these systems is that all are represented
by regular lattices, for which there is a kind of translational
symmetry of the coupling term.

However, there is a growing interest in the study of ran-
dom lattices, where the connections between sites (not nec-
essarily close to each other) are randomly chosen according
to a specified probability distribution [9]. Recent investiga-
tions on small-world networks have raised the need for lat-
tice models with both regular and random properties [10,11].
In the Watts-Strogatz lattices some of the regular couplings
(between nearest and next-to-nearest neighbors) are rewired
and connected to randomly chosen sites [11]. The Newman-
Watts models introduce such random shortcuts without re-
wiring [10,12]. This Brief Report addresses the existence of
short-time memories also in lattices with both regular and
random couplings obtained from the Newman-Watts proce-
dure.

We further modify the term within brackets in the cou-
pling prescription of the CML (1) to introduce the contribu-
tion of the nonlocal random shortcuts:

SO 226Dy 4 D)+ MO, )

where Mff)zE_i[f(x,(f))—f(xff))]lij, in which I;; is an adja-
cency matrix with entries 1 and O if the sites i and j have or
do not have a shortcut connecting them, respectively.

The adjacency matrix is symmetric (I;;=1;) and the non-
zero elements are randomly chosen according to a uniform
probability P, which turns out to be the ratio of the number
of nonlocal shortcuts N, and the total number N;=(N>-3N
+2)/2 of connections, excluding self-interactions and inter-
actions with nearest neighbors. We used a random number
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FIG. 1. Curvature variables for a lattice of N=10 locally
coupled maps of the form (1) with K=0.01. The kick amplitude was
switched from A, =35 to 10 in regular time intervals. R=(a) 0 and (b)
1078,

generator with uniform probability that gives a pseudoran-
dom number O=<r,=<1. After choosing the number of ran-
dom shortcuts N| we obtain the position (i,j) of the first
nonzero matrix element in the following way: i is the nearest
integer less than or equal to r,Ny; for j we use the same
procedure. However, if by chance j=i or i*= 1, we discard
this run and repeat the procedure until all N; nonzero matrix
elements are chosen.

For the sake of short-term memory formation it is neces-
sary that one of the ends of the chain is kept nailed, whereas
the end where the inputs are applied must be free. This
makes for mixed boundary conditions: xill):O, xle ) :xﬁlN ). In
order to satisfy this requirement, the elements of the adja-
cency matrix belonging to either the last row or column are
equal to zero, since the site at the free end is coupled only
with the site for which i=N-1.

The memorized patterns are retrieved from the discrete
curvature variables, defined as

e = KTAD) = 2/G0) + fU ) + MPL (3)

which are nothing but the coupling terms for each site of the
CML (1) without the prescription of taking the integer part.
The input amplitudes A, are considered memorized by the
lattice when the curvature variables for a number of sites
take on a constant value for a given time. Once the inputs
cease to be applied, the memories disappear very fast due to
the strong dissipative character of the lattice dynamics. We
assume that the external input is continuously being applied
to the chain after an initial time, which is also used as the
reference for counting the duration of the memorized pat-
terns. Hence transient and stationary are terms used with
respect to this initial time, assuming that the inputs never
cease to be applied.

We observe the formation of transient and stationary
memories for N=10 maps in a one-dimensional lattice with
local (nearest-neighbor) couplings of the form given by Eq.
(I). We choose an input train with amplitudes alternating
between A,=5 and 10 at constant time intervals of duration
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FIG. 2. Average time taken for the lattice to achieve a stationary
short-term memory as a function of the uniform probability P used
to obtain the adjacency matrix of the lattice with N=10 sites, and
the following parameters: R=0, A,=10, K=0.01. We consider 50
different random realizations of the adjacency matrix.

0.5 10°. The time evolution of the curvature variables for
all lattice sites is depicted in Fig. 1(a) in the case of linear
maps, for which there is a single stationary memorized value,
which is equal to either A, or 2+A,,.

The occurrence of stationary memorized values for the
curvature variables is a consequence of our having a fixed
point in the dynamics of the CML. From Eq. (1), the condi-
tion for having a fixed point x* implies the existence of a
single memorized value c* of the curvature variable given by
int(c*—1-A,)=0. We thus have that —1<c*-1-4,<1,
which gives us two inequalities to be satisfied if a memo-
rized value is possible: ¢*<2+A, or ¢*>A,,. In fact, accord-
ing to Fig. 1(a), we apply A,=5 during the first 0.5X 10
time instants, and the curvature variable increases from zero
to ¢*=5. During the next 0.5X10° time instants the
amplitude changes to A,=10 and the curvature variable in-
creases to match this value. However, during the following
0.5 10° instants the amplitude switches back to 5 and the
curvature variables decrease to settle down at ¢*=7, as pre-
dicted.

Stationary multiple memories are possible, however, if a
slightly nonlinear term is added [Fig. 1(b)]. We emphasize
that the latter result does not come from an insufficiently
long observation time: as shown in a previous paper the mul-
tiple memories represent stationary solutions of the dynami-
cal system (1) [5]. We claim that the memorized patterns
observed in purely regular lattices can also be possible if
random connections are added to the lattice, with some ad-
vantages with respect to regular lattices.

A relevant quantity here is the time 7 it takes for the
lattice to achieve a stationary memorized pattern. We observe
that, in the case of multiple memories, this time is different
for each memorized value. As can be seen in Fig. 1(a), the
approach to the stationary pattern is done in a staircase way.
The sites whose curvature variables are farther from the
common stationary value take more time to achieve this state
because they have to take on all the intermediate values.
Moreover, even this time also depends on the particular re-
alization of the randomly chosen entries of the adjacency
matrix. Hence a statistically reasonable quantity is the aver-
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age time it takes for all sites to achieve a stationary memory,
considering different random realizations for the adjacency
matrix.

In Fig. 2 we depict the average transient time 7 as a func-
tion of the uniform probability P used to obtain each realiza-
tion of the adjacency matrix. The fact that 7 decreases with
the probability can be qualitatively understood: the higher
the value of P is the more randomly chosen shortcuts are
found in the lattice. Since the achievement of a stationary
memory is essentially a coupling effect, it is not surprising
that the time it takes to get such a memory diminishes with
increasing P.

When a lattice stores multiple stationary memories, each
of them characterized by a given value of the curvature vari-
able, a useful quantity to describe this effect is the average
value of the curvature variable ¢; as well as its standard
deviation with respect to that mean, o. The averages are
taken over both the entire lattice and also by using different
initial realizations of the adjacency matrix. When the lattice
presents one permanent memory, the curvature average c; is
equal to the external input A,, with no variance at all (o,
=0), whereas it takes on a value less than A, when multiple
memories are present, and with positive variance (o7, >0).

The dependence of the average curvature value and its
variance with the coupling strength is depicted in Fig. 3 for
different values of the probability with which the adjacency
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matrix was built. In all cases the average value saturates at
¢;=10 (the same value of the external input) for strong
enough coupling, which represents a measure of the capacity
of the lattice to store a given memorized pattern. This satu-
ration occurs with different values of the coupling strength,
from K=2 for a lattice without shortcuts [Fig. 3(a)] to K
~(.5 for a lattice with shortcuts [Fig. 3(b)]. Moreover, the
variance next goes to zero at the saturation [Fig. 3(c)] and
increases afterward when P # 0 [Fig. 3(d)].

The influence of the lattice size N on the average curva-
ture variable and its variance is depicted in Fig. 4. The value
of ¢; decreases and ¢ increases with N for fixed values of A,
K, and R for both small P [Figs. 4(a) and 4(c)] and large P
[Figs. 4(b) and 4(d)], without essential differences. In both
cases we see that increase of the lattice size has a deleterious
effect on the process of memory formation, since the curva-
ture variable clusters at small values with likewise small dis-
persion, which may make the process nonfeasible for practi-
cal applications.

The formation of multiple stationary memories is of po-
tential use in, e.g., schemes for coding information in graphic
(pixel) matrices [5,7]. Hence it is important to know for what
parameter choices the lattice will store those multiple memo-
ries. We set a large time interval 7 and follow the curvature
variable in order to find whether or not we have stationary
memories for a given parameter set. We analyze the depen-
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FIG. 5. Parameter planes for
the lattice: the white regions cor-
respond to only one permanent
memory and the gray regions to
the formation of multiple memo-
ries. (a) PXR with K=0.01. (b)
P XK parameter plane with R
=107 Other parameters are A,
=10 and N=10.
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dence of the probability P on the nonlinearity parameter R in
Fig. 5(a), where the white region corresponds to values of P
and R such that the lattice presents one permanent memory,
the gray region corresponding to multiple memories. The
regular lattice case P=0 was formerly claimed to exhibit
such memories only for R # 0.

However, in Fig. 5(a), there appears an interval of values
(R<3x107'% without multiple memories. Moreover, with
increase of the probability P there are intervals for which
there is only one stationary memory, regardless of the dura-
tion 7. In the limiting case of P=1 there are plenty of short-
cuts and the lattice exhibits no multiple memories at all.
Hence the random shortcuts act collectively as inhibitors of
short-time memory formation. Essentially the same conclu-
sion holds if we consider as variable parameters the probabil-
ity P and the nonlinearity R [Fig. 5(b)].

In conclusion, we explored some aspects of the spatiotem-
poral dynamics displayed by a coupled map lattice with ran-
dom interactions, using an adjacency matrix with entries
chosen randomly with a given (uniform) probability which
can be varied in order to simulate networks with a variable
number of shortcuts per site. The memories are short termed
since they echo an external periodic input as long as it is still

being applied to the system. The memories are retrieved
from computation of the so-called curvature variable. Our
results point out two possible, and qualitatively different,
scenarios, single or multiple stationary memories, depending
on the parameters of the coupled map lattice. The latter sce-
nario is more interesting for possible applications like coding
of messages or graphical matrices. The existence of some
nonlinearity is a desirable (though not necessary) condition
for multiple memory storage. However, the presence of ran-
dom shortcuts turns out to be an inhibitory factor for this
effect, since the fraction of parameters for which multiple
memories exist diminish with increasing probability of ran-
dom shortcuts. In spite of this, the time it takes for stationary
memories diminish with this probability. We also show that
better results in terms of memory formation can be obtained
with relatively small lattices (fewer than 50 sites), in com-
parison with larger ones. This makes lattices with both regu-
lar and random connections appealing to store graphical
pixel matrices required for, e.g. image compression and stor-
age.
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