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Many difficult computational problems involve the simultaneous satisfaction of multiple constraints that are
individually easy to satisfy. These constraints might be derived from measurements �as in tomography or
diffractive imaging�, interparticle interactions �as in spin glasses�, or a combination of sources �as in protein
folding�. We present a simple geometric framework to express and solve such problems and apply it to two
benchmarks. In the first application �3SAT, a Boolean satisfaction problem�, the resulting method exhibits
similar performance scaling as a leading context-specific algorithm �WALKSAT�. In the second application
�sphere packing�, the method allowed us to find improved solutions to some old and well-studied optimization
problems. Based upon its simplicity and observed efficiency, we argue that this framework provides a com-
petitive alternative to stochastic methods such as simulated annealing.
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Difficult problems can often be broken down into a col-
lection of smaller, more tractable, subproblems. This is the
basis of the divide and conquer approach, which applies
when the initial problem and the subproblems have a similar
structure, and the global solution can be retrieved from the
solutions to the subproblems. Divide and conquer as a rule
leads to very efficient algorithms. However, many difficult
problems do not fit such an efficient framework.

For example, consider the problem of determining the
three-dimensional structure of a complex molecule given
clues about the distances between particular pairs of atoms
�from knowledge of chemical bonds, nuclear magnetic reso-
nance measurements, etc.�. As subproblems we might con-
sider the substructures formed by small groups of atoms,
since finding substructures satisfying local constraints is usu-
ally not challenging. However, the location and orientation in
space of the substructures depends intricately and sensitively
on their collective arrangement. Because the division into
subproblems in this case does not lead to a practical algo-
rithm, molecular geometry problems are usually transformed
into optimization problems through the definition of a global
cost function, and are then solved through stochastic optimi-
zation methods such as simulated annealing. Computerized
data assembly to find a sample configuration consistent with
a number of measurements, interpreted as constraints, has
applications well beyond molecular geometry �see, e.g.,
�1,2��.

In this paper we introduce a general method for solving
constraint problems that takes advantage of the division into
subproblems. In broad terms the method differs from sto-
chastic searches in that the configurations explored are gen-
erated iteratively and deterministically. Each iterative step is
defined by two fundamental operations. In the first operation,
the problem is divided into its constituent constraints, which
are then solved independently, ignoring possible conflicts be-
tween different constraints. In the second operation, conflicts
between constraints are resolved by consensus, regardless of
the satisfaction of the constraints. By a judicious application
of these two operations, we obtain a search strategy which, at
each step, solves all the subproblems separately and at the
same time seeks to resolve conflicts between their solutions.
We call this method divide and concur �D-C�.

The D-C approach can be applied to a wide range of
problems, both discrete and continuous. We first show how
D-C is applied to the Boolean satisfiability problem �SAT�,
a standard benchmark in computer science. In this problem,
the D-C approach exhibits similar scaling behavior to
WALKSAT, a leading SAT solver which outperforms general-
purpose algorithms such as simulated annealing �3�. As a
second example we study continuous sphere packing prob-
lems, which are formally similar to the molecular geometry
example mentioned above. The D-C approach matched or
improved upon the best-known packings in some well-
studied, two-dimensional problems. In 10 dimensions it also
discovered an interesting new sphere arrangement related to
quasicrystals. The D-C approach therefore combines advan-
tages of general purpose algorithms �versatility, simplicity�
with the performance of special purpose algorithms �such as
WALKSAT�.

In D-C the individual constraints are first expressed as
sets within a Euclidean space K. The constraint satisfaction
problem is interpreted as the geometrical problem of finding
a point in the intersection of multiple sets. The Euclidean
space provides the setting to define distance-minimizing pro-
jections to each of the N constraint sets. The projection op-
erators �Pi�i=1,. . .,N will be the building blocks of the algo-
rithm. Starting from an initial guess, one uses the projections
to probe the constraint sets and update the guess. This idea
has been studied in the context of convex constraint sets �4�.
Here we apply it to arbitrary, possibly nonconvex constraints.

Given N primary constraints expressed as sets in K, we
first define the product space KN, consisting of N copies �or
replicas� of K �5�. We then define, in the product space, the
“divide” constraint D �enforcing one primary constraint on
each replica� and the “concur” constraint C �enforcing rep-
lica concurrence� �4,6�. The associated projections, acting on
y=x�1� � x�2� � ¯ � x�N�, are

PD�y� = P1�x�1�� � P2�x�2�� � ¯ � PN�x�N�� , �1�

which acts separately on each of the replicas, and
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PC�y� = x̄ � x̄ � ¯ � x̄ , �2�

which replaces the value of each replica by the average value
x̄ of all the replicas. In defining the concurrence projection,
different weights �i may be assigned to different constraints,
i.e., x̄=�i��ix

�i�� /�i�i �7�. Changing the weights is equiva-
lent to changing the metric of the product space; this possi-
bility will prove beneficial even in problems where all the
constraints are formally equivalent. Note that both projec-
tions, PC and PD, act in a highly parallel sense: either by
treating independently each replica �PD�, or by treating inde-
pendently each variable across the replicas �PC�.

Through the product space construction the original con-
straint problem has been expressed as the problem of finding
a point in the intersection of two sets, both of which have
easily implemented projection operators. To proceed, we
need a search strategy that can use a pair of projection op-
erators �Pa and Pb� to seek the intersection of two sets. The
simplest approach is the alternating projections scheme,
where yn+1= Pa�Pb�yn�� �4�. Despite its success with convex
constraints and some nonconvex problems, the alternating
projections scheme is prone to getting stuck at fixed points
which do not correspond to solutions.

The difference map �DM� is an improvement upon alter-
nating projections which emerged in response to the noncon-
vex constraints arising in diffractive imaging �the phase
problem� �8�. It is defined by a slightly more elaborate set of
rules, namely

yn+1 = yn + � �Pa � fb�yn� − Pb � fa�yn�� ,

f i�yn� = �1 + �i�Pi�yn� − �iyn, i = a,b , �3�

with �a=−1 /� and �b=1 /�. The parameter � can have ei-
ther sign and is chosen to improve performance. If the itera-
tion reaches a fixed point y*, an intersection of the constraint
sets has been found. The solution ysol is obtained from the
fixed point using ysol= Pa � fb�y*�= Pb � fa�y*�. Note that the
fixed point itself is not necessarily a solution; in fact, there
typically is a continuum of fixed points associated with every
solution.

A limitation of the DM is that it can only search for the
intersection of two constraint sets. The DM was nevertheless
used recently to solve a variety of difficult computational
problems, including protein folding �9�, Boolean satisfiabil-
ity, diophantine equations, graph edge coloring, and spin
glasses �10�. For each of these problems it was possible to
find a reformulation in terms of only two constraints, usually
through the introduction of dual variables �as in linear pro-
gramming�. However, such a reformulation is not always
straightforward, nor is the dual variables approach always
applicable.

The D-C approach is defined by the use of the difference
map with Pa= PC and Pb= PD. It is similar in spirit to the
strategy used in �10�, as it also works by reformulating the
problem in terms of two constraints before applying the dif-
ference map. However, the divide and concur approach has
two significant advantages. The first advantage is that the
reformulation is general, straightforward, and problem inde-
pendent: Given N arbitrary constraint sets and their associ-

ated projection operators �Pi�i=1,. . .,N, Eqs. �1�–�3� provide a
systematic procedure to search for their intersection. This
results in broader applicability and reduced development
time. The second advantage is that divide and concur uses as
building blocks the projections to the individual constraints
defining the problem. This allows, for example, to control
easily the importance given to each constraint, as illustrated
in the packing problems below.

The Boolean satisfiability problem 3SAT is one of the
most extensively studied problems in constraint satisfaction.
The challenge is to find an assignment for Nv Boolean vari-
ables that satisfies a list of Nc Boolean constraints, or
clauses. Each clause is an OR statement involving three lit-
erals, �1∨�2∨�3, where each literal �i represents either one
of the Nv Boolean variables or its negation.

A D-C formulation of 3SAT is obtained by associating a
real-valued search variable to each 3SAT literal, where the
values �1, −1� are taken to mean �True, False�. The constraint
D requires that each clause is satisfied; that is, each literal
must have value �1, with at least one literal per clause hav-
ing value 1. In other words, to each clause corresponds a
variable triplet, which is projected by PD to the nearest of the
seven satisfying assignments for this clause. Geometrically,
these correspond to seven vertices of a cube. In this applica-
tion PC ensures that all literals associated with the same
Boolean variable concur �with due regard to negations�.
Since each constraint �clause� involves only three variables,
the reduced search space �see Ref. �5�� has dimension 3Nc.
For simplicity, we give equal weight to each constraint
��i=1�.

We compared the performance of the D-C algorithm with
WALKSAT �3� on a collection of 3SAT problem instances
ranging from Nv=50 to Nv=25 600, with fixed ratio �
�Nc /Nv=4.2, a value for which randomly generated in-
stances are expected to be difficult �11�. In this regime,
WALKSAT is a convenient benchmark algorithm as it is known
to scale similarly to survey propagation up to very large
problem sizes �12–14�, is well characterized, and provides a
uniform solving strategy for problems of various sizes. Ran-
dom instances were generated using the program MAKEWFF

�distributed with WALKSAT�, and instances that were not
solved by either WALKSAT or the D-C algorithm were dis-
carded. Each algorithm was applied 10 times to each in-
stance, starting from different random initial conditions. The
median number of variable updates required to find the so-
lution is plotted in Fig. 1. The number of variable updates in
WALKSAT equals the total number of flips of the Boolean
variables. In the D-C algorithm it is the total number of
nonzero updates of any of the real-valued search variables
�literals�.

Figure 1 shows that WALKSAT �with the “noise” parameter
fixed at the value p=0.57� and the D-C algorithm �with
�=0.9� have similar performance behavior. Not only do they
both find the same problems easy and the same problems
hard �which is not unexpected�, but the scaling of the number
of variable updates needed to reach the solution, as a func-
tion of problem size, is also similar. Such a similarity is
surprising, considering the difference in search strategies.
WALKSAT uses pseudorandom processes �or “noise”� to up-
date the variables asynchronously. In D-C, on the other hand,
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the update rule is completely deterministic and is applied
synchronously to many variables. Figure 1 also shows that
choosing suboptimal parameters for either algorithm results
in rapid performance degradation for large problem sizes.
Even though the scaling of the variable updates are similar
for WALKSAT and D-C, our implementation of D-C required
significantly more CPU time �between 4 and 200 times, de-
pending on the instance� than WALKSAT. Work on an opti-
mized implementation of the D-C algorithm is in progress
and should allow an easier characterization of the behavior
of the method for larger problem sizes and comparison with
both WALKSAT and survey propagation.

Another constraint problem that has been extensively
studied is the packing of n spheres in a finite D-dimensional
volume V �see, e.g., Refs. �15,16�, and references therein�.
The constraint formulation of this problem is more directly
geometrical than Boolean satisfiability. Since each sphere
must avoid n−1 other spheres and lie within V, there
are altogether n constraints per sphere. The reduced search
space �5� requires one D-dimensional variable replica for
every sphere participating in a constraint, for a net search
space dimensionality of Dn2.

Within the framework of D-C there is a formal similarity
in the constraint structure of packing spheres and 3SAT. Just
as every Boolean variable is constrained by each of the
clauses where it occurs, every sphere in a packing has a
volume exclusion relationship with each of the other spheres
in the packing: 	xa−xb 	 �mab. This similarity and the suc-
cess of D-C with 3SAT is strong motivation to apply D-C to
the sphere packing problem.

Near the solution of any n-sphere packing problem, the
number of relevant exclusion constraints �contacting pairs�
grows only as n �for fixed D� while the total number of

constraints is O�n2�. In the D-C approach it is possible to
increase the weight of these relevant pairs by dynamically
adjusting the corresponding metric weight �ab. This results in
considerable performance improvement compared to a uni-
form, static weight version. At the end of each DM step we
used �ab→��ab+ �1−��exp�−�dab�, where dab is the current
distance between the pair �17�. We used the value �=0.99 to
ensure that the metric update is quasiadiabatic �i.e., slow on
the time scale of variable updates�, and �
30.

We first consider the problem of finding the densest pack-
ing of n equal disks of diameter m in a unit square. This
problem is quite challenging, due to the coexistence of many
different arrangements with similar density. We tested the
D-C algorithm for each value of n in the range 3–199. For
each n, we generated up to 400 random initial guesses. For
each initial guess, a small value of the diameter m was
chosen, and a packing was sought using �=−1. When a so-
lution was found, m was increased, and the process was re-
peated until the algorithm failed to find a packing, or until

(a)

(b)

FIG. 2. �Color online� An example of an improved packing for
169 disks in a square found by the D-C algorithm. The figure at the
top �a� shows the previously best-known packing �16�, with density
0.8393. The density of the improved packing shown at the bottom
�b� is 0.8399. Contacts are shown with dotted lines; colors indicate
the number of contacts.

FIG. 1. �Color online� Median number of variable updates
needed to find a solution for WALKSAT �WS� and divide and concur
�D-C� on the same set of random 3SAT instances with �=4.2. Each
median was calculated by solving the same instance 10 times start-
ing from different random initial guesses, for parameter values
�=0.9 �D-C� and p=0.57 �WALKSAT�. Variations resulting from
changing � and p are indicated by the shaded areas; both methods
exhibit parameter sensitivity for problems with more than 104 vari-
ables. A point at the top edge indicates that the median exceeded the
cutoff on the number of updates, 3	1010.
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the best-known packing diameter m� �from Ref. �16�� was
reached. In the latter case the target was increased beyond m�

with the hope of finding a denser packing. No information
about the best-known packings was used, apart from their
densities.

For 143 of the 197 values of n a packing with diameter
close to the optimal packing �m�m�−10−9� was found.
More surprisingly, improved packings were found in 38
cases. The smallest n for which an improved packing was
found is 91. The largest improvement was for n=182, for
which a packing was found with m=m�+4.6	10−5. For 28
values of n a packing was found with m�m�+1	10−6. An
example of such an improved packing is shown in Fig. 2. See
Ref. �18� for figures and coordinates of the other improved
packings.

When packing many disks the optimization challenge is
easy to identify as a contest between close packing in the
bulk and an efficient match to the boundary. In higher dimen-
sions the structure of the solution is not so easily character-
ized, and we can look to the D-C method as an unbiased tool
for exploration. A classic problem in geometry is to deter-
mine kissing numbers 
D: the maximum number of unit
spheres that can be packed in D dimensions, so that each
contacts a given unit sphere. Early investigations of this
problem were stimulated by a debate between Newton and
Gregory, who disputed the value of 
3. The only known kiss-
ing numbers are 
1=2, 
2=6, 
3=12, 
4=24, 
8=240, and

24=196 560. In dimension 1–8, and also 16–24, the best-
known lower bounds on 
D are given by the number of mini-
mal vectors in the unique laminated lattice of the same di-
mension �15�. For dimension 9–15 the best bounds are
obtained from constructions based on error-correcting codes
�15�. Discoveries of packings in higher dimensions has for
the most part been achieved through mathematical inspira-
tion. Unbiased searches, defined only by the basic con-
straints, have to our knowledge not been attempted beyond
dimension 5 �19�. This raises the possibility that interesting
packings in high dimensions may have escaped detection
only for lack of imagination.

With minimal adjustment to the above procedure for find-

ing disk packings, we were able to find kissing arrangements
as good as the best known in dimension 2–4, 6, and 8. After
introducing just the assumption of inversion symmetry, opti-
mal packings were obtained in all dimensions up to 8. Our
searches in higher dimensions have so far revealed an inter-
esting packing of 384 spheres in dimension 10. An analysis
of the coordinates obtained by the algorithm has revealed
that 378 sphere positions form a structure where all cosines
lie in a set that includes irrational numbers:
��1, �1 /2, ��3��3� /12,0�. The six remaining spheres
are accommodated in holes of this structure and have con-
tinuously varying cosines. The construction has a strong re-
lationship to quasicrystals, and will be further explored in a
separate paper �20�. See Ref. �18� for the coordinates of this
structure. Finally, the algorithm has so far been unsuccessful
in discovering the best-known kissing arrangement in 10
dimensions, with kissing number 500.

The divide and concur approach provides a natural frame-
work in which to address various hard computational prob-
lems. In two benchmark applications, 3SAT and sphere pack-
ing, the D-C approach compares with, and in some cases
improves upon, state-of-the-art specialized methods. The
uniform search mechanism provided by the difference map
makes the D-C approach almost as easy to implement as
general-purpose sampling algorithms such as simulated an-
nealing. Most of the problem-specific development needed,
in this framework, is the definition of the appropriate projec-
tion operators. We believe the latter are able to exploit im-
portant elements of the problem structure not accessed by
stochastic sampling, and that this accounts for the superior
performance of D-C. The difference map has already proven
its utility in using experimental data sets as constraints on the
possible nature of a sample �21�. The ability of D-C to as-
semble, in a straightforward and efficient manner, arbitrary
number of constraints opens up a promising avenue to inter-
pret results from experiments involving multiple measure-
ments.
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