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We investigate the process of biopolymer translocation through a narrow pore using a multiscale approach
which explicitly accounts for the hydrodynamic interactions of the molecule with the surrounding solvent. The
simulations confirm that the coupling of the correlated molecular motion to hydrodynamics results in signifi-
cant acceleration of the translocation process. Based on these results, we construct a phenomenological model
which incorporates the statistical and dynamical features of the translocation process and predicts a power-law
dependence of the translocation time on the polymer length with an exponent ��1.2. The actual value of the
exponent from the simulations is �=1.28�0.01, which is in excellent agreement with experimental measure-
ments of DNA translocation through a nanopore, and is not sensitive to the choice of parameters in the
simulation. The mechanism behind the emergence of such a robust exponent is related to the interplay between
the longitudinal and transversal dynamics of both translocated and untranslocated segments. The connection to
the macroscopic picture involves separating the contributions from the blob shrinking and shifting processes,
which are both essential to the translocation dynamics.
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I. INTRODUCTION

Translocation of biopolymers, such as DNA and RNA,
plays a vital role in many important biological processes,
such as viral infection by phages, interbacterial DNA trans-
duction, or gene therapy �1�. This has motivated a number of
in vitro experimental studies, aimed at exploring the translo-
cation process through protein channels across cellular mem-
branes �2,3�, or through microfabricated channels �4�. In par-
ticular, recent experimental work has focused on the
possibility of fast DNA sequencing by “reading off” the
DNA bases while tracking its motion through nanopores un-
der the effect of a localized electric field �5,6�.

The translocation of biopolymers is a complex phenom-
enon involving competition between many-body atom-atom
interactions and fluid-atom hydrodynamic coupling, as well
as the interaction of the polymer with wall molecules in the
nanopore. Although some universal features of the transloca-
tion process can be analyzed by means of suitably simplified
statistical models �7–10�, and nonhydrodynamic coarse-
grained or microscopic models �11–14�, a quantitative de-
scription of this complex phenomenon calls for realistic,
state-of-the-art computational modeling. Work along these
lines has been recently reported by several groups, beginning
with the first multiscale simulations by the present authors
�15,16�, followed by Langevin dynamics simulations �17�
and more recently by coupled molecular-fluid dynamics
�18,19�. Specifically, Forrey and Muthukumar performed
Langevin dynamics simulations, and examined single-file as
well as multifile translocation �17�. Izmitli et al. used a
coupled lattice Boltzmann–molecular dynamics scheme �18�,
as outlined in �15,16�, and reproduced our early results,
while exploring a smaller range of chain lengths and en-

semble size. These recent works have provided a wealth of
new computational results and detailed insight into the prob-
lem of translocation through nanopores. In addition to these
studies, Slater and co-workers have investigated the translo-
cation process numerically by also including hydrodynamic
interactions �20�. However, these authors treat the cases
where no external field is applied, thus comparison with our
work cannot be made at this point.

In this work, we report a synthesis of the simulational
result into a coherent mean-field analytical model which cap-
tures the basic physical mechanisms behind the translocation
process. The model is based on extracting the scaling behav-
ior of translocated and untranslocated segments, including
the anisotropy between longitudinal and transverse compo-
nents. The analytical model predicts a power-law scaling be-
havior of translocation time with polymer length with expo-
nent ��1.2, which is very close to the one found in the
current ��=1.28�0.01� and other ��=1.28�0.03 �18��
simulations and in experiments of DNA translocation
��=1.27�0.03 �6��.

The paper is organized as follows: In Sec. II we provide
an overview of our simulational approach. In Sec. III we
discuss the choice of simulation parameters that make our
simulations relevant to DNA translocation through nanop-
ores and the implications for the implied time scales and
length scales of the system. In Sec. IV we discuss the results
of the translocation simulations, paying particular attention
to the anisotropy of longitudinal and transverse components
of the translocating polymer in both the untranslocated and
translocated segments. Section V presents the analytical
mean-field model and its comparison to the simulations. We
conclude in Sec. VI with some comments on what may be
the limitations of the mean-field picture and a summary of
our results.
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II. MULTISCALE MODEL

Our multiscale method is based on the coupling between
constrained molecular dynamics �MD� for the polymer evo-
lution and a lattice Boltzmann �LB� treatment of the explicit
solvent dynamics �21,22�. In contrast to Brownian dynamics,
the LB approach handles the fluid-mediated solute-solute in-
teractions through an explicit representation of local colli-
sions between the solvent and solute molecules. We will fo-
cus on the fast translocation regime, in which the
translocation time � is much smaller than the typical relax-
ation �Zimm� time of the polymer toward its native �mini-
mum energy, maximum entropy� configuration. This regime
cannot be captured by a simple, one-dimensional Brownian
model �23� or a Fokker-Planck representation.

Translocation is induced by the constant electric field E�

acting along the x direction localized in a region near the
pore. The dynamics of the beads which constitute the mol-
ecule are governed by the equation

mb
dv� i

dt
= F� tot,i = F� c,i + F� drag,i + F� r,i + F� �,i + F� drive,i, �1�

with F� tot,i the total force on bead i. F� c,i is a conservative
force describing the sum of bead-bead and bead-wall inter-

actions; F� drag,i is the dissipative drag force due to polymer-
fluid coupling given by −mb��v� i−u� i� with � the friction co-
efficient and v� i, u� i the bead and fluid velocities at the position

r�i of bead i with a mass mb; F� r,i is a random force on bead i

with zero mean; F� �,i is the reaction force resulting from N0
−1 holonomic constraints for molecules modeled with rigid
covalent bonds, with N0 the number of beads in the polymer;

and F� drive,i is the driving force representing the effect of the

external field E� , equal to qE� g�r�i� with q an effective charge,
which acts only on beads in the pore region. The region over
which the external field acts is described by the function
g�r�i�, which is 1 for r�i within this region and 0 otherwise; the
extent of this region is chosen to be a cube of side 3�x
�shown by the green shaded region in Fig. 1�, where �x is
the lattice spacing.

For the bead-bead interaction, other than that between
consecutive beads, and for the bead-wall interaction we
choose separately a truncated Lennard-Jones potential �repul-
sive part only �24��,

V�r� = �4���	

r
	12

− �	

r
	6
 if r 
 rcut,

0 if r � rcut.
� �2�

In this expression, r is the bead-bead or bead-wall distance.
In both cases the potentials are truncated at the cutoff dis-
tance rcut=21/6	. The chosen parameters 	 and � are 1.8�x
and 10−4�m�x /�t2 for the bead-bead interactions and 1.5�x
and 10−4�m�x /�t2 for the bead-wall interactions. The pa-
rameters are given in LB units as explained in Sec. III. The
distance between consecutive beads along the chain repre-
senting the macromolecule is set to b=1.2�x through a con-
straint imposed by the SHAKE algorithm �25�. The geometry
of the pore region is shown schematically in Fig. 1. The fluid

is represented through lattice Boltzmann particles that reside
on a three-dimensional cubic lattice with spacing �x. The
probability distribution fp�x� , t� denotes the number of par-
ticles at the lattice position given by x� at time t, and evolves
in space and time toward the equilibrium distribution fp

eq and
with relaxation frequency �, as

fp�x� + c�p�t,t + �t� = fp�x�,t� − ��t�fp − fp
eq��x�,t�

+ Fp�t + Gp�t . �3�

The LB particles can only move on the lattice with fixed
first- and second-neighbor speeds c�p �19 in all, for a three-
dimensional �3D� cubic lattice�, while Fp represents thermal
fluctuations and Gp describes the polymer-fluid back reaction

Gp�x�,t� = wp �
i�D�x�

�F� drag,i + F� r,i� · c�p �4�

with wp a set of weights normalized to unity, and  the
inverse fluid temperature. Finally, D�x� denotes the lattice
cell to which the ith bead belongs. Details on the numerical
implementation of the scheme have been reported in Ref.
�15�.

Compared to other numerical methods, the present lattice
Boltzmann–molecular dynamics �LB-MD� scheme has cer-
tain computational advantages, namely, it permits us to take
into account self-consistent hydrodynamic correlations at
computational cost scaling linearly with the polymer length.
This allowed us to simulate long chains in 3D over large
statistical ensembles at an affordable computational cost. We
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FIG. 1. �Color online� Illustration of the interactions in the DNA
translocation model: The beads representing the DNA are shown as
small black dots connected by straight line segments, the wall is
represented by a plane of on-lattice points �small white dots sepa-
rated by the lattice spacing �x� which repel the DNA beads within
a range of interaction. The bead-bead interactions are indicated by
the blue spheres surrounding the small black ones, defined in Eq.
�2�, except for the distance between consecutive beads which is
fixed at b. Interactions between the beads and the wall are indicated
by the red spheres surrounding the small white ones, defined in Eq.
�2�. Interaction between the beads and the constant external field are
confined over a shaded �in green� region around the pore �see text
for details�.

FYTA et al. PHYSICAL REVIEW E 78, 036704 �2008�

036704-2



simulate polymers of various sizes and as large sample real-
izations as our computational resources permit; specifically
we considered sizes of N0=20 �1000�, N0=50 �1000�, N0
=100 �500�, N0=200 �300�, N0=300 �300�, N0=400 �200�,
N0=500 �150�, where the numbers in brackets are the sample
realizations.

III. CHOICE OF THE SIMULATION PARAMETERS

We discuss next the details of the choice of parameters in
the model so that our simulations are relevant to DNA trans-
location through nanopores, as observed in typical experi-
mental setups �6�. The simulations are performed in a three-
dimensional box which contains the polymer and the fluid
solvent, and has a size Nx�Nx /2�Nx /2 in units of the lat-
tice spacing �x; we used Nx=80 for polymers of size N0

400 beads. The separating wall is located in the midsection
of the x direction, at x /�x=Nx /2, with a square hole of side
3�x at the center through which the polymer translocates
from one chamber to the other. At t=0 the polymer resides
entirely in the right-hand chamber at x /�x�Nx /2, with its
one end at the pore region along the streamline �x� and cross-
flow �y ,z� directions. The LB time step is �t and the MD
time step is �t /5.

In order to have a plausible representation of DNA, we
choose the separation between consecutive beads to be b
=50 nm, the persistence length of double-stranded DNA.
Since we defined b=1.2�x, this gives for the lattice spacing
�x=42 nm. Since the repulsive interaction between the
beads and the wall involved the parameter 	w=1.5�x, and
the pore is a square of size 3�x, this produces an effective
hole of size 5 nm through which the polymer translocates.
Having set the value of �x, we choose the time step so that
the kinematic viscosity is expressed as

�w = �LB
��x�2

�t
,

with �w the viscosity of water �10−6 m2 /s� and �LB the nu-
merical value of the viscosity in LB units; taking �LB=0.1
produces a time step of �t=160 ps.

The above choice for the lattice spacing and time step
fixes the lattice speed c���x /�t�250 m /s, which is rea-
sonably close to the solvent thermal speed �kT /mw
500 m /s. It is instructive to compare the lattice speed, c,
with the typical propagation speeds of the main phenomena
of interest in the translocation process. These are the follow-
ing:

�i� the translocation speed b�dN /dt�10−3 m /s;
�ii� the electric drift speed �qE� / �mbp�bp�0.3 m /s;
�iii� the base-pair thermal speed �kT /mbp70 m /s;

where we have used the following reference values for the
base-pair translocation rate dN /dt107 bp /s, the strength of
the force due to the external field qE10 pN, the mass of a
base pair mbp in terms of the mass of the water molecule mw,
mbp30, mw600 amu, the drag coefficient for a base pair
�bp=3�1013 s−1 �26�, and T=300 K for the temperature.
These order-of-magnitude estimates indicate that the present
choice of space and time units is such that the corresponding

speed, u, fulfills the numerical stability Courant-Friedrichs-
Lewy �CFL� condition, u�c.

In LB simulations mass units are fixed by the mass den-
sity of the fluid species �w. Setting the LB mass density
�LB=1.0 corresponds to having a number of water molecules
�w�x3 /�LBmw=2�106, where �w is the density of water, and
each lattice site contains a solvent mass �m=�w�x3 /�LB.
Since we are using a continuum-kinetic representation of
fluid flow at the nanoscale, a necessary condition for this
representation to hold against statistical noise is that the
above ratio be much greater than unity. Given the fact that
we have 19 discrete distributions, f i per cell, each of them
would represent about 105 water molecules, a safe value to-
ward satisfying this condition.

The prime goal of the mapping procedure is to secure the
correct values of the major dimensionless parameters gov-
erning the physics of the translocation process. In particular,
this regards the ratio of external drive to thermal forces
which we will call �, defined as

� �
qEb

kT
. �5�

The value of this quantity in actual experiments is �
1–10 �6�. In our simulations, we took kT=10−4 and qE
=0.01 acting on one bead, mapping �100 base pairs. These
quantities are again given in LB units. At a base-pair level,
this means qE=10−4, corresponding to �=1, in satisfactory
order-of-magnitude agreement with experiments. With this
value of the driving force and the polymers studied in the
present work, a typical translocation event takes place in a
time interval on the order of 103–104 LB time steps.

In the simulations we define the effective mass of the
beads to be mb=1. A straightforward calculation shows that
the ratio of the effective bead mass to the mass resulting
from the DNA coarse graining, that is, one bead representing
100 base pairs, is 700. On the other hand, the parameter
relevant to momentum exchange is the bead friction �. We
chose �=0.1 in LB units, so that the ratio between friction in
physical units and the experimentally determined one ��bp
=30 ps−1 �26�� is 10−4. Our choice was dictated by the crite-
rion of numerical stability ��1 /�t=6�109 s−1. These fac-
tors taken together show that the bare particle mobility, �
=1 / �mb��, is a factor of 15 larger than the experimental one.
This is equivalent to an underdamped motion of the macro-
molecule, which results in smooth particle trajectories and
allows for algorithmic stability without affecting the long-
time behavior of the polymer. A possible alternative would
be to solve the polymer dynamics in overdamped �Brownian�
form which also circumvents the small time step issue im-
posed by the frictional damping �27–29�. Our choice to use
inertial dynamics was based on previous experience with
similar systems, without hydrodynamic interactions, which
showed that the inertial dynamics approach has a slight ad-
vantage in stability with larger time-step size.

IV. TRANSLOCATION SIMULATIONS

We report next the results of extensive simulations of
translocation events. In each case, the translocation time ex-
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hibits a statistical �not exactly Gaussian� distribution around
the most probable translocation time, in close analogy to
experimental observations �2,3,6�. According to these stud-
ies, a 48.5 kbp double-stranded DNA takes about 2 ms to
translocate, while a typical Zimm time is about 700 ms. Fig-
ure 2 shows the dependence of the most probable transloca-
tion time � on the polymer length, which obeys a superlinear
scaling relation, ��N0

�. The observed exponent, with the
molecule-fluid coupling in operation, ��1.28�0.01 is in
very good agreement with recent experiments of DNA trans-
location through a nanopore driven by an external electric
field, where ��1.27�0.03 �6�.

In the absence of coupling between the molecule and the
solvent, the translocation process is slowed down, as indi-
cated by a higher exponent, ��1.36�0.03. We propose that
in the presence of polymer-solvent coupling some form of
bead-bead screening takes place, the biopolymer never trans-
locates in the form of a linear chain, as this configuration is
entropically suppressed. The physics of the larger exponent
�slower motion� in the absence of hydrodynamics is related
to enhanced correlation effects and a wider range of polymer
fluctuations.

In Fig. 3 we show an ensemble of 100 polymer configu-
rations at three different instants, referring to the initial, mid
point, and final stages of translocation. From this figure it is
clear that, initially, the shape of the untranslocated �U� seg-
ment is squeezed against the wall and takes the form of an
oblate ellipsoid. The translocated �T� segment appears to be
more compact and prolate. The tendency of the U segment to
be attracted to the wall is in line with the well-known “mush-

room” shape arising from a polymer anchored at one end to
a repulsive wall �30,31�. To investigate the consequences of
this anisotropy, we have inspected the scaling of the gyration
tensor with the number of monomers for the U and T seg-
ments separately, with time, according to

RI,��t� � �NI�t���I,� �I = U,T; � = � , � � , �6�

where �= � ,� denotes the longitudinal and transverse com-
ponents of the gyration tensor, with respect to the direction
of translocation. This scaling is shown in Fig. 4, from which
we observe that for NU�100 the transverse component RU,�
follows a dynamic scaling law with �U,��0.6, close to the
Flory exponent of a 3D self-avoiding random walk, while the
longitudinal one exhibits a much weaker dependence on NU
�smaller slope�. The T segment follows a similar trend, but
with a transverse component scaling with �T,��0.5.

The fluid-biopolymer system can be approached as an ex-
tended dynamical system consisting of two components:
This system receives energy from the exterior through a lo-
calized electric field acting on the polymer and dissipates it
via interaction of both the fluid and the polymer with the
wall. Each bead is subject to the following forces: �a� The

localized drive F� drive,i, �b� the dissipative drag F� drag,i, �c� the

pore drag F� pore,i, and �d� the entropic forces. At equilibrium,
the latter can be expressed as

Fentr 
kBT

b

1 − 2r

r�1 − r�
, �7�

where r�t��NT�t� /N0 is the translocation coordinate �7� and
b is the separation between two beads. Here, we have used
an explicit dependence on r simply to show that entropic
forces are negligible most of the time, except at both ends
�initiation and completion� of the translocation process.
These forces are naturally measured in terms of the thermal

10 100 1000
N0

10
3

10
4

τ

FIG. 2. �Color online� Scaling of the translocation time � with
the number of beads N0, in the presence �circles� or absence
�squares� of coupling between the molecule and the solvent. The
exponents are 1.28�0.01 and 1.36�0.03, respectively.

FIG. 3. 3D view of an ensemble of 100 polymers with N0

=300 at different stages of the process: A, B, and C correspond to
the initial, midpoint, and final translocation times.
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FIG. 4. �Color online� Longitudinal �filled circles� and trans-
verse �open squares� components of the gyration tensor for �a� the
U and �b� the T segment with the number of untranslocated �NU�
and translocated �NT� beads, respectively. The dashed lines show
the scaling.
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force, Fth=kBT /b. In the fast translocation regime considered
in this work, Fdrive /Fth�1, yielding bFdrive /kBT102 for the
parameters used. Pore forces are negligible in our simula-
tions, due to the small pore size. For the entropic forces,
Fentr /Fth�1−2r� / �r�1−r��, which shows that they can be
neglected except at the early �r�t�→0� and final �r�t�→1�
stages of the process. With entropic forces and pore dissipa-
tion negligible, the forces guiding the translocation are the
hydrodynamic drag and the drive from the external electric
field.

Hydrodynamics is expected to provide a cooperative
background, helping to minimize frictional effects. For quan-
titative insight into this, we monitor the synergy factor, de-
fined as the work per unit time made by the fluid on both
parts �I=U or T� of the polymer,

SH
�I��t� =

dWH
�I�

dt
= ���

i

NI

v� i
�I��t� · u� i�t�� , �8�

where the angle brackets denote averages over different re-
alizations of the polymer for a given length. Positive �nega-
tive� values of SH

�I��t� indicate a cooperative �competitive�
solvent, respectively. The variation of SH

�I��t� with time is lin-
ear �Fig. 5�a��, while the total rate SH�t�=SH

�T��t�+SH
�U��t� on

the whole chain is constant with time indicating that the
work per unit time associated with the change of the radii of
the two blobs is constant. The probability distribution of
SH�t� during translocation �Fig. 5�b�� indicates that hydrody-
namics turns the solvent into a cooperative environment: The
distribution lies entirely in the positive range. This coopera-
tive effect is the underlying reason for the faster transloca-
tion process in the presence of hydrodynamic interactions.
Similarly, the work done per time step by the electric field on
the polymer can be defined as

SE�t� =
dWE

dt
= ��

i

F� drive,i · v� i�t�� . �9�

The average of SE�t� is positive �Fig. 5�a��. However, the
negative tail of the corresponding probability distribution in
Fig. 5�b� indicates that there is a non-negligible probability
to find beads moving against the electric field. On average,
SE�t� is also constant with time �except very near the comple-

tion of the translocation� denoting that the beads traverse the
pore with basically the same speed at all times. The average
hydrodynamic work per time is larger than the input of the
external electric field, since the latter only acts on a very
small fraction of the beads, about four resident beads within
the pore region.

V. PHENOMENOLOGICAL MODEL

We next present a phenomenological model for the scal-
ing exponent of the translocation time in the presence of the
solvent. We first consider Eq. �1� and multiply both sides of
the equation with the bead velocity v� i. Summing up over all
beads, using the fact that the velocities are uncorrelated with

the random forces F� r,i and that F� �,i produces no work, we
obtain

dK

dt
= �dW

dt
	�1�

+ �dW

dt
	�2�

+ SE�t� , �10�

where K is the kinetic energy of the polymer and the right-
hand side of this equation contains the change in energy of
the U and T sections of the polymer due to the mechanical
work, W�1�, the viscous drag, W�2�=SH−2�K, and the rate of
work done by the electric field, SE. By writing Eq. �10� we
assume that the translocation time ��N0� for the entire poly-
mer is determined by two separate contributions. The first
stems from the change in free energy of the polymer due to
the removal of beads from the U side and their addition to
the T side. The second term arises from shifting the center of
mass of each blob from the initial position toward �for the U
part�, or away from �for the T part�, the pore entrance.

The simulations reveal that SH and SE are each indepen-
dently constant in time to a very good approximation. This
holds for both the average values over all samples �see Fig.
5�a�� and for any polymer realization. The average K �not
shown� is also approximately constant, as the temperature is
constant, leading to dK /dt=0.

Regarding the mechanical work W�1�, simulation data
show that, except for a short-lived transient at the beginning
and final part of the process, the rate of removal and/or ad-
dition of beads is linear in time. Similarly, for the viscous
drag the shift of the center of mass takes place at constant
velocity, as illustrated in Fig. 5 by the two individual com-
ponents SH

�U��t� and SH
�T��t�, both of which show linear behav-

ior. Since the two contributions can be viewed as indepen-
dent components of the work, we separately analyze their
effects on the scaling dependence.

In order to estimate the work required to shrink and/or
grow the two blobs, we now introduce a macroscopic picture
according to which, for a spherical blob of radius RI, surface
AI, and volume VI the work is dWI

�1�= PIdVI+	�dAI with 	�

the average surface tension and PI=2	� /RI the pressure act-
ing on the blob �Laplace equation�. Given the anisotropy of
the I=U and T segments, the above relation generalizes to
dW�1�=�I��=�,��I,�RI,�dRI,� with �I,� collecting all con-
stants. More explicitly, RU,�dRU,�NU

2�U−1dNU and
RT,�dRT,�NT

2�T−1dNT, with �U�0.6 and �T�0.5, where
the longitudinal components of both U and T segments have
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ability distributions of SH ,SE during translocation events. Curves
are averages over 100 events for N0=300.
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been neglected in view of their much weaker dependence on
the number of beads. The rate of work on the entire polymer,
consisting of the U and T blobs with radii given by Eq. �6�,
takes then the form

dW�1�

dt
= ��T,�

2 N0
2�Tr2�T−1dr

dt
− �U,�

2 N0
2�U�1 − r�2�U−1dr

dt
	 ,

�11�

with r=NT�t� /N0. Since dW�1� /dt is constant, integration of
the above expression, with r� �0,1� and t� �0,��, leads to
the scaling of the total translocation time, �N0

2�U. It is
worth mentioning that, at variance with a previous argument
�6�, our macroscopic picture does not require that each blob
be in a state of mechanical equilibrium. In fact, it is clear
from Fig. 3 that at the end of translocation the blob is defi-
nitely not in equilibrium.

We next consider the viscous drag due to the net motion
of the blob relative to the fluid, which can be computed by
the global friction experienced by the whole set of N0 mono-
mers Fdrag=�i=1

N0 ��ui−vi�, where again vi is the bead velocity,
ui is the fluid velocity at the monomer location, and � is the
friction coefficient. This is best recast in the form of an ef-
fective friction coefficient Fdrag=−�effV, where V is the
center-of-mass velocity of the blob. As is well known �32�, in
the absence of hydrodynamic correlations all monomers be-
have independently, so that �eff scales like N0. On the other
hand, when hydrodynamic correlations are included, the in-
ner monomers are screened out from the outer ones, so that
the effective friction is reduced and scales less than linearly
with length. More precisely, �effRN0

�. Given that V
=dR /dt, the hydrodynamic drag scales like N0

1+� and N0
2�,

without and with hydrodynamics, respectively. Remarkably,
the exponent with hydrodynamics, 2�, is exactly the same as
the one associated with the thermodynamic work W�1�, so
that �=2� in either case. In the case without hydrodynamics,
however, the thermodynamic work and the work due to vis-
cous drag exhibit two distinct exponents, 2��1.2 and 1+�
�1.6, which explains why any attempt to represent the scal-
ing through a single exponent � is bound to work only on a
narrow range of values of N0. Generally, the scaling ��N0�
N0

� will be a weighted average of the two, i.e., 2����1
+�.

In support of the previous interpretation, we have mea-
sured the typical values of the rate of change of the blob

radius ṘI, the mean center-of-mass velocity V, and the aver-

age flow speed U and found that ṘI�VI�5UI. This corrobo-
rates the idea put forward in this paper according to which

both mechanisms, the blob shrinking as well as the blob
shifting processes, must be taken into account to provide a
complete picture.

VI. DISCUSSION AND CONCLUSIONS

Summarizing, we have investigated the process of poly-
mer translocation through a narrow pore using a multiscale
approach which explicitly accounts for the hydrodynamic in-
teractions of the molecule with the surrounding solvent. The
translocation time was found to obey a power-law depen-
dence on the polymer length, with an exponent �
=1.28�0.01, in satisfactory agreement with experimental
measurements and other computer simulations. Moreover,
our simulations reveal that the coupling of the molecular
motion to hydrodynamic correlations results in a significant
acceleration of the translocation process. The scaling behav-
ior observed in the numerical simulations has been inter-
preted by means of a phenomenological model, accounting
for the anisotropy of both translocated and untranslocated
segments. This ingredient appears to be crucial to the correct
interpretation of the basic mechanisms behind the physics of
the polymer translocation, which involves two separate pro-
cesses, the shrinking and the shifting of the blob.

Deviations from the mean-field picture occur mainly near
completion of the process, where the radius of the untrans-
located segment undergoes an accelerated depletion: For
r�t��1 /2, the majority of the beads have already translo-
cated and entropic forces cooperate with the electric field to
complete the translocation. Besides violating the static scal-
ing at the end of the translocation process, entropic forces
may lead to more dramatic effects, which escape any mean-
field description based on the translocation coordinate r�t�
alone. Such beyond-mean-field-theory effects produce rare
retraction events: The polymer occasionally antitranslocates
after having partially passed through the pore. Our simula-
tions reveal that retraction events are typically associated
with the T part entering a low-entropy �hairpinlike� configu-
ration, which is then subject to a strong entropic pullback.
These nonperturbative events depend on the polymer length,
the initial configuration, and the values of other parameters
�friction constant, temperature, and strength of the pulling
force�. They occur at a rate up to 2% and do not significantly
affect the statistics of the scaling exponent.
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