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We present a general and unifying framework for deriving Monte Carlo acceptance rules which facilitate flat
histogram sampling. The framework yields uniform sampling rules for thermodynamic states given by the
mechanically extensive variables appearing in the Hamiltonian. Likewise, Monte Carlo schemes which uni-
formly sample the thermodynamic fields that are conjugate to the mechanical variables can be derived within
this framework. We apply these different, yet equivalent sampling schemes to the extended Hubbard model in
the atomic limit with explicit electron spin. Results for the full density-of-states, the charge-order parameter
distribution, and phase diagrams for different ratios of the on-site Hubbard repulsion and the intersite interac-
tion are presented. A tricritical point at half-filling of the lattice is located using finite-size scaling techniques.

DOI: 10.1103/PhysRevE.78.036703 PACS number�s�: 02.70.Tt, 71.10.Fd, 71.45.Lr, 64.60.�i

I. INTRODUCTION

The aim of this paper is twofold: First, we present a uni-
fying description for the derivation of flat histogram Monte
Carlo �MC� sampling rules. We investigate two different
methods of flat histogram sampling. One algorithm samples
thermodynamic states identified by mechanically extensive
variables while the other algorithm samples states given by
those thermodynamic fields which are conjugate to the me-
chanically extensive variables. We then study the feasibility
and potential advantages of these different methods by ap-
plying them to the two-dimensional extended Hubbard
model in the atomic limit �AL-EHM� on a square lattice. The
wealth of features present in the phase behavior of this model
system—first and second order transition lines as well as
tricriticality—render it an ideal test case for investigating the
usefulness of flat-histogram methods over traditional Boltz-
mann MC. The latter method samples a single state point in
thermodynamic space in one simulation run. While this
method shows good error convergence properties, it can be
inconvenient to use if many thermodynamic state points have
to be sampled, e.g., when a critical temperature is to be
located from a maximum in the heat capacity as a function
of temperature. If phase diagrams in multiple dimensions are
to be mapped out, a large number of traditional Boltzmann
MC simulations is required. A solution to this inconvenience
is flat-histogram MC algorithms which enable uniform sam-
pling of macroscopic observables such as potential energy
E or number of particles N. These observables are mechani-
cal properties which derive from an ensemble average over
particular configurations of the system. Many different algo-
rithms exist which facilitate flat histogram sampling of me-
chanical observables with entropic sampling �1�, multica-

nonical sampling �2�, and Wang-Landau �WL� �3� sampling
being among the most popular variants. The great advantage
of such simulations is that a single simulation provides in-
formation about, e.g., all possible number densities or ener-
gies that the system under study can possibly attain. The
uniform sampling also implies that, in contrast to traditional
MC, free energy barriers do not cause any sampling prob-
lems. A generic scheme for flat histogram MC sampling of
mechanically extensive variables with the aid of the WL al-
gorithm will be given here. Because the results of such simu-
lations are relative probabilities of macroscopic states rather
than Boltzmann-weighted averages we will also discuss how
to analyze these results and compute averages at the desired
thermodynamic state point.

On the other hand, it is also possible to sample the ther-
modynamic fields which are conjugate to the mechanically
extensive variables appearing in the partition function with
uniform probability. As a thermodynamic field is coupled to
a macroscopic observable �e.g., E is coupled to T by a Bolt-
zmann distribution�, a broad range of this observable can be
visited by sampling a broad range of values for the field. This
approach is somewhat similar to parallel tempering, or rep-
lica exchange �4–6�, but here we present a simple and sys-
tematic derivation for such a MC sampling scheme which
does not need multiple copies of the same system to be
propagated through phase space. However, the advantage of
parallel tempering which allows the system to get around
�rather than over� free energy barriers is preserved.

We now describe the physical system under study. The
AL-EHM derives from the more general extended Hubbard
Hamiltonian,

HEHM = �
ij�

tijci�
† cj� + U�

i

ni↑ni↓ + W�
ij

ninj − ��
i

ni,

�1�

where tij is the hopping integral between sites i and j, ci�
†

�ci�� are the creation �annihilation� operators for an electron
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with spin �= ↑ ,↓, ni=ni↑+ni↓ is the total number of elec-
trons �0,↑,↓,↑↓� on the ith site, U represents the on-site and
W the intersite Coulomb interactions �here restricted to
nearest-neighbors�, and � is the chemical potential. This
Hamiltonian represents an effective model for the description
of phenomena such as superconductivity, magnetism, or
charge density waves �7,8�.

The atomic limit is obtained by setting all tij =0, which is
a good approximation if the kinetic energy of the electrons is
small compared to the Coulomb interaction parameters U
and W. It reads

HAL-EHM = U�
i

nDi
+ W�

ij

ninj − ��
i

ni, �2�

where we have introduced the symbol nDi
=ni�ni−1� /2 to

denote whether lattice site i is occupied with two electrons or
not. The AL-EHM is an adequate model for describing
charge-ordering �CO� effects of electrons in strongly corre-
lated systems �9�. As such, it has received much attention
over the years but some aspects of it, e.g., the parameter
range for which discontinuous phase transitions between
states of different charge order can be observed and the ex-
istence of a low-temperature phase-separated state, are still
the subject of ongoing research �10–12�.

Despite its formal simplicity, the AL-EHM shows a
highly nontrivial phase behavior, including a tricritical point.
Depending on the electron concentration n=�ini /L2, where
L is the lateral size of the square lattice, and the Coulomb
repulsions U and W, different spatial distributions of elec-
trons on the lattice are obtained. These are described in terms
of a charge-order parameter � which is defined by

� =
1

2
�nA − nB� , �3�

where nA and nB are the electron concentrations on sublat-
tices A and B, given by a checkerboard decomposition of the
entire lattice. � varies between zero and unity, with the latter
describing the fully charge-ordered �HCO� state and the
former the nonordered �NO� state. Low-charge order �LCO�
is given by �=0.5. The relative stability of different charge-
ordered states strongly depends on temperature and the ratio
of on-site repulsion U and intersite interaction zW with z
being the number of nearest neighbors. Examples of different
charge-ordered states are shown in Fig. 1. At low tempera-
tures, quarter-filling �n=0.5� realizes LCO and half-filling of
the lattice results in HCO, both as infinite, lattice-spanning
domains. Filling fractions which are not integer multiples of
1 /4 result in mixed structures of LCO and HCO which can
also occur as lattice-spanning domains. Other configurations
with domains that only persist over a few lattice sites are
interpreted as NO. Detailed analysis of the percolation prob-
lem in this model taking into account finite size effects is
presented in previous work by GP �10�. It should be noted
that the charge-order parameter � roughly coincides with the
concentration of doubly occupied lattice sites, i.e., �
	2�inDi

/L2, for n close to unity and W�0. Therefore � is
coupled in this regime to the Hamiltonian which implies that

transitions between states of different charge order will be
accompanied by the usual signs indicating a thermodynamic
phase transition such as a peak in the heat capacity or the
compressibility.

The AL-EHM Hamiltonian and that of the well-known
Blume-Capel �BC� model �13� are formally very similar as
both describe decorated lattice-gas models. However, we
wish to emphasize that mapping of Eq. �2� to a pseudospin
model is nontrivial due to the two distinct one-electron states
of each lattice site, �↑,↓�, as has been shown in earlier work
of GP �10�. Because we consider the electron spin explicitly,
the phase diagram of the model considered here will be
qualitatively different from the BC model and the one-
component lattice gas model using the simplified lattice
states �0,1,2� �11,12�. Inclusion of the electron spin signifi-
cantly enlarges the space of lattice states as every state with
N1 single-occupied sites is 2N1-fold degenerated with respect
to spin direction. The case with explicit electron spin has

FIG. 1. Exemplary projections of the checkerboard states at fi-
nite temperature. Denotations: gray squares—one electron per site,
black—two electrons per site, and white—empty site. Note that the
projection for n=0.63 is exclusively observed for U /zW�1.0 and
the lowest four states only for U /zW�1.0.
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been analyzed within the mean-field approximation �7,8� and
studied recently with MC methods �10,14�. Other studies
dealing with the extended Hubbard model for the special
case n=1 can be found in �15,16� or, for the one-dimensional
case, in �12�.

The rest of this paper is organized as follows: First, a
systematic derivation of flat-histogram sampling techniques
for either mechanically extensive or intensive field variables
appearing in a Hamiltonian is described. We then present
results obtained with different variations of these sampling
schemes for the selected cases of the ratio U /zW=0.5 and
0.8. These cases are exemplary for second- or first-order
transitions between phases of different charge order. The ex-
istence of a tricritical point for n=1 is confirmed and we
investigate tricriticality for general lattice fillings n�1. We
conclude with a discussion of the results obtained in this
study and the usefulness of different variations of flat-
histogram sampling.

II. FLAT HISTOGRAM SAMPLING STRATEGIES

In this section we derive MC transition probabilities
which facilitate a random walk either in the space spanned
by mechanically extensive variables or in a space given by
the thermodynamic fields conjugate to the mechanically ex-
tensive variables.

A. Flat histogram sampling of mechanically
extensive variables

Consider a general partition function for a lattice system
which neglects kinetic energy contributions,

��	,
� = �
�

exp�− 	E� + 	
X�� , �4�

where the sum runs over all microstates � in configuration
space. 	=1 /kBT is the inverse temperature, 
 is an external
field coupling to a mechanically extensive variable X of the
system, and E is the potential energy. In the following we
will focus on the case where 
 is the chemical potential �
and X corresponds to the number of particles N, but the same
formalism applies to pressure/volume or external magnetic
field/magnetization. The microstate probability for any � is
clearly

P��,N,E� =
1

�
exp�− 	E� + 	�N�� �5�

and the macrostate probability for observing any particular
combination of an energy E� and a number of particles N� is

P�N�,E�� =
1

�
�

�

��N� − N����E� − E��exp�− 	E� + 	�N�� .

�6�

Performing the summation in the above equation yields the
density of states, or the degeneracy, of the macrostate given
by X� and E�:

P�N�,E�� =
1

�

�N�,E��exp�− 	E� + 	�N�� . �7�

For sampling both extensive properties of the system with
uniform probability we need to define a biased microstate
probability.

P̃��,N,E� =
P��,N,E�
P�N,E�

=
1


�N,E�
. �8�

It is easily verified that the above expression samples both E
and N with uniform, i.e., constant, probability by looking at
the corresponding expression for the biased macrostate prob-
ability:

P̃�N,E� = �
�

P̃��,N,E� = const. �9�

MC transition probabilities which realize such a flat histo-
gram sampling are obtained from the detailed balance con-
dition �17� and its Metropolis solution �18�. The MC accep-
tance probability for moving from old microstate o to a new
microstate n reads

Pacc�o → n� = min
1,
P̃��n,Nn,En�

P̃��o,No,Eo�
� = min
1,


�No,Eo�

�Nn,En�� .

�10�

We can now intuitively understand how flat-histogram sam-
pling schemes work in general: Dividing a Boltzmann
weighted microstate probability such as Eq. �5� by its corre-
sponding macrostate probability yields a new probability
which is uncoupled from the thermodynamic fields which
affect the Boltzmann distribution. Hence a random walk in
the space given by E and N is performed.

Unfortunately, we cannot employ a sampling scheme like
Eq. �10� directly because the 
�N ,E� are unknown in gen-
eral. It is here where the WL algorithm �3� comes in as it
provides a convenient route to finding 
�N ,E� in a self-
consistent way. At the beginning of the simulation, an initial
guess is made, e.g., 
�N ,E�=const ∀ �N ,E�. As the simula-
tion proceeds, the current estimates of 
�N ,E� are used for
determining whether a trial move is accepted or not. When-
ever a specific state �N� ,E�� is sampled, 
�N� ,E�� is up-
dated through the operation 
�N� ,E��→ f �
�N� ,E��,
where f is an arbitrary convergence factor greater than unity.
Also, a histogram of visited states H�N ,E� is kept during the
course of the simulation. Due to the dynamic updating of

�N ,E�, the simulation is always pushed away from the cur-
rent state in the next move and H�N ,E� will eventually be-
come flat. When this is the case f is reduced, e.g., by letting
f =�f and H�N ,E� is reset to zero. The simulation is run until
f reaches a value fmin which is arbitrarily close to unity so
that future updates of 
�N ,E� become negligible. It is im-
portant to note that detailed balance is violated at the begin-
ning of the simulation when f is sufficiently large so that
updates of 
�N ,E� are non-negligible. However, once the

�N ,E� are reasonably converged we can set f =1 and start
accumulating averages for any information we wish to ex-
tract from the visited microstates ��N ,E�. These averages
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can then be reweighted to Boltzmann-weighted ensemble av-
erages at arbitrary values of the conjugate thermodynamic
fields 	 and � as will be explained further below.

We can extend the sampling method which was described
above for all mechanically extensive variables appearing in
the partition function to the case where one of these variables
is sampled according to a Boltzmann distribution while the
other variable is sampled uniformly. The starting point for
this is again a microstate probability in the grand-canonical
ensemble

P��,N,E� =
1

�
exp�− 	E� + 	�N�� . �11�

Suppose we want to sample all particle numbers with uni-
form probability but we wish to maintain a Boltzmann dis-
tribution of energies for each N. We thus define the mac-
rostate probability for observing N� particles at fixed
temperature as

P�N�� =
1

�
�

�

��N� − N��exp�− 	E� + 	�N��

=
1

�
exp�	�N��Q�N�� , �12�

where Q�N� is the canonical partition function for N particles
at inverse temperature 	. The biased microstate probability
reads

P̃��,N,E� =
P��,N,E�

P�N�
=

exp�− 	E��
Q�N�

, �13�

which results in the following Metropolis MC acceptance
rule for particle insertion or deletion:

Pacc�No → Nn� = min
1,
exp�− 	E�Nn��
exp�− 	E�No��

Q�No�
Q�Nn�� . �14�

The Q�N� can be determined again by means of the WL
algorithm. This sampling scheme was first mentioned in �19�
where it was used to calculate the chemical potential. In
�20,21� and very recently in �22� it has been applied to first
order phase transitions with great success.

Note that the particular form of the Hamiltonian equation
�2� lends itself to yet another sampling strategy: The Hub-
bard on-site repulsion parameter U is coupled to the number
of doubly occupied lattice sites �doublets� just as the chemi-
cal potential is coupled to the number of electrons on the
lattice. It is therefore straightforward to perform a WL sam-
pling scheme at fixed n and T which samples all possible
numbers of doublets ND uniformly:

Pacc�NDo
→ NDn

� = min
1,
exp�− 	E�NDn

��

exp�− 	E�NDo
��

Q�NDo
�

Q�NDn
�� .

�15�

Similar to the uniform sampling of N, the field U coupled to
the number of doublets ND does not appear in the MC ac-
ceptance rule and the canonical partition functions Q�ND�
have to be determined iteratively.

B. Random walk in thermodynamic field space

As pointed out in the Introduction, it is also possible to
define microstate transition probabilities which will effect a
random walk in thermodynamic field space. To derive such
probabilities, we start from the following über partition func-
tion:

� = �
	min

	max �
�min

�max

d	d��
�

exp�− 	E� + 	�N�� , �16�

where the ensemble definition incorporates not only the me-
chanical configurations that the system can attain but also a
range of the fields temperature and chemical potential. In
exact analogy to the above derivation we define the mi-
crostate probability for any element of this ensemble,

P��,�,	� =
1

�
exp�− 	E� + 	�N�� , �17�

and a corresponding macrostate probability

P��,	� = �
�

P��,�,	� =
1

�
���,	� , �18�

which is of course proportional to the grand partition func-
tion ��� ,	�. The biased microstate probability is again ob-
tained by dividing the microstate probability through the
macrostate probability:

P̃��,�,	� =
P��,�,	�
P��,	�

=
exp�− 	E� + 	�N��

���,	�
. �19�

We can show that this biased microstate probability indeed
corresponds to an ensemble in which the probability for ob-
serving any � and 	 is uniform.

P̃��,	� = �
�

P̃��,�,	� = 1. �20�

MC transition probabilities for a move from an old state
��o ,	o� to a proposed new state ��n ,	n� while maintaining
the current configuration � are obtained by inserting Eq. �19�
into the detailed balance condition and using the Metropolis
solution:

Pacc�o → n� = min
1,
P̃��,�n,	n�

P̃��,�o,	o�
�

= min
1,
exp�− 	nE� + 	n�nN��
exp�− 	oE� + 	o�oN��

���o,	o�
���n,	n�� .

�21�

The weights ��� ,	� which appear in this sampling scheme
are unknown a priori and need to be determined self-
consistently during the course of the simulation with the WL
algorithm. To do this, we choose discrete values of � and 	
which we wish to sample and start out with a uniform guess
for all ��� ,	�. We let the system evolve in the current state
�� ,	� by a normal Boltzmann-weighted MC scheme and
attempt changes in � or 	 at fixed intervals. After such a
change—irrespective of whether it has been accepted or
not—the current value of ��� ,	� is modified by letting
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��� ,	�= f ���� ,	� where f is greater than unity. Also a
histogram H�� ,	� is kept which serves as an indicator for
when to reduce the value of f . Once we deem H�� ,	� to be
sufficiently flat we reduce f by f =�f and reset the histogram
to zero. This process is iterated until f is arbitrarily close to
unity. When this is the case, we stop updating ��� ,	� so
that detailed balance is recovered. The simulation will now
perform a random walk in � and 	 and we can accumulate
unbiased averages of quantities such as E and N for all states
�� ,	� by means of Boltzmann MC sampling. The whole
simulation is therefore a combination of a thermodynamic
field random walk and standard MC.

Simulation results presented in this paper have made use
of the above formalism in order to sample a rectangular grid
given by a range of different values for temperature and
chemical potential. Extension to sampling only one thermo-
dynamic field is straightforward. We have also employed
such a scheme which only varies the temperature at a fixed
number of occupied lattice sites, thus corresponding to a set
of canonical ensembles simulated within a single simulation.
In this case we have the MC transition probabilities from old
temperature o to new temperature n,

Pacc�o → n� = min
1,
exp�− 	nE��
exp�− 	oE��

Q�	o�
Q�	n�� . �22�

We note that this specific scheme has been first presented
in �23� where it was used to find the critical temperature for
a 2D Ising model from the peak in the heat capacity cV.
However, the MC transition probabilities were given in an ad
hoc fashion without any derivation and it is not entirely clear
whether these authors obtained cV from energy fluctuations
or from the numerically computed second derivatives of the
Q�	� with respect to temperature. In the following we abbre-
viate the conjugate field random walk sampling method as
CFRW and, in order to distinguish it from WL sampling of
extensive mechanical quantities, we abbreviate the latter as
WLEXT.

C. Analysis of results produced by flat-histogram sampling

We can see that the two different approaches—sampling a
mechanical quantity or switching the conjugate thermody-
namic field with uniform probability and sampling ensemble
averages at these states with a Boltzmann distribution—will
yield the same information. However, there is one major dif-
ference with regards to how ensemble averages over the
simulation run are computed. The conjugate field random
walk directly delivers the desired Boltzmann weighted en-
semble averages for each discrete point in field space. In
contrast, if mechanical probabilities are sampled uniformly,
the underlying probability distributions are in general non-
Boltzmann and we need to “reweight” the actual simulation
data to the desired Boltzmann distribution specified by a set
of thermodynamic fields such as 	 or �. This will be detailed
in the following.

The WL algorithm in conjunction with Eq. �10� yields the
density of states for all E and N. Grand-canonical ensemble
averages of any observable A that depends on E and N can
be computed at any desired temperature or value of the
chemical potential according to

�A�	,� =
�N�EA�E,N�
�E,N�exp�− 	E + 	�N�

�N�E
�E,N�exp�− 	E + 	�N�
. �23�

Canonical ensemble averages are computed by summing
over the subset of the density of states �DOS� corresponding
to the desired number of particles N�:

�A�	,N� =
�N�EA�E,N���N − N��
�E,N�exp�− 	E�

�N�E��N − N��
�E,N�exp�− 	E�
.

�24�

Sampling scheme Eq. �14� which effects a random walk in
particle numbers at fixed temperature provides not the DOS
but the canonical partition functions depending on N. From
these, grand-canonical ensemble averages are obtained for
any value of the chemical potential �:

�A�� =
�NA�N�Q�N�exp�	�N�

�NQ�N�exp�	�N�
. �25�

In the case of the sampling scheme Eq. �15�, where a random
walk in the number of doublets at fixed n and T is performed,
we have to reweight the converged canonical partition func-
tions to a chosen value of U:

�A�U =
�ND

A�ND�Q�ND�exp�− 	UND�

�ND
Q�ND�exp�− 	UND�

. �26�

In the present study we are especially interested in thermo-
dynamic quantities which signal a phase transition. Specifi-
cally, we compute the isothermal compressibility �T in the
grand canonical and canonical ensembles from the fluctua-
tion formula

�T =
	

�

�N2� − �N�2

�N�
, �27�

and the full probability distribution of doubly occupied lat-
tice sites:

p�ND� =
Q�ND�exp�− 	UND�
�ND

exp�− 	UND�
. �28�

No such reweighting is required for results produced by
the random walk in thermodynamic field space. One only
needs to keep histograms of the variables of interest, e.g., a
histogram of visited E and � in the case that temperature is
varied at constant number density. From this information, we
can compute the specific canonical heat capacity from the
standard fluctuation formula

cV =
�E2� − �E�2

�kBT�2N
, �29�

and the canonical charge order susceptibility �V,

�V =
��2� − ���2

N
. �30�

III. SIMULATION RESULTS

For notational convenience, we employ reduced units
throughout. The intersite interaction parameter W is set to
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unity, the on-site Hubbard repulsion is expressed as U*

=U /4W, temperature is defined as T*=kBT /W with kB=1,
and all energies are given in units of W. Unless otherwise
stated, we studied square lattices of lateral length L=40. One
Monte Carlo cycle �MCC� consists of L2 MC moves and
simulation run time is measured in mMCC. For a description
of the MC moves employed see �10�. The results reported in
this section have been obtained with a variety of different
flat-histogram sampling variations which will be described
individually in the context of the respective application.

A. Tricritical behavior at half-filling

It has been observed before �10� that the high-temperature
charge-disordered state turns into a charge-ordered state as
temperature is lowered. Depending on the value of U this
transition is either discontinuous �first-order� or continuous
�second-order�. In general, the crossover between a first- and
second-order phase transition regime implies the existence of
a multicritical point �24� which, in this case, is a tricritical
point �TCP�. At temperatures below the TCP, the system
shows phase coexistence between a disordered state and an
ordered state which itself is split up into two symmetric
phases. The disordered state is characterized by low concen-
tration of doubly occupied sites m=nD /L2 and a low value of
the charge-order parameter �. The ordered state features
high concentration of doublets and a high value of � and its
two symmetric phases are given by the two checkerboard
sublattices on either of which the doublet density is located.
A quantitative order parameter which identifies the sublattice
is obtained from Eq. �3� by removing the modulus operator:
M = �nA−nB� /2.

As the TCP marks the crossover from a line of first-order
transitions to a line of �critical� second-order transitions it is
possible to obtain its precise location in the following way
�25�: One starts out at a subtricritical temperature and finds
phase coexistence between the ordered and disordered state
by tuning U such that the probability distribution p�m� is
bimodal with equal areas under both peaks. The Binder cu-
mulant ratio �26�,

UL = 1 −
��m − �m��4�

3��m − �m��2�2 , �31�

is then calculated and this procedure is repeated for a range
of different temperatures and system sizes L. Due to the scale
invariance of UL at criticality, all curves of UL when plotted
against the temperature will intersect at a single temperature
which is then taken as the estimate of the tricritical tempera-
ture.

In order to begin the above procedure it is first necessary
to obtain a rough estimate for the parameter range of U and
T in which the probability distribution p�m� starts to appear
bimodal. We obtained p�m� through WLEXT simulations
which sample all possible numbers of doublets at constant
temperature and fixed electron concentration �cf. sampling
scheme Eq. �15��. These simulations were run with conver-
gence parameters f initial=exp�1�, ln�f final�=10−8 and f was
reduced as soon as every possible number of doublets that
the system can attain had been visited at least 1000 times.

After the onset of bimodality in p�m� had been conveniently
located this way we performed a single long Metropolis MC
simulation at this state point for system sizes L
= �24,32,48,64� and used the histogram reweighting tech-
nique �27� to calculate UL for different temperatures with U
chosen subject to the constraint that p�m� satisfied the equal-
area rule. The resulting plot of UL against temperature is
shown in Fig. 2: All four curves for different system sizes
intersect to within numerical uncertainty at T

TCP
* =0.6080�4�

with the uncertainty in the last decimal place given by the
standard deviation of the average of the crossing points.

In order to further verify the TCP in this system we in-
voke the universality of the ordering parameter distribution
p�M�. Because microscopic details are irrelevant at critical-
ity, the measured form of p�M� will coincide with other
model systems featuring a TCP, provided that the distribu-
tions are scaled to unit norm and variance. To this end we
employ a measured p�M� for the 2D Blume-Capel model as
a reference �courtesy of Wilding �25�� and adjust T and U for
each system size L such that p�M� collapses on the reference
distribution. Results are shown in Fig. 3 where the agreement
is clearly excellent. This procedure yields the apparent, i.e.,
system-size dependent, values of TTCP and UTCP for each
value of L, which is to be contrasted with the Binder cumu-
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0.5
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0.56

0.58

0.6
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L
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L=32
L=48
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FIG. 2. Binder cumulant ratio UL in the vicinity of the tricritical
point at half-filling for different lattice sizes L.
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FIG. 3. Ordering parameter distribution p�M� at tricriticality for
different lattice sizes and the reference distribution for the 2D
Blume-Capel model. All distributions are scaled to unit norm and
variance.
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lant intersection method that yields an estimate for the infi-
nite system tricritical temperature. An estimate for the L=�
TCP based on the apparent TCP values is obtained from the
finite-size scaling relation �27� TTCP�L�=TTCP�L=��
+�L−1/�t where � is a model dependent constant and �t is the
tricritical scaling exponent which we take to be �t=0.56 �28�.
Plots of TTCP�L� and UTCP�L� against L−1/�t are shown in Fig.
4. Extrapolation of these data points to L=� yields T

TCP
*

=0.6082�3� which agrees with the Binder cumulant estimate
to within error and U

TCP
* =0.7720�2�.

It is interesting to ask what happens to the lines of phase
transitions and the TCP at electron concentrations different
from half-filling. We found that a perfect match of p�M� onto
the tricritical reference distribution is only possible at half-
filling and the deviation between the measured distribution
and the reference becomes larger the further the density de-
viates from half-filling. This indicates that a TCP exists only
at half-filling but does not rule out the existence of a differ-
ent type of multicritical point such as a critical end point at
other electron concentrations. While it was not possible to
identify the exact nature of these multicritical points using
our methodological apparatus, we note that the onset of a
bimodal distribution in p�m� shifts to lower temperatures as
the density is reduced and no bimodal distribution could be
observed for n�0.8, which can be explained in terms of a
vanishing interfacial tension between the two phases of dif-
ferent charge order: A first-order transition can only occur if
the coexisting phases are separated by an interface which
constitutes a free-energy barrier that stabilizes the phases
against mixing with each other. By changing the electron
concentration to values beyond n=1 one introduces single
occupied sites or holes in the lattice which hinder the forma-
tion of an interface and thus promote mixing, resulting in a

continuous transition between states of different charge order
as U is varied. We conclude this analysis by noting that a line
of multicritical points exists in the n-T plane which extends
from an upper tricritical temperature at n=1 to a vanishing
multicritical temperature at n	0.8. Therefore first-order
phase transitions between states of different charge order can
only be observed at temperatures and densities below this
line �cf. the global phase diagram Fig. 12�.

B. Global order parameter distribution

The charge-order parameter as a function of temperature
and density has been obtained using the CFRW sampling
scheme Eq. �21� for the range �= �−1.0. . .12.0�, T*

= �0.1…1.6� with discretization ��=0.1 and �T*=0.01. At-
tempts to change either � or T were performed once every 2
MCC. The WL convergence procedure of the weights
��� ,	� was initiated with f initial=exp�10� and f was reduced
according to f =�f once every state �� ,	� had been visited a
minimum of 100 times. The weights were converged down
to ln�f final�=10−6 before a histogram of � was accumulated
for each thermodynamic state point �� ,	� during a produc-
tion run of length 1000 mMCC. Results for the charge-order
parameter in the T-n plane are shown in Fig. 5 for U*=0.5
and 0.8. These selected cases of the on-site Hubbard repul-
sion behave quite differently: For U*=0.5 no abrupt transi-
tions between different charge orders can be seen, while for
U*=0.8 a steplike change of � along the half-filling line can
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0.6095
T

* T
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0 0.001 0.002 0.003 0.004

L
-1/ν

t

0.772

0.7724

0.7728

0.7732

U
* T

C
P

FIG. 4. Upper plot: Finite size scaling plot of the apparent tric-
ritical temperature for different lattice sizes L. Open circles denote
simulation results and the straight line represents a least-squares fit
to these data points which is used to extrapolate to L=� yielding
T

TCP
* =0.6082�3�. The cross marks the estimate for T

TCP
*

=0.6080�4� obtained from the Binder cumulant intersection method
�see text�. Lower plot: Open squares denote the apparent value of
U

TCP
* at tricriticality for different system sizes. Extrapolation to L

=� using a linear least-squares fit yields U
TCP
* =0.7720�2�, shown

as a closed square. Error bars show the estimated uncertainty in the
data points as obtained from the standard deviation of the average
from four independent runs.

FIG. 5. Charge-order parameter � as a function of density and
temperature for U*=0.5 �top� and U*=0.8 �bottom�. Projected solid
lines indicate lines of constant charge-order parameter.
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be observed. As discussed above, this agrees with the value
of the critical on-site repulsion U

TCP
* =0.7720�2� below

which the transition occurs continuously for all densities.

C. Density of states and thermodynamic quantities

The full density of states for U*=0.8 and 0.5 has been
obtained for a lattice size L=20. While this approach allows
the calculation of thermodynamic quantities at arbitrary state
points, it was only possible to converge the WLEXT algo-
rithm for this two-dimensional sampling problem �cf. Eq.
�10�� for small systems. We note that, compared to existing
WLEXT simulations of both E and the magnetization M for
the Ising model �29� on square lattices, the accessible con-
figuration space of our Hamiltonian is much larger. For a
given lattice size L, one has 2 �L2� more states in the present
model with four lattice site states than for the Ising model. In
order to obtain the DOS with high accuracy we resorted to a
tighter converge criterion compared to above: The ratio of
any entry in the histogram of visited states was required to be
within a 15% interval of the mean value of the histogram.
f initial was set to exp�1� and the simulation was stopped at
ln�f final�=10−8. The total run time required was on the order
of 10 000 mMCC which translates into 10 CPU days on a
single 2.0 GHz processor.

Figure 6 shows the DOS surface which is spanned over
the trivial points 0, 1 /4, 1 /2, 3 /4, and full filling of the
lattice. The corresponding entropy s=S /L2 in the canonical
ensemble is shown in Fig. 7. Again, the trivial commensurate
lattice fillings can be seen but also a region with a steplike
drop at the half-filling line is identified. Because � �s

�T �V
=cV /T this is indicative of a discontinuous transition involv-
ing latent heat. As discussed above, the DOS contains all
information necessary to calculate all thermodynamic poten-
tials. For a fixed number of electrons, we have the internal
energy

�EN��T�� =
�E�N��N − N��E
�E,N�exp�− 	E�
�E�N��N − N��
�E,N�exp�− 	E�

, �32�

the free energy

FN��T� =
ln��E�N��N − N��
�E,N�exp�− 	E��

	
, �33�

and the entropy

SN��T� =
EN��T� − FN��T�

T
. �34�

Figures 8 and 9 show these thermodynamic quantities for
U*=0.5 and 0.8 at n=0.45 and 0.95. At the lower density
considered here, n=0.45, both systems do not attain any sig-
nificant numbers of doubly occupied lattice sites, simply be-
cause there is enough room on the lattice to accommodate all
electrons without any nearest neighbors. Therefore their ther-
modynamic behavior must be largely independent of U as
the Hubbard on-site repulsion only makes a negligible con-
tribution to the system’s energy. The upper parts of Figs. 8
and 9 indeed confirm this reasoning with a small peak in cV

at T*	0.6 for both systems. This peak indicates a
temperature-driven phase transition between the LCO at low
T and the completely disordered NO state at high T. In con-
trast to the low-density behavior, the thermodynamic quanti-
ties at n=0.95 depend strongly on U. Here, we have the
situation that nearest-neighbor interaction competes with the
Hubbard on-site interaction and, in the case U*=0.8 we find
a strong first-order transition between HCO and NO states
indicated by a steplike change of the entropy and a well-
defined peak in heat capacity at T*	0.54. For U*=0.5 this
peak is much broader and, owing to the system’s dependence
on U, it is also located at a different temperature T*	1.00.

D. Phase diagrams

Traversal of the boundary between two phases is usually
accompanied by an abrupt change of a suitably defined order
parameter and a peak in the susceptibility of this order pa-

FIG. 6. Density of states for U*=0.8 on a logarithmic scale.
E*=E /Emax denotes the fractional energy with respect to the maxi-
mum energy possible for this lattice size.

FIG. 7. Entropy per lattice site for U*=0.8 in the n-T* plane.
The gray area on the half-filling line describes the region of discon-
tinuous phase transition.
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rameter. We have used the latter signal to plot the phase
diagram in the n-T* plane for U*=0.5 and 0.8. Phase bound-
aries were identified using canonical heat capacities and
charge-order parameter susceptibilities from the CFRW sam-
pling scheme at fixed density but varying temperature �cf.
sampling scheme Eq. �22��. Discretization of the temperature
range was set to �T*=5�10−3 and the WL convergence
parameters used were f initial=exp�1�, and ln�f final�=10−10. f
was reduced as above once every discrete temperature had
been visited 1000 times. A production run of length 10
mMCC was appended after the WL procedure was con-
verged. Histograms of E and � were kept for the subsequent
calculation of cV and �V. Complementary to this the isother-
mal compressibility was computed at fixed temperature from
a WLEXT simulation �cf. sampling scheme Eq. �14� which
samples all electron concentrations at fixed temperature in a
single simulation�. Convergence parameters were as above
for the canonical simulations. The converged Q�N� obtained
from this simulation enabled us to compute the isothermal
compressibility �T.

Both phase diagrams are symmetric with respect to mir-
roring along the half-filling line due to the symmetry of the
Hamiltonian equation �2�. Figure 10 shows the results for the
case U*=0.5. We obtain second-order transitions between

FIG. 8. Thermodynamic quantities per lattice site for U*=0.5.
Free energy F—solid line, internal energy E—long dashed line,
entropy S—short dashed line, and heat capacity cV—dotted line.
The upper graph is for n=0.45 and the lower for n=0.95.

FIG. 9. Thermodynamic quantities per lattice site for U*=0.8.
Denotations are as for Fig. 8.
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FIG. 10. Phase diagram in the n-T* plane for U*=0.5. Phase
boundaries have been obtained from peaks in cV �circles�, �V �tri-
angles�, and �T �diamonds�.
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NO and CO. Within the CO phase no indication for an abrupt
change of the density or the charge-order parameter was
found. The situation for U*=0.8, shown in Fig. 11, is very
different: A new line of peaks in �T emerges in the CO phase
separating it into LCO and HCO regimes. The two sampling
schemes used here—CFRW at constant density and WLEXT
sampling at a given temperature—constitute already a great
improvement over normal Boltzmann MC sampling because
they enable us to study an entire temperature or electron
concentration range in a single simulation. They are well-
suited to determine precisely the location of phase bound-
aries and require only very modest CPU resources. Never-
theless, we still require several of these simulations to
construct an entire phase diagram. This is inconvenient if one
wishes to obtain the phase diagram not only as a function of
n and T but also depending on U. Ideally, one would perform
one large simulation which samples the joint density of states

�N ,E ,U� which would then allow one to determine the
entire phase diagram in the space of density, temperature,
and Hubbard interactions. In practice this approach is hardly
feasible due to the very long time it would require for the
three-dimensional DOS to converge, even for the smallest
systems. As noted above, it is already difficult to converge
the two-dimensional DOS 
�N ,E� for medium sized sys-
tems. If accuracy and finite-size effects are not of great im-
portance one can resort to the compromise of running mul-
tiple very small WL simulations which sample the two-
dimensional DOS for specified values of U. This approach is
feasible in practice and reduces the number of simulations
required to obtain a global phase diagram substantially. Fig-
ure 12 shows such a global phase diagram obtained for very
small systems and loose WL convergence parameters �L
=8, ln�f final�=10−5�.

IV. DISCUSSION AND CONCLUSION

The development of flat-histogram sampling techniques in
general and especially the robust and easy to implement al-
gorithm of Wang and Landau which allows for the iterative
determination of the biasing weights needed to accumulate a
flat histogram have greatly eased the simulation efforts
needed to obtain phase diagrams. In this paper we have em-

ployed different sampling strategies which either sample me-
chanically extensive variables such as energy uniformly or
perform a random walk in the corresponding conjugate ther-
modynamic field, e.g., temperature. Depending on the actual
system to be studied one might prefer one approach over the
other. The advantage of the WLEXT scheme which samples
extensive variables is that ensemble averages can be calcu-
lated at any thermodynamic state point by simple reweight-
ing. The CFRW scheme on the other hand seems to converge
faster but is limited in the chosen discretization width of the
thermodynamic fields to be sampled. It has been noted be-
fore �30� that the WL algorithm asymptotically reaches a
level of uncertainty which does not decrease if the simulation
is continued. In comparison, the CFRW scheme employs
normal Boltzmann MC sampling for each state point with
errors inversely proportional to the square root of the run
length. For both algorithms considered, it is possible to
sample multiple variables in a single simulation. However,
for the WLEXT scheme we and others �21� have found that
in practice this is only possible for small systems and it is
much more efficient to concentrate the sampling effort on a
single variable to be uniformly sampled and run multiple
simulations. The CFRW scheme appears to suffer not as
much from this drawback but, as noted beforehand, produces
less information because it is limited to a certain range and
discretization of thermodynamic field variables. On the other
hand, there are many cases where only a certain range of,
e.g., temperatures is of interest so that CFRW allows one to
focus on the relevant range whereas normal WL sampling
will need to sample all energies the system can attain be-
cause it cannot be determined a priori which of these states
will have a high Boltzmann weight. This advantage of
CFRW is reflected by our simulation timings where it re-
quired only a few hours of CPU time to sample a wide range
of temperatures and chemical potentials simultaneously
whereas it required almost two orders of magnitude longer
simulation times for converging the joint DOS using the
WLEXT algorithm for a system of only half the size.

Using these flat-histogram schemes we were able to ob-
tain results for the atomic limit of the extended Hubbard
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FIG. 11. Phase diagram in the n-T* plane for U*=0.8. Symbols
are as for Fig. 10.

FIG. 12. Global phase diagram. Solid and dashed lines indicate
the second- and first-order transitions, respectively, whereas the
multicritical points are denoted by a dotted line. The gray area
shows the transition LCO-HCO as indicated by peaks in �T.
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model in a wide range of temperatures and densities and two
different values of the Hubbard on-site repulsion. We studied
a variant of the Hubbard model with explicit electron spin
reflected by the lattice states �0,−1, +1,2� which implies
that this model cannot be easily mapped onto simple spin
models �10�. In comparison with a study of the classical
Hubbard model which considered only the lattice states
�0,1,2� �11�, we note that the model studied here differs
quantitatively but not qualitatively. The general topology of
the phase diagram is not changed with a regime of first-order
phase transitions at large values of the Hubbard on-site re-
pulsion U and a regime of continuous transition at low val-
ues of U. The effect of the enlarged configurational space
due to the inclusion of the electron spin is mainly reflected in
a shift of the tricritical point: For half-filling of the lattice we
find T

TCP
* =0.6080�4� at U

TCP
* 0.7720�2� while the model with

the lattice states �0,1,2� features a TCP at T
TCP
*

=0.111 789�1� and U
TCP
* �0.9823 �11�. Bearing in mind

that the regime of discontinuous transition between states
of different charge order is bracketed by T*= �0,T

TCP
* � and

U*= �U
TCP
* ,1�, we find that this region is much larger for the

model studied here than for the simpler model which does
not consider the electron spin.

The results agree qualitatively with earlier studies of this
model �10,14�, but are much more precise, especially in the
region of the discontinuous phase transition. For the first
time, we have given a semiquantitative picture of the global
phase diagram of this model in a range of physically relevant
values of the Hubbard on-site repulsion. Through the use of
finite size scaling techniques and mapping to universal order-
ing parameter distributions we have precisely located a tric-
ritical point at half-filling of the lattice. The question as to
what character this multicritical point assumes at different
lattice fillings remains open as an interesting topic for future
study of this model.
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