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Based on a multidimensional Riemann theta function, the Hirota bilinear method is extended to explicitly
construct multiperiodic �quasiperiodic� wave solutions for the �2+1�-dimensional Bogoyavlenskii breaking
soliton equation. Among these periodic waves, the one-periodic waves are well-known cnoidal waves, their
surface pattern is one-dimensional, and often they are used as one-dimensional models of periodic waves in
shallow water. The two-periodic �biperiodic� waves are a direct generalization of one-periodic waves, their
surface pattern is two dimensional, that is, they have two independent spatial periods in two independent
horizontal directions. The two-periodic waves may be considered to represent periodic waves in shallow water
without the assumption of one dimensionality. A limiting procedure is presented to analyze asymptotic behav-
ior of the one- and two-periodic waves in details. The exact relations between the periodic wave solutions and
the well-known soliton solutions are established. It is rigorously shown that the periodic wave solutions tend
to the soliton solutions under a “small amplitude” limit.
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I. INTRODUCTION

In recent years, there has been much interest in investi-
gating different kinds of exact solutions of nonlinear evolu-
tion equations, such as soliton, negaton, peakon, complexi-
ton, cuspon, rational, periodic, and quasiperiodic solutions
�1–32�. Exact solutions play an important role in the study of
nonlinear physical phenomena. For example, the wave phe-
nomena observed in fluid dynamics, plasma, and elastic me-
dia are often modeled by the bell-shaped sech solutions and
the kink shaped tanh solutions. The exact solutions, if avail-
able, of those nonlinear equations can facilitate the verifica-
tion of numerical solvers and aid in the stability analysis of
solutions. However, investigating or establishing relations
among different exact solutions is also a very interesting
topic. Since these relations not only provide an approach to
deforming exact solutions, but also help us to study the struc-
tures and properties of some complicated forms of the solu-
tions such as quasiperiodic solutions.

The quasiperiodic solutions �also called algebrogeometric
solutions or finite gap solutions� of nonlinear equations were
originally obtained on the Korteweg–de Vries �KdV� equa-
tion based inverse spectral theory and algebro-geometric
method developed by pioneers such as Novikov, Dubrovin,
Mckean, Lax, Its, Matveev, and co-workers �4–8� in the late
1970’s. By now this theory has been extended to a large class
of nonlinear integrable equations including the sine-Gordon
equation, Camassa-Holm equation, Thirring model equation,
Kadomtsev-Petviashvili equation, Ablowitz-Ladik lattice,
and Toda lattice �9–19�. The quasiperiodic solutions describe
the nonlinear interaction of several modes. All the main

physical characteristics of the quasiperiodic solutions �wave
numbers, phase velocities, amplitudes of the interacting
modes� are defined by a compact Riemann surface. There are
numerous applications of the finite-gap integration theory in
condensed matter physics, state physics, and fluid mechan-
ics. For example, in the Peierls state, phonon produce a
finite-gap potential for electrons, and the Peierls state is a
lattice of solutions at low densities of electrons �9�. A most
famous mechanical system, the Kowalewski top, was the fo-
cus of interest in the 19th century. The equation of motion of
the top can be solved through finite-gap theory �9�. A prob-
lem of fundamental interest in fluid mechanics is to provide
an accurate description of waves on a water surface. The
Kadomtsev-Petviashvili �KP� equation is known to describe
the evolution of waves in shallow water. The KP equation
admits a large family of quasiperiodic solutions. Each solu-
tion has N independent phases. Experiments demonstrate the
existence of genuinely two-dimensional shallow water waves
that are full periodic in two spatial directions and time. The
comparisons with experiments showed that the two-periodic
wave solutions of the KP equation describe shallow water
waves with much accuracy �33,34�.

However, using the finite-gap �algebrogeometric� theory
is rather difficult to directly determine the characteristic pa-
rameters of waves such as frequencies and phase shifts for a
function of given wave numbers and amplitudes. In 1980s,
Nakamura proposed a convenient way to construct a kind of
quasiperiodic solutions of nonlinear equations in his two se-
rial papers �35,36�, where the periodic wave solutions of the
KdV equation and the Boussinesq equation were obtained by
means of the Hirota’s bilinear method �37–39�. This method
not only conveniently obtains periodic solutions of a nonlin-
ear equation, but also directly gives the explicit relations
among frequencies, wave numbers, phase shifts, and ampli-*faneg@fudan.edu.cn
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tudes of the wave. Recently, we have extended this method
to investigate the discrete Toda lattice �40�. But the
asymptotic properties for this type of periodic wave solutions
still have not been considered in detail �35,36,40,41�.

One objective of this paper is to provide a detail
asymptotic analysis procedure to this kind of periodic waves
by considering the following �2+1�-dimensional Bogoyav-
lenskii’s breaking soliton equation as an illustrative example

ut + uxxy + 4uuy + 4ux�
−1uy = 0, �1.1�

its equivalent form

ut + uxxy + 4uvx + 4uxv = 0,

uy = vx,

which describes the �2+1�-dimensional interaction of a Rie-
mann wave propagating along the y axis with a long wave
along the x axis. The u=u�x ,y , t� represents the physical field
and v=v�x ,y , t� some potential. This equation is typical of
the so-called “breaking soliton” equation and was studied by
Bogoyovenskii, where overlapping solutions were generated
�42�. Radha and Lakshmanan showed that Eq. �1.1� pos-
sesses the Painlevé property and dromionlike structures �43�.
Ikeda and Takasaki presented a Bogoyovenskii’s hierarchy
and its breaking soliton solutions �44�. In recent years, many
papers have been focusing their topics on various exact so-
lutions of Eq. �1.1� including soliton solutions, and Jacobi or
Weierstrass elliptic periodic solutions �45–50�. However,
these periodic wave solutions are actually one-dimensional
cnoidal waves �one-dimensional surface patterns�. One of the
major shortcomings of cnoidal theory as a practical model of
water waves is that the theory is one dimensional, whereas
the water surface is two dimensional. It follows that cnoidal
waves are necessarily long-crested, whereas both long-
crested and shorted waves are observed in shallow water.

So another objective of this paper is to provide a multidi-
mensional generalization of cnoidal waves for Eq. �1.1�. The
organization of this paper is as follows. In Sec. II, we briefly
introduce a useful bilinear form of Eq. �1.1�, the Riemann
theta function, and its periodicity. In Secs. III and IV, we
apply Hirota’s bilinear method to construct one- and two-
periodic wave solutions of Eq. �1.1�, respectively. The one-
periodic waves are well-known cnoidal waves, and their sur-
face pattern is one-dimensional. The two-periodic waves,
whose surface pattern is two dimensional, are a direct gen-
eralization of one-periodic waves. We further apply a limit-
ing procedure to analyze the features and asymptotic behav-
ior of the one- and two-periodic wave solutions in detail. It is
rigorously shown that the periodic solutions tend to the
known soliton solutions under a “small amplitude” limit.

II. THE BILINEAR FORM AND THE RIEMANN THETA
FUNCTION

In this section, we briefly introduce a useful bilinear form
of Eq. �1.1� and some main points on the Riemann theta
function.

A. The bilinear form of Eq. (1.1)

The Hirota bilinear method is powerful in constructing
exact solutions for a large number of nonlinear equations.
Once a nonlinear equation is written in bilinear forms by a
dependent variable transformation, then multisoliton solu-
tions are usually obtained.

By the dependent variable transformation �43,49�

u =
3

2
�x

2 ln f�x,y,t� ,

Eq. �1.1� is then transformed into a bilinear form

�DtDx + DyDx
3�f�x,y,t�f�x,y,t� = 0, �2.1�

where the bilinear differential operators Dx, Dy, and Dt are
defined by

Dx
mDy

nDt
kf�x,y,t�g�x,y,t� = ��x − �x��

m��y − �y��
n���t − �t��

k

�f�x,y,t�g�x�,y�,t���x�=x,y�=y,t�=t.

These operators have a good property when acting on expo-
nential functions, namely,

Dx
mDy

nDt
ke�1e�2 = ��1 − �2�m��1 − �2�n��1 − �2�ke�1+�2,

where � j =� jx+� jy+� jt+� j, j=1,2. More generally, we have

G�Dx,Dy,Dt�e�1e�2 = G��1 − �2,�1 − �2,�1 − �2�e�1+�2,

�2.2�

where G�Dx ,Dy ,Dt� is a polynomial about Dx, Dy, and Dt.
This property will be used later and plays a key role in the
construction of the periodic wave solutions.

Following the Hirota bilinear theory, Eq. �1.1� admits a
one-soliton solution

u1 =
3

2
�x

2 ln�1 + e�� , �2.3�

with phase variable �=	x+
y−	2
t+�, and 	, 
, � being
constants. While the two-soliton solution takes the form

u2 =
3

2
�x

2 ln�1 + e�1 + e�2 + e�1+�2+A12� , �2.4�

with

� j = 	 jx + 
 jy − 	 j
2
 jt + � j, j = 1,2,

eA12 =
�	1 − 	2��	2
1�2	1 − 	2� − 	1
2�2	2 − 	1��
�	1 + 	2��	2
1�2	1 + 	2� − 	1
2�2	2 + 	1��

,

and here 	 j, 
 j, � j, j=1,2 are free constants.
To apply the Hirota bilinear method for constructing

multi-periodic wave solutions of the Eq. �1.1�, we consider a

ENGUI FAN AND Y. C. HON PHYSICAL REVIEW E 78, 036607 �2008�

036607-2



slightly generalized form of the bilinear equation �2.1�. Here
we assume Eq. �1.1� with the nonzero asymptotic condition
u→u0 as �� � →0, and look for its solution in the form

u = u0 +
3

2
�x

2 ln ���� , �2.5�

where u0 is a constant solution of Eq. �1.1�, and phase vari-
able � is taken as the form �= ��1 , . . . ,�N�T, � j =� jx+� jy
+� jt+� j, j=1,2 , . . . ,N.

By substituting Eq. �2.5� into Eq. �1.1� and integrating
with respect to x, we then get the following bilinear form:

G�Dx,Dy,Dt���������

= �DtDx + DyDx
3 + u0DyDx + c��������� = 0, �2.6�

where c=c�y , t� is an integration constant. For the bilinear
equation �2.6�, we are interested in its multiperiodic solu-
tions in terms of the Riemann theta function ����.

Remark 1. The constant c=c�y , t� may be taken to be zero
in the construction of soliton solutions. But in our present
periodic case, the nonzero constant c plays an important role
and must not be dropped. Because elliptic functions gener-
ally do not satisfy equations with zero integration constants
such as Eq. �2.1�. For example, consider the well-known
KdV equation

4ut = 6uux + uxxx.

By setting u=u���=u�x−
t� and after an elementary integra-
tion, we have

− 4
u�2 = 2u3 + 2c1u + c2,

where c1 and c2 are two integration constants. For the zero
integration constants, we get a well-known soliton solution.
While for nonzero integration constants, we obtain a periodic
solution

u = − 2���� + � ,

where both the Weierstrass elliptic function ���� and � de-
pend on the integration constants c1 and c2. �

B. The theta function and its periodicity

Let us consider multiperiodic wave solutions of Eq. �1.1�
based on the following multidimensional Riemann theta
function of genus N

���� = ���,
� = �
n�ZN

e−��
n,n�+2�i��,n�. �2.7�

Here the integer value vector n= �n1 , . . . ,nN�T�ZN, and com-
plex phase variables �= ��1 , . . . ,�N�T�CN. Moreover, for two
vectors f = �f1 , . . . , fN�T and g= �g1 , . . . ,gN�T, their inner prod-
uct is defined by

�f ,g� = f1g1 + f2g2 + ¯ + fNgN.

The 
= �
ij� is a positive definite and real-valued symmetric

N�N matrix, which we call the period matrix of the theta
function. The entries 
ij of the period matrix 
 can be con-
sidered as free parameters of the theta function �2.7�. Under
these conditions, the Fourier series �2.7� converges to a real-
valued function for an arbitrary vector ��CN.

Remark 2. In the construction of periodic wave solution
by using an algebrogeometric method �4–19�, The matrix 

is usually constructed via a compact Riemann surface � of
genus N�N. We take two sets of regular cycle paths
a1 ,a2 , . . . ,aN; b1 ,b2 , . . . ,bN on � in such a way that the in-
tersection numbers of cycles satisfy

ak � aj = bk � bj = 0,ak � bj = �kj, k, j = 1, . . . ,N .

We choose the normalized holomorphic differentials � j , j
=1, . . . ,N on � and let

ajk = 	
ak

� j, bjk = 	
bk

� j ,

then N�N matrices A= �bjk� and B= �bjk� are invertible. De-
fine matrices C and 
 by

C = �cjk� = A−1, 
 = �
 jk� = A−1B .

It is can be shown that the matrix 
 is symmetric and has
positive definite imaginary part. In this paper, we take the 

to be pure imaginary matrix to make the theta function �2.7�
real valued. �

In the following, we discuss the quasiperiodicity of the
theta function ��� ,
�, which plays a central role in this pa-
per.

Definition 1. A function g�x , t� on CN�C is said to be
quasiperiodic in t with fundamental periods T1 , . . . ,Tk�C if
T1 , . . . ,Tk are linearly dependent over Z and there exist a
function G�x , t��CN�Ck such that for ∀�y1 , . . . ,yk��Ck,

G�x,y1, . . . ,yj−1,yj + Tj,yj+1, . . . ,yk�

= G�x,y1, . . . ,yj−1,yj,yj+1, . . . ,yk� ,

G�x,t, . . . ,t, . . . ,t� = g�x,t� .

In particular, g�x , t� becomes periodic with T if and only if
Tj =mjT. �

Example 1. The function g�x , t�=a�x�cos�t�+b�x�cos�2t�
+c�x�cos�
3t� is quasiperiodic in t, with

G�x,y1,y2,y3� = a�x�cos�y1� + b�x�cos�2y2� + c�x�cos�
3y3� ,

T1 = 2�, T2 = �, T3 = 2�/
3.

Let us see the periodicity of the theta function ����.
Proposition 1. �51�. Let ej be the jth column of N�N

identity matrix IN, 
 j the jth column of 
, and 
 j j the �j , j�
entry of 
. Then the theta function ���� has the periodic
properties

��� + ej,
� = ���,
� , �2.8�
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��� + i
 j,
� = e−2�i�j+�
j j���,
� . �2.9�

If considering the N�2N matrixes �= �IN , i
� and �
= �0,−IN�. We can unify Eqs. �2.8� and �2.9� as a general
form

��� + �ēj,
� = e2�i��ē j,��+�j���,
� , �2.10�

where ēj, j=1, . . . ,2N denote the 2Nth columns of the 2N
�2N identity matrix, and � j is the jth component of the
2N-dimensional vector �= �0, . . . ,0 ,�
11, . . . ,�
NN�T.

The theta function ���� which satisfies the condition
�2.10� is called a multiplicative function. We regard the vec-
tors �ej, j=1, . . . ,N� and �i
 j, j=1, . . . ,N� as periods of the
theta function ���� with multipliers 1 and e−2�i�j+�
j j, respec-
tively. Of course, only the first N vectors are actually periods
of the theta function ��� ,
�, but the last N vectors are the
periods of the function ��j

2 ln ��� ,
�, j=1, . . . ,N.
Proposition 2. Let ej and 
 j be defined as above proposi-

tion 1, then we have

��j

2 ln ��� + ej,
� = ��j

2 ln ���,
�, j = 1, . . . ,N ,

�2.11�

��j

2 ln ��� + i
 j,
� = ��j

2 ln ���,
�, j = 1, . . . ,N .

�2.12�

Proof. Equation �2.11� is clear from Eq. �2.8�. By using Eq.
�2.9�, it is easy to see that

��j
� �� + i
 j,
�

��� + i
 j,
�
= − 2�i +

��j
� ��,
�

���,
�
,

that is,

��j
ln ��� + i
 j,
� = − 2�i + ��j

ln ���,
� . �2.13�

Differentiating Eq. �2.13� with respective to � j again imme-
diately leads to Eq. �2.12�. Equations �2.11� and �2.12� indi-
cate that for each j=1, . . . ,N, the function ��j

2 ln ��� ,
� is
periodic with two fundamental periods ej and i
 j. �

C. The periodicity of solution (2.5)

Now we turn to see the periodicity of the solution �2.5�.
According to the differential relation �x

2=� j
2��j

2 , j=1, . . . ,N
and proposition 2, the solution �2.5� is a quasiperiodic func-
tion with 2N fundamental periods �ej , . . . ,eN� and
�i
 j , . . . , i
N�. The “quasiperiodic” means that u is periodic in
each of the N phases �� j , . . . ,�N�, if the other N−1 phases are
fixed.

In the simplest case when N=1, the solution �2.5� repro-
duces the cnoidal waves, which can be expressed as the
Weierstrass or Jacobi elliptic form according to the following
relations:

���,
� = − �ln �11��,
�� + c� ,

cn����0,
��,k� =
�01�0,
��10��,
�
�10�0,
��01��,
�

, k = 
�10�0,
�
��0,
� �2

,

where c is defined so that the Laurent expansion of ��� ,
� at
�=0 has zero constant term; k is called the modulus of the
Jacobi elliptic function. Three auxiliary �or half-period� theta
functions are defined by

�01��,
� = �
� +
1

2
,
� ,

�10��,
� = e−1/4�
+i���
� + i
1

2

,
� ,

�11��,
� = e−1/4�
+i���+1/2��
� + i
1

2

 +

1

2
,
� .

In mathematical physics, the Weierstrass and Jacobi elliptic
functions are two basic elliptic functions, while the theta
function is a special function in complex variables. They are
important in several areas, including the theories of Abelian
varieties and moduli spaces. They have also been applied to
soliton, quantum field, and specifically string theory. The de-
tails about these functions refer, for instance, to standard
monographs �51–53�. The waves of interest in this paper
appear at the case when N=2, then the solution �2.5� is pe-
riodic in two independent horizontal directions.

III. ONE-PERIODIC WAVES AND ASYMPTOTIC
PROPERTIES

In this section, we consider one-periodic wave solutions
of Eq. �1.1�. We first consider the simple case when N=1,
then theta function �2.7� reduces the following Fourier series
in n:

���,
� = �
n=−�

�

e2�in�−�n2
, �3.1�

where the phase variable �=�x+�y+�t+�, and the param-
eter 
�0.

A. Construction of one-periodic waves

To make the theta function �3.1� be a solution of the bi-
linear equation �2.6�, we substitute Eq. �3.1� into the left side
of Eq. �2.6� and by using the property �2.2� obtain that
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G�Dx,Dy,Dt����,
� · ���,
� = �
n=−�

�

�
m=−�

�

G�Dx,Dy,Dt�e2�in�−�n2
e2�im�−�m2


= �
n=−�

�

�
m=−�

�

G�2�i�n − m��,2�i�n − m��,2�i�n − m���e2�i�n+m��−��n2+m2�


=
m=m�−n

�
m�=−�

� � �
n=−�

�

G�2�i�2n − m���,2�i�2n − m���,2�i�2n − m����e−���n2�+�n − m��2�
�e2�im��

= �
m�=−�

�

Ḡ�m��e2�im��,

where in the last line we have denoted the coefficient of e2�im�� in the above equation as

Ḡ�m�� = �
n=−�

�

G�2�i�2n − m���,2�i�2n − m���,2�i�2n − m����e−��n2+�n − m��2�
. �3.2�

In the following, we compute each series Ḡ�m�� for m��Z. By shifting summation index by n=n�+1, we have the
following fact:

Ḡ�m�� = 
 �
n�=−�

�

G�2�i�2n� − �m� − 2���,2�i�2n� − �m� − 2���,2�i�2n� − �m� − 2����

� exp„− ���n�2 + �n� − �m� − 2���2�
…exp�− 2��m� − 1�
��= Ḡ�m� − 2�e−2��m�−1�
 = ¯

= �Ḡ�0�e−�m�2
/2, m� is even,

Ḡ�1�e−��m�2−1�
/4, m� is odd, �

which implies that Ḡ�m�� ,m��Z are completely dominated

by two function Ḡ�0� and Ḡ�1�. In other word, if the follow-
ing two equations are satisfied:

Ḡ�0� = Ḡ�1� = 0, �3.3�

then it follows that

Ḡ�m�� = 0, m� � Z

and thus the theta function �3.1� is an exact solution to Eq.
�2.6�, namely,

G�Dx,Dy,Dt��������� = 0.

It follows from Eqs. �3.2� and �3.3� that

Ḡ�0� = �
n=−�

�

�− 16�2n2�� + 256�4n4�3�

− 16u0�2n2�� + c�e−2�n2
 = 0,

Ḡ�1� = �
n=−�

�

�− 4�2�2n − 1�2�� + 16�4�2n − 1�4�3�

− 4u0�2�2n − 1�2�� + c�e−��2n2−2n+1�
 = 0. �3.4�

By introducing the notations as

� = e−�
, a11 = − �
n=−�

�

16�2n2��2n2
,

a12 = �
n=−�

�

�2n2
, a22 = �

n=−�

�

�2n2−2n+1,

a21 = − �
n=−�

�

4�2�2n − 1�2��2n2−2n+1,

b1 = − �
n=−�

�

�256�4n4�3� − 16u0�2n2����2n2
,
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b2 = − �
n=−�

�

�16�4�2n − 1�4�2 − 4u0�2�2n − 1�2����2n2−2n+1,

�3.5�

we simply change Eq. �3.4� into a linear system about the
frequency � and the integration constant c, namely,


a11 a12

a21 a22
�
�

c
� = 
b1

b2
� . �3.6�

Now we get a one-periodic wave solution of Eq. �1.1�

u = u0 +
3

2
�x

2 ln ���� , �3.7�

provided the vector �� ,c�T solves Eq. �3.6� with the theta
function ���� given by Eq. �3.1� and parameters �, c by Eq.
�3.6�. The other parameters �, �, 
, �, and u0 are free. The
three parameters �, �, and 
 completely dominate a one-
periodic wave. Figure 1 shows a one-periodic wave for one
choice of the parameters.

B. Feature and asymptotic property of one-periodic waves

In summary, the one-periodic wave �3.7� has a simple
characterization. �i� It is real valued and bounded for all
complex variables �x ,y , t�. �ii� It is actually a kind of one-
dimensional cnoidal waves, i.e., there is a single phase vari-
able �. Its speed parameter is given by

� =
b1a22 − b2a12

a11a22 − a12a21
.

Their surface pattern is one-dimensional and they are often
used as one-dimensional models of periodic waves in shal-
low water. �iii� It has two fundamental periods 1 and i
 in the
phase variable �. �iv� It has only one wave pattern for all
time, and it can be viewed as a parallel superposition of
overlapping one-solitary waves, placed one period apart �see
Fig. 1�.

In the following, we further consider asymptotic proper-
ties of the one-periodic wave solution. For this purpose, we
have to use the solutions of the system �3.6�. Since both the
coefficient matrix and the right-side vector of system �3.6�
are power series about �, its solution �� ,c�T also should be a
series about �. We can solve system �3.6� via small param-
eter expansion method and general procedure is described as
follows.

We write the coefficient matrix and the right-side vector
of system �3.6� into power series of �


a11 a12

a21 a22
� = A0 + A1� + A2�2 + ¯ �3.8�

and


b1

b2
� = B0 + B1� + B2�2 + ¯ . �3.9�

Again suppose that the solution of system �3.6� is in the form

u
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FIG. 1. �Color online� A one-periodic wave of the
�2+1�-dimensional Bogoyavlenskii’s breaking soliton equation
with parameters: u0=�=0, �=0.1, 
=3, �=1. This figure shows
that every one-periodic wave is one dimensional, and it can be
viewed as a superposition of overlapping solitary waves, placed one
period apart. �a� Perspective view of the wave. �b� Overhead view
of the wave, with contour plot shown. The bright lines are crests
and the dark lines are troughs. �c� Wave propagation pattern of the
wave along the x axis. �d� Wave propagation pattern of the wave
along the y axis.
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�

c
� = X0 + X1� + X2�2 + ¯ . �3.10�

Substituting Eqs. �3.8�–�3.10� into Eq. �3.6� leads to the fol-
lowing recursion relations:

A0X0 = B0,

A0X1 + A1X0 = B1,

A0X2 + A2X0 + A1X1 = B2,

¯ ,

A0Xk + A1Xk−1 + ¯ + AkX0 = Bk, �3.11�

form which we then recursively get each vector Xj, j
=0,1 , . . ..

If the matrix A0 is reversible, solving Eq. �3.11� gives

X0 = A0
−1B0,

Xk = A0
−1
Bk − �

j=1

k

AjBk−1�, k = 1,2, . . . .

If A0 and A1 are not inverse, but they take the following
form �which will be used in the proof of the following theo-
rem 1�:

A0 = 
0 1

0 0
�, A1 = 
 0 0

− 8�2� 2
� ,

solving relations �3.11� gives

X0 = �−
1

8�2�
�B1

�II� − 2B0
�I��

B0
�I� � ,

X1 = �−
1

8�2�
��B2 − A2X0��II� − 2B1

�I��

B1
�I� � ,

Xk =�−
1

8�2�
�
Bk+1 − �

j=2

k+1

AjXk+1−j��II�

− 2
Bk+1 − �
j=2

k

AjXk−j��I��

Bk+1 − �

j=2

k

AjXk−j��I� �, k = 2,3, . . . , �3.12�

where V�I� and V�II� denote the first and second component of
a two-dimensional vector V, respectively. Interestingly, the
relation between the one-periodic wave solution �3.7� and the
one-soliton solution �2.3� can be established as follows.

Theorem 1. Suppose that the vector �� ,c�T is a solution of
the system �3.6�, and for the one-periodic wave solution
�3.7�, we let

u0 = 0, � =
	

2�i
, � =




2�i
, � =

� + �


2�i
, �3.13�

where 	, 
, and � are the same as those in Eq. �2.3�. Then
we have the following asymptotic properties:

c → 0 ,� →
� + �


2�i
, ���,
� → 1 + e�,

as � → 0. �3.14�

In other words, the one-periodic solution �3.7� tends to the
one-soliton solution �2.3� under a small amplitude limit, that
is,

u → u1, as � → 0.

Proof. By using Eq. �3.5�, we write functions aij, bj, i, j
=1,2 as the series about �

a11 = − 32�2���2 + 4�8 + 9�18 + ¯ � ,

a12 = 1 + 2�2 + 2�8 + 2�18 + 2�32 + ¯ ,

a21 = − 8�2��� + 9�5 + 25�13 + ¯ � ,

a22 = 2� + 2�5 + 2�13 + 2�25 + ¯ ,

b1 = − 512�4�3���2 + 8�8 + ¯ � ,

b2 = − 32�4�3��� + 81�5 + 625�13 + ¯ � . �3.15�

Thus, using Eqs. �3.8� and �3.9�, we have

A0 = 
0 1

0 0
�, A1 = 
 0 0

− 8�2� 2
� ,

A2 = 
− 32�2� 2

0 0
�, A5 = 
 0 0

− 72�2� 2
� ,

A3 = A4 = 0,

¯ , �3.16�

and
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B0 = 0, B1 = 
 0

− 32�4�3�
� ,

B2 = 
− 512�4�3�

0
�, B5 = 
 0

− 2592�2�3�
� ,

B3 = B4 = 0,

¯ . �3.17�

Substituting Eqs. �3.16� and �3.17� into formulas �3.12�, we
then obtain

X0 = 
4�2�2�

0
�, X1 = X3 = 0, X2 = 
 384�4�3�

− 384�4�3�
� ,

X4 = 
 − 2304�4�3�

384�4�3��32�2� + 2�
�, . . . ,

and thus

c = − 384�4�3��2 + 384�4�3��32�2� + 2��4 + o��4� ,

� = 4�2�2� + 384�4�3��2 − 2304�4�3��4 + o��4� ,

which exactly implies by using relation �3.13� that

c → 0, 2�i� → 8�3i�2� = − 	2
, as � → 0.

�3.18�

It remains to show that the one-periodic wave �3.7� de-
generates to the one-soliton solution �2.3� under the limit �
→0. For this purpose, we first expand the periodic function
���� in the form

���,
� = 1 + ��e2�i� + e−2�i�� + �4�e4�i� + e−4�i�� + ¯ .

By using the transformation �3.13�, it follows that

���,
� = 1 + e�̂ + �2�e−�̂ + e2�̂� + �6�e−2�̂ + e3�̂� + ¯

→ 1 + e�̂, as � → 0, �3.19�

where

�̂ = 2�i� − �
 = 	x + 
y + 2�i�t + � . �3.20�

Combining Eqs. �3.18� and �3.20� deduces that

�̂ → 	x + 
y − 	2
 + � = �, as � → 0 �3.21�

or, equivalently,

� →
� + �


2�i
, as � → 0.

Again Eqs. �3.19� and �3.21� immediately leads to

���,
� → 1 + e�, as � → 0.

Therefore we conclude that the one-periodic solution �3.7�
just goes to the one-soliton solution �2.3� as the amplitude
�→0. �

IV. TWO-PERIODIC WAVES AND ASYMPTOTIC
PROPERTIES

In this section, we consider two-periodic wave solutions
to Eq. �1.1�, which are a two-dimensional generalization of
one-periodic wave solutions. The two-periodic waves of in-
terest here have three-dimensional velocity fields and two-
dimensional surface patterns.

A. Construction of two-periodic waves

In the case when N=2, the Riemann theta function �2.7�
takes the form

���,
� = ���1,�2,
� = �
n�Z2

e2�i��,n�−��
n,n�, �4.1�

where n= �n1 ,n2�T�Z2, �= ��1 ,�2�T�C2, �i=� jx+� jy+� jt
+� j, j=1,2. 
 is a positive definite and real-valued symmet-
ric 2�2 matrix which can taken of the form


 = 

11 
12


12 
22
�, 
11 � 0, 
22 � 0, 
11
22 − 
12

2 � 0.

In order to get some sufficient conditions, such that the
theta function �4.1� satisfies the bilinear equation �2.6�, we
substitute the function �4.1� into the left of Eq. �2.6� and
obtain that

G�Dx,Dy,Dt����1,�2,
����1,�2,
�

= �
m,n�Z2

G�2�i�n − m,��,2�i�n − m,��,2�i

��n − m,���e2�i��,n+m�−���
m,m�+�
n,n��

=
m=m�−n

�
m��Z2

�
n�Z2

G�2�i�2n − m�,��,2�i�2n − m�,��,2�i

��2n − m�,��� � exp�− ���
�n − m��,n − m��

+ �
n,n���exp�2�i��,m��� � �
m��Z2

Ḡ�m1�,m2��e
2�i��,m��.

In the last line we have introduced the notation Ḡ�m1� ,m2�� for
the coefficient of e2�i��,m��. For each fixed l=1,2, by shifting
jth summation index as nj =nj�+� j,l with � j,l representing
Kronecker’s delta, we obtain that

Ḡ�m1�,m2�� = �
n�Z2

G�2�i�2n − m�,��,2�i�2n − m�,��,2�i

��2n − m�,���e−���
�n−m��,n−m��+�
n,n��

= �
n�Z2

G
2�i�
j=1

2

�2nj� − �mj� − 2� jl��� j,2�i�
j=1

2

�2nj�

− �mj� − 2� jl��� j,2�i�
j=1

2

�2nj� − �mj� − 2� jl��� j�
� exp�− � �

j,k=1

2

�nj� + � jl�
 jk�nk� + �kl�
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− � �
j,k=1

2

��mj� − 2� jl − nj�� + � jl�
 jk

���mk� − 2�kl − nk�� + �kl�� ,

=�Ḡ�m1� − 2,m2��e
−2��
11m1�+
12m2��+2�
11, l = 1,

Ḡ�m1�,m2� − 2�e−2��
12m1�+
22m2��+2�
22, l = 2,
�

which implies that if the following equations are satisfied

Ḡ�0,0� = Ḡ�0,1� = Ḡ�1,0� = Ḡ�1,1� = 0, �4.2�

then we have Ḡ�m1� ,m2��=0 for all m1� ,m2��Z, and thus the
function �4.1� is an exact solution of Eq. �2.6�.

By introducing the notations as

M = �ajl�, b = �b1,b2, b3,b4�T,

aj1 = − 4�2 �
n1,n2�Z2

�2n − sj,���2n1 − s1
j �� j�n� ,

aj2 = − 4�2 �
n1,n2�Z2

�2n − sj,���2n2 − s2
j �� j�n�

aj3 = 4�2 �
n1,n2�Z2

�2n − sj,���2n − sj,��� j�n� ,

aj4 = �
n1,n2�Z2

� j�n� ,

bj = − 16�4 �
n1,n2�Z2

�2n − sj,��3�2n − sj,��� j�n� ,

� j�n� = �1
n1

2+�n1 − s1
j �2

�2
n2

2+�n2 − s2
j �2

�3
n1n2+�n1−s1

j ��n2−s2
j �,

�1 = e−�
11, �2 = e−�
22, �3 = e−2�
12,

sj = �s1
j ,s2

j �, j = 1,2,3,4,

s1 = �0,0�, s2 = �1,0�, s3 = �0,1�, s4 = �1,1� ,

Eq. �4.2� can be written as a linear system

M��1,�2,u0,c�T = b . �4.3�

Hence, we get an exact two-periodic wave solution to Eq.
�1.1�

u = u0 +
3

2
�x

2 ln ���1,�2,
� , �4.4�

with ���1 ,�2� and �1 ,�2 ,u0 ,c given by Eqs. �4.1� and �4.3�,
respectively, while other parameters
�1 ,�2 ,�1 ,�2 ,
11,
22,
12 are free. The two-periodic wave is
specified by six of the parameters �1 ,�2 ,�1 ,�2 ,
11, and 
22.
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FIG. 2. �Color online� A degenerate two-periodic wave to
�2+1�-dimensional Bogoyavlenskii’s breaking soliton equation

with parameters
�2

�1
=

�2

�1
and �1=0.01, �2=0.3, 
11=0.2, 
12=0.3,


22=1, �1=0.1, �2=3. This figure shows that the degenerate two-
periodic wave is almost one dimensional. �a� Perspective view of
the wave. �b� Overhead view of the wave, with contour plot shown.
The bright lines are crests and the dark lines are troughs. �c� Wave
propagation pattern of the wave along the x axis. �d� Wave propa-
gation pattern of wave along the y axis.
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B. Feature and asymptotic property of two-periodic waves

The two-periodic wave �4.4� has a simple characteriza-
tion. �i� It is real valued and bounded for all complex vari-
ables �x ,y , t�. �ii� It is a direct generalization of one-periodic
waves, its surface pattern is two dimensional, i.e., there are
two phase variables �1 and �2. It has two independent spatial
periods in two independent horizontal directions. The two-
periodic wave may be considered to represent periodic waves
in shallow water without the assumption of one dimension-
ality. �iii� It has 2N fundamental periods �ej , j=1, . . . ,N� and
�i
 j , j=1, . . . ,N� in ��1 ,�2�. Its velocity of propagation is
given by

dx

dt
=

�2�1 − �1�2

�1�2 − �2�1
,

dy

dt
=

�1�2 − �2�1

�1�2 − �2�1
.

�iv� If parameters satisfy a ratio relation

�2

�1
=

�2

�1
= k �k is a constant� ,

then

�2 � k�1, �2 � k�1, ���1,�2� � ���1,k�1� .

Therefore the two-periodic wave is actually one dimensional,
and it degenerates to one-periodic wave �see Fig. 2�. �v� If
parameters do not satisfy a ratio relation, that is,

�2

�1
�

�2

�1
,

then for any time t, phase variables �1=const and �2=const
intersect at a unique point. As the time t changes, this point
moves in the �x ,y� plane with a constant speed. In this case,
the two-periodic solution is genuinely two dimensional, and
it is spatially periodic in two independent directions in the
�x ,y� plane. Every two-periodic wave as in Fig. 3 is spatially
periodic in two directions, but it need not be periodic in
either the x or y directions. The basic cell of the pattern
seems like a hexagon, but need not regular: six steep wave
crests form the edges of each hexagon. The six crests sur-
rounding a trough can be identified in pairs: opposite crests
are parallel and have equal amplitudes as well as lengths
along the crests. �vi� In a subcase of the above 
11=
22, �1
=�2, �1=−�2, the two-periodic solution has only three inde-
pendent parameters �
11,�1 ,�1�, and it is called a symmetric
solution �33�. This solution is periodic both in x and y direc-
tions and propagate purely in the x direction. An example is
shown in Fig. 4. It is seen that the cell of its pattern is a
regular hexagon from the contour plot �see Fig. 4�b��.

At last, we consider the asymptotic properties of the two-
periodic solution �4.4�. In a similar way to theorem 1, we can
establish the relation between the two-periodic solution �4.4�
and the two-soliton solution �2.4� as follows.

Theorem 2. Assume that ��1 ,�2 ,u0 ,c�T is a solution of
the system �4.3�, and for the two-periodic wave solution
�4.4�, we take

� j =
	 j

2�i
, � j =


 j

2�i
, � j =

� j + �
 j j

2�i
,
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FIG. 3. �Color online� A asymmetric two-periodic wave for
�2+1�-dimensional Bogoyavlenskii’s breaking soliton equation
with parameters �1=0.6, �2=0.9, 
11=1, 
12=0.2, 
22=1.2, �1

=0.1, �2=−0.2. This figure shows that every two-periodic wave is
spatially periodic in two directions, but it need not be periodic in
either the x or y directions. �a� Perspective view of the wave. �b�
Overhead view of the wave, with the contour plot shown. The
bright hexagons are crests and the dark hexagons are troughs. �c�
Wave propagation pattern of the wave along the x axis. �d� Wave
propagation pattern of wave along the y axis.
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12 =
A12

2�i
, j = 1,2, �4.5�

with 	 j, 
 j, � j, j=1,2, and A12 as those given in Eq. �2.4�.
Then we have the following asymptotic relations:

u0 → 0, c → 0, � j →
� j + �
 j j

2�i
, j = 1,2,

���1,�2,
� → 1 + e�1 + e�2 + e�1+�2+A12,

as �1,�2 → 0. �4.6�

So the two-periodic solution �4.4� just tends to the two-
soliton solution �2.4� under a certain limit, namely,

u → u2 as �1,�2 → 0.

Proof. We expand periodic wave function ���1 ,�2� in the
following form:

���1,�2,
� = 1 + �e2�i�1 + e−2�i�1�e−�
11

+ �e2�i�2 + e−2�i�2�e−�
22 + �e2�i��1+�2�

+ e−2�i��1+�2��e−��
11+2
12+
22� + ¯ .

Further by using Eq. �4.5� and making a transformation �̂ j
=2�i� j, j=1,2, we get

���1,�2,
� = 1 + e�̂1 + e�̂2 + et�1+�̂2−2�
12 + �1
2e−�̂1 + �2

2e−�̂2

+ �1
2�2

2e−�̂1−�̂2−2�
12 + ¯ → 1 + e�̂1 + e�̂2

+ e�̂1+�̂2+A12, as �1,�2 → 0,

where �̂ j =	 jx+
 jy+ �̂ jt+� j, j=1,2.
It remains to prove that

c → 0, �̂ j → − 	 j
2
 j, �̂ j → � j, j = 1,2,

as �1,�2 → 0. �4.7�

As in Eq. �3.15�, we can expand each function in �aij ,bj , j
=1,2 ,3 ,4� into a series with �1, �2. It is slightly more te-
dious than that Eq. �3.15�, but this process is easily carried
out by using symbolic computation software MATHEMATICA

or MAPLE. Actually, we only need to make the first order
expansions of matrix M and vector b with �1, �2 to show the
asymptotic relations �4.7�. Here we consider their second or-
der expansions to see deeper relations among parameters for
the two-periodic solution �4.4� and the two-soliton solution
�2.4�. The expansions for the matrix M and the vector b are
given by
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FIG. 4. �Color online� A symmetric two-periodic wave for
�2+1�-dimensional Bogoyavlenskii’s breaking soliton equation
with parameters �1=1, �2=1, 
11=1, 
12=0.2, 
22=1, �1=0.1, �2

=−0.1. This figure shows that the symmetric two-periodic wave is
periodic in both x and y directions and propagate purely in the x
direction. �a� Perspective view of the wave. �b� Overhead view of
the wave with a contour plot shown. The bright hexagons are crests
and the dark hexagons are troughs. �c� Wave propagation pattern of
the wave along the x axis. �d� Wave propagation pattern of wave
along the y axis.
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M =�
0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0
� +�

0 0 0 0

− 8�2�1 0 − 8�2�1�1 2

0 0 0 0

0 0 0 0
��1 +�

0 0 0 0

0 0 0 0

0 − 8�2�2 − 8�2�2�2 2

0 0 0 0
��2

+�
− 32�2�1 0 − 32�2�1�1 2

0 0 0 0

0 0 0 0

0 0 0 0
��1

2 +�
0 − 32�2�2 − 32�2�2�2 2

0 0 0 0

0 0 0 0

0 0 0 0
��2

2

+�
0 0 0 0

0 0 0 0

0 0 0 0

8�2��2 − �1� 8�2��1 − �2� − 8�2��1 + �2��3 8�2��2 − �1���1 − �2� 2
��1�2 + o��1

k�2
j �, k + j � 2 �4.8�

and

b =�
0

− 32�4�1
3�1

0

0
��1 +�

0

0

− 32�4�2
3�2

0
��2 +�

− 512�4�1
3�1

0

0

0
��1

2 +�
0

− 512�4�2
3�2

0

0

0
��2

2

+�
0

0

0

− 32�4��1 + �2�3��1 + �2��3 − 32�4��1 − �2�3��1 − �2�
��1�2 + o��1

k�2
j �, k + j � 2, �4.9�

where o��1
k�2

j � denote higher infinitesimal than �1
k�2

j , k+ j
�2.

We also assume the solution of the system �4.3� in the
following form:

�
�1

�2

u0

c
� =�

�1
�0�

�2
�0�

u0
�0�

c�0�
� +�

�1
�1�

�2
�1�

u0
�1�

c�1�
��1 +�

�1
�2�

�2
�2�

u0
�2�

c�2�
��2 +�

�1
�11�

�2
�11�

u0
�11�

c�11�
��1

2

+�
�1

�22�

�2
�22�

u0
�22�

c�22�
��2

2 +�
�1

�12�

�2
�12�

u0
�12�

c�12�
��1�2 + o��1

k�2
j �,k + j � 2.

�4.10�

Substituting Eqs. �4.8�–�4.10� into Eq. �4.3� and comparing
the same order of �1, �2, we obtain the following relations:

c�0� = c�1� = c�2� = c�12� = 0,

�1
�0� + �1u0

�0� = 4�2�1
2�1,�2

�0� + �2u0
�0� = 4�2�2

2�2,

�1
�1� + �1u0

�1� = 0, �2
�1� + �2u0

�1� = 0,

c�11� − 32�2�1�1
�0� − 32�2�1�1u0

�0� = − 512�4�1
3�1,

c�22� − 32�2�2�2
�0� − 32�2�2�2u0

�0� = − 512�4�2
3�2.

To make the relations �4.7� hold, we choose u0
�0�=0, and thus

u0 = o��1,�2� → 0,

c = − 384�4�1
3�1�1

2 − 384�4�2
3�2�2

2 + o��1
2,�2

2� → 0,

�1 = 4�2�2
2�1 + o��1,�2� → 4�2�1

2�1,

�2 = 4�2�2
2�2 + o��1,�2� → 4�2�2

2�2, as �1,�2 → 0,

which implies Eq. �4.7�. Therefore we conclude that the two-
periodic solution �4.4� tends to the two-soliton solution �2.4�
as �1 ,�2→0. �

In this paper, we consider one- and two-periodic wave
solutions of the Bogoyavlenskii’s breaking soliton equation
�1.1�, which belong to the cases when N=1 and N=2. The
results can be extended to the case when N�2, but there are
still certain numerical difficulties in the calculation, which
will be considered in our future work.
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