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The stability and arrangements of two dust particles in a plasma are investigated in terms of the Hamiltonian
of the system. It is shown that the Hamiltonian description of a non-Hamiltonian system can be used to predict
qualitative features of possible equilibria in a variety of confinement potentials and can provide useful plasma
diagnostics. The results compare favorably with those of simulations and are used to create experimental
hypotheses. In particular, the symmetry-breaking transition of the particles as they leave the horizontal plane
admits a Hamiltonian description which is used to elucidate the wake parameters.
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I. INTRODUCTION

Plasma systems containing small numbers of micropar-
ticles �i.e., dust� have attracted theoretical as well as experi-
mental interest due the complexity of the interactions in-
volved and their application in the study of so-called
nonextensive systems �1� containing long-range interactions
comparable to the size of the system. Plasmas containing
dust can also serve as a useful model for many-particle sys-
tems in such diverse areas as condensed matter physics, as-
trophysics, and atmospheric physics.

Complex plasmas �1–3� provide an ideal medium for
studying structural transitions in nonextensive systems, when
even the system of two particles displays rich physics �4–7�.
For example, the binding energy resulting from the attractive
wake potential created by two particles in streaming plasma
�8� causes them to behave as a molecule �9�. The study of
this dust molecule has revealed useful insights into larger
plasma crystals, including the vertically aligned crystal struc-
ture and the driving force behind crystal-liquid phase transi-
tions.

The nature of particle arrangements in systems containing
large numbers of particles can be understood by considering
simplified systems of just a few �e.g., two� particles. It is
well known that even an interaction between two dust par-
ticles in the plasma sheath environment is highly compli-
cated. The interaction involves both a symmetrical Debye-
type interaction and an asymmetric attractive interaction
caused by plasma collective processes. The stationary
charged dust particles perturb the trajectories of vertically
flowing ions in the sheath toward a focus underneath the
particles, creating a region of enhanced positive space charge
in their wake. The theory of wake formation has been de-
scribed �10–14� and verified by experiments �15� as well as
three-dimensional particle-in-cell and molecular dynamics
simulations �16,17�.

In addition to the vertical sheath field in which the dust
particles levitate against the force of gravity �1�, a radial
electric field is typically imposed to trap the particles within
the discharge. Under varying discharge parameters, the par-
ticles have been found to align either parallel or perpendicu-
lar to the direction of ion flow �4–6�. The stability of the
particle arrangements is determined by a combination of
confinement strengths, interparticle forces and wake effects

�7�. The structure and dynamics of dust arrangement in flow-
ing plasma with constant and uniform ion velocity were con-
sidered by Lampe et al. �18�, where formation of stable self-
bound molecules was demonstrated and possible equilibria
dust pairs confined in quadratic �parabolic� and quartic ex-
ternal potentials were reported.

In this paper, we focus on the symmetry-breaking disrup-
tions that can occur in a system of two dust particles when
the key parameters �such as confinement, dust charge, sepa-
ration, and ion flux� have reached their critical values. We
discuss the possible equilibria of the dust system in a variety
of confinement potential profiles. The analysis suggests that
the parabolic potential well admits only horizontal and ver-
tical stable dust alignments which is in agreement with ex-
periments and a recent theoretical prediction �18�. It is also
suggested that continuous symmetry breakings of the dust
particle alignments are possible not just with a quadratic po-
tential well, but also with a cubic anharmonicity, due to par-
ticle asymmetry and spatial variation of the grain charge with
elevation in the sheath. It is shown that the horizontal align-
ment instability at the critical confinement provides a diag-
nostic tool for determining the wake parameters.

Although the dust dynamics in complex plasma has been
proven to be non-Hamiltonian due to nonreciprocal wake
effects, friction against stationary neutrals, and spatial charge
variations �19�, it is shown here that the Hamiltonian can be
used to make qualitative predictions about the existence and
stability of the equilibria in this system. The extent to which
Hamiltonian formalism can be used to model the dynamics
of a non-Hamiltonian system is one of the general questions
we attempt to address.

II. THE MODEL

The potential part of the Hamiltonian H=T+V can be
separated into an interparticle potential Vint and an interac-
tion energy with the external confinement Vconf. In order to
determine the interparticle coupling energy, it is necessary to
find the potential of the dust particles. The potential of an
isolated dust particle of charge Qd immersed in a plasma
flowing along the z axis is given by

��r� =� Qd

22k2

eik·r

��k,kzvt�
dk ,

where vt is the velocity of the test dust particle relative to the
plasma �ion� flow, � is the plasma dielectric response, and
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k= �k� ,kz� is the position in Fourier space. This can be sepa-
rated as �=�D+�w �11,13� where �D= �Qd /4�0r�e−�r is the
usual Debye potential for a screened point charge, �w is the
potential due to the wakefield behind the dust particle and
�=1 /�D is the inverse screening length. In the recent study
�20�, an analytical expression was derived for the potential of
a test charge in a weakly ionized plasma with ion drift. The
expression obtained was shown to agree with experimental
measurements in the sheath. In one of the simplest models
�7�, one assumes that the wake field is always attractive and
takes the form of a positive point potential located at a fixed
distance � beneath the dust grain �see Fig. 1�,

�w��,z� =
Qw

4�0

e−���2+�z + ��2

��2 + �z + ��2
.

Note that the wake-particle interaction is communicated only
one way and therefore cannot be included in the Hamiltonian
description of the system. In the general case for Hamil-
tonian approximation, the potential depends on the particle
positions x1 ,x2 ,z1 ,z2. For the two-particle case, due to the
symmetry of the system, the potential depends only on the
interparticle separations,

V =
Qd

2

4�0�d
e−��d + Vconf��x,�z� , �1�

where �d=��x2+�z2 is the interparticle distance. In the ab-
sence of dissipative forces we may claim that the dust mol-
ecule resides in one of the minima of �1�.

When the radial confinement is the weak and the wake is
not too strong, the potential can have absolute minima, with
the particles horizontally aligned. As radial confinement in-
creases, the potential energies of the horizontally aligned
minima increase, causing them to become only local minima,
with the absolute minima residing in the vertical alignment.
If the horizontal confinement is sufficiently strong, the hori-
zontal equilibria become only saddle points and the only
stable equilibria lie in vertical alignment. Note that the con-
clusion that the only equilibria are either horizontal or verti-
cal, is obvious for a pair of particles in a cylindrically sym-
metric but not spherically symmetric confining potential,

interacting via any isotropic interaction force when oblique
equilibria are possible. Moreover, oblique equilibria are also
possible for cylindrically symmetric biquadratic potentials as
well. This was first demonstrated by Lampe et al. �18�.

A. Case I: Interaction of two particles in a parabolic
confinement well

Although the particle interaction is known to include a
wake potential, we can make qualitative predictions about
the system by considering only the Hamiltonian part of the
particle interaction. In the parabolic potential well,

V = VD��x,�z� +
1

4
M��

2�x2 +
1

4
M�z

2�z2.

If we assume that both �x and �z are nonzero and that the
system is in equilibrium, then

Qd
2

4�0

e−�r

r3 �1 + �r��x =
1

2
M��

2�x ,

Qd
2

4�0

e−�r

r3 �1 + �r��z =
1

2
M�z

2�z .

It can be shown from the above equalities that the interme-
diate angles are stable only for ��=�z, otherwise, the system
has only stable equilibria with the dust particles aligned hori-
zontally or vertically �Fig. 2�. This result should not be af-
fected by the introduction of a wake charge since the wake
acts to destabilize nonvertical particle arrangements. This
was indeed shown by Lampe et al. �18�, who gave an exact
solution for two particles in the presence of the wake poten-
tial for a biquadratic confining potential.

If the vertical confinement exceeds the radial confine-
ment, there are two degenerate equilibria with the particles
aligned horizontally. As radial confinement is increased, the
energies of the horizontal equilibria increase, becoming
saddle points for �� /�z	1 at which point two new equilib-
ria emerge in vertical alignment. The introduction of the
wake provides the opportunity for metastable states in both
horizontal and vertical alignment. This was also found by
Lampe et al. �18�, who used an effective energy to distin-
guish between ground and metastable states. Generally,
ground and metastable states can be distinguished by their
potential energy. If there is no Hamiltonian, there is still a
way to determine the “potential energy� as an integral of the
interaction force �21� along the line between the pair of par-
ticles �i.e., alongside the interaction force�. Although not the
potential energy in the strict Hamiltonian sense, such intro-
duced characteristics still allow us to determine ground and
metastable states, as, e.g., in the theory of void formation
�22�. The appearance of metastable void states can be seen in
Fig. 8 of Ref. �22� where such defined energy was analyzed.
The transition from the horizontal to the vertical alignments
occurs at a reduced confinement ratio �� /�z
1 due to the
reduced symmetry of the system caused by wake.

∆x

∆z

Qd

Qd

Qw

Qw

l

l

FIG. 1. Physical dimensions of the two-particle system used in
the model.
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B. Case II: Interaction of two particles in a nonparabolic well

If instead of the parabolic approximation we consider the
confinement potential up to fourth order,

Vconf =
1

2
a2�x2 +

1

3
a3�x3 +

1

4
a4�x4

+
1

2
b2�z2 +

1

3
b3�z3 +

1

4
b4�z4

and employ the equilibrium condition �V /��x=�V /��z=0,
then

a2 + a3�x + a4�x2 = b2 + b3�z + b4�z2.

First, consider parabolic confinement with a cubic anharmo-
nicity in the vertical direction �b3�0� since the confining
potential can have asymmetry in the z direction only �the
potential is cylindrically symmetric and we put a3=0�. In
order for this to be the case, the particles must have an asym-
metry or the cubic terms will vanish �5�. Asymmetrical grain
charging due to differing grain charge gradients �Qd /�z is
one situation in which cubic terms may arise. If the coeffi-
cients of the parabolic confining terms are equal, then the
only equilibria are saddle points located above and to the
side of the origin; see Fig. 3. If a2�b2, there are two degen-
erate equilibria which lie on the line �z= �a2−b2� /b3. This

suggests that the order parameter �z will change continu-
ously as the radial confinement strength is varied.

Now consider symmetrical confinement a3=b3=0 with
nonzero quartic coefficients a4 and b4 �18�. For ��=�z, there
are four equilibria that lie on an X in the ��x ,�z� plane,

�z = ��a4

b4
��x� , �2�

and when ����z they lie on the hyperbola

�z = ��a2 − b2 + a4�x2

b4
.

Note that the direction of the transverse axis of this hyper-
bola depends on the sign of a2−b2 �Fig. 4�. The presence of
multiple equilibria suggests that jumping is theoretically pos-
sible. If the system remains in one of the equilibria, however,
its position should change continuously with the confinement
strength.

This also provides a useful diagnostic tool for determining
the nonparabolicity of the confinement. When the radial and
vertical confinements are equal, the dust particles should
make an angle of tan �=�a4 /b4 with the horizontal.

III. DETERMINATION OF THE ION WAKE CHARGE

For equimass particles near the horizontal plane, the
particle-particle and wake-particle interactions can be ap-
proximated by a Hamiltonian system of the form Heff=T
+Veff �7,23�,
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FIG. 2. Potential energy contours for two particles trapped in a
parabolic well with �a� a2=b2, �b� a2
b2, and �c� a2	b2. Where
a2= 1

2 M��
2 and b2= 1

2 M�z
2.
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FIG. 3. �Color online� Potential energy contours for two par-
ticles trapped in a well with a cubic anharmonicity in the vertical
direction �a3=0� and �a� a2=b2, �b� a2
b2, and �c� a2	b2. Circles
represent stable equilibria and stars indicate saddle points.

DYNAMICS OF TWO PARTICLES IN A PLASMA SHEATH PHYSICAL REVIEW E 78, 036402 �2008�

036402-3



Veff = Qd��D��x,�z� + ��w��x,�z� + �w��x,− �z��/2	

+ Vconf��x,�z� , �3�

where the factor of 1 /2 has been included to account for the
asymmetry of the particle-wake interaction. In this approxi-
mation, the stability of the horizontal alignment to vertical
oscillations can be determined from the sign of the coeffi-
cient multiplying �z2 in the expansion of Veff about �z=0.
The criterion for instability is that


��

�z
�2

= 1 −
QdQw

2�0M�z
2

e−��w

�w
5 �3�2 + 3�2��w + �2�2�w

2 � ,

where �w is the distance from each dust particle to the other
particle’s wake and �� and �z denote the angular frequencies
of a lone particle oscillating radially at constant height and
vertically at the height of the center of mass of the two-
particle system, respectively. Note that �z does not corre-
spond to the vertical oscillation frequency of a lone particle
in the sheath since the center of mass lies below the mini-
mum of the confinement well.

Using experimental data for the critical frequencies, it is
possible to make an estimation of the ion wake charge in
these experiments. A surface of marginal stability can be
generated by sampling a subset of points in the space of
parameters ��� ,�z ,Qw�. Projection of this surface onto the
��� ,�z� plane reveals a set of isocontours corresponding to
the critical instability at constant wake charge �Fig. 5�. By

superimposing the experimental points on the horizontal to
vertical transition, it is possible to provide upper and lower
bounds for the wake charge.

IV. THE VERTICAL TO HORIZONTAL TRANSITION

In addition to the horizontal alignment instability, the ver-
tically aligned particles can destabilize resulting in a vertical
to horizontal transition. In vertical alignment, the system
cannot be assumed to behave as Hamiltonian due to the
strongly asymmetric particle-wake interaction, which is only
communicated downward. Note that for a biquadratic well
the problem solved in Ref. �18� used the assumption that the
system can be represented by an effective potential. Here, we
employed a numerical search in �z1 ,z2� space for stationary
solutions of the equations of motion for both dust particles.
The currently understood theory of how the particles make
their way from vertical to horizontal alignment involves con-
tinuous upward motion of the lower particle due to the shift-
ing position of the confinement well, followed by a
symmetry-breaking transition where the lower particle jumps
directly to the horizontal plane.

The existence of this discontinuous vertical particle mo-
tion prior to the vertical to horizontal transition has not been
explained. A qualitative explanation of this phenomenon can
be based on an analogy with superposition of energy wells.
In general, the vertical alignment can be classified into two
subregimes. At low confinement strengths, the wake domi-
nates and there is just one fixed point corresponding to the
situation when the lower particle is directly inside the ion
focus. At the other extreme of strong confinement, the wake-
induced equilibrium disappears and the particle lies in the
minimum of the confinement potential well. At moderate
confinement strengths, two stable fixed points exist, neces-
sarily separated by a third, unstable fixed point. Sweeping
the control parameter �z in the reverse direction can cause
the stable wake and unstable attractor to collide and annihi-
late each other in a global saddle node bifurcation, thus lead-
ing to a jump in the vertical position of the lower particle.
The final destabilization of the vertical equilibrium initiates
the vertical to horizontal transition, modeled also by Lampe
et al. �18�.

Discontinuities in the interparticle separation order pa-
rameter have also been observed prior to the second stage,
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FIG. 4. �Color online� Potential energy contours for two par-
ticles trapped in a well with quartic anharmonicity �a4=b4� with �a�
a2=b2, �b� a2	b2, and �c� a2
b2. Circles represent stable equilib-
ria and stars indicate saddle points.
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FIG. 5. �Color online� Wake charge isocontours showing the
surface of marginal stability over the ��� ,�z� plane. The units on
the axes are rad s−1.
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suggesting that the vertical to horizontal transition involves
an additional critical phenomenon in which two vertically
aligned equilibria—one due to the confinement well and the
other due to perturbation of positive ions flowing in the
sheath by the upper particle—merge to from a single equi-
librium �see Fig. 6�. Although the system is strictly speaking
non-Hamiltonian, consideration on the basis of an effective
potential energy Veff=VD+Vw+Vconf can be used to explain
the regimes as a superposition of two energy wells. Under
some conditions the wells overlap creating a single potential
minimum. Under another set of conditions the wells are spa-
tially distinct, resulting in two energy minima separated by
an unstable maximum.

When analyzing different regimes, a question on the real
charge accumulated in the wake can appear. On a first ap-
proach, it might look reasonable to assume that the wake
charge is less than the particle charge. Indeed, molecular
dynamics simulations �17� show that Qw�0.5−0.7Qd. How-
ever, these simulations do not include numerous processes
taking place in discharge, in particular the presence of an
ionization source strongly influencing all plasma parameters
including the ion flux. Roughly, the total charge accumulated
in the wake can be estimated as the ion flux multiplied by the
focusing cross section. Taking into account recent develop-
ments in the theory of ion scattering �24� showing that the
actual cross section may be enhanced due to large-angle scat-
tering, and complex nonlinear dependence of the cross sec-
tion on the ion flux due to dependence of the dust charge on
the ion flux, it is actually difficult to set a limit on the wake
charge. Therefore, we do not see compelling arguments that
the case Qw	Qd is totally excluded, and we included that
possibility in Fig. 6. Note that for larger wake charges Qw
	Qd the region of a single equilibrium III almost disappears
even for large enough �z.

V. CONCLUSION

We discussed the possible equilibria of a dust molecule in
a variety of confinement potentials. Our analysis suggests

that the parabolic potential well admits only horizontal and
vertical stable dust alignments which is in agreement with an
earlier prediction �18�. We also suggest that continuous
changes in particle alignment are possible not just with a
quartic potential well, but also with a cubic one due to par-
ticle asymmetry and variation of grain charge with elevation
in the sheath.

The horizontal alignment instability at the critical con-
finement ��,c provides a diagnostic tool for determining the
wake parameters. This will require accurate determination of
the resonant frequencies of oscillation at the critical point. To
our knowledge, no experiments have yet been performed in
which the critical confinement frequencies for the horizontal
instability of two identical dust particles were accurately
measured. Data do exist, however, for the horizontal to ver-
tical transition of two unequal mass particles �8�. This sug-
gests the opportunity for an experiment to be performed with
two identical particles with accurate control over the dis-
charge parameters. Ultimately, however, the plasma param-
eters may be too sensitive to changes in the dc bias voltage
on the radial confinement electrode to keep the wake suffi-
ciently constant. More precise measurement of the wake may
be possible by observing the laser-induced transition which
was performed with two particles �25�, since this guarantees
constancy of the discharge parameters. In summary, the
Hamiltonian approach can provide deep insights into the
structure and stability of the dust molecule, and allows fur-
ther elucidation of the wake and discharge parameters.

Finally, we note that dynamics of larger ensembles of dust
particles is more complicated and can differ from the studied
simplest case of a two-particle dust molecule. In particular,
larger N-particle dust clusters can demonstrate a variety of
stable and metastable configurations �1,26�, with transitions
between them �27�. Moreover, plasma absorption on dust
�28� can affect interaction of dust particles, leading to long-
range attractive and/or repulsive forces �2,29� which can be
of collective character �such as collective attraction� �26�.
Applicability of the Hamiltonian approach for these larger
systems in the sheath region should be considered by taking
into account not only the external confining potential but the
effects of plasma fluxes on dust as well as inhomogeneities
of the plasma and dust distributions for a particular system.
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APPENDIX: DERIVATION OF CRITICAL CONFINEMENT
RATIO

Due to the horizontal reflection plane, the effective poten-
tial has a Landau expansion in the order parameter �z,

Veff = a0 + a2�z2 + ¯ ,

where
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FIG. 6. Number of stable equilibria for two particles in vertical
alignment as functions of Qw and �z �� /�D=3.5�. Region II corre-
sponds to multiple equilibria and regions I and III correspond to a
single equilibrium. The black region indicates areas where the
model becomes numerically unstable. The units on the vertical axis
are rad s−1.
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a2 =
1

2

 �2Veff

��z2 

�z=0

= −
Qd

2

8�0

e−��d

�d
3 �1 + ��d� −

QdQw

8�0

e−��w

�w
5


�− ��w
3 + ��2�2 − 1��w

2 + 3�2��w + 3�2� +
1

4
M�z

2

=
1

2
Qd

��D��x,0�
��x

1

�x
+

1

2
Qd

��w��x,0�
��x

1

�x

−
QdQw

8�0

e−��w

�w
5 ��2�2�w

2 + 3�2��w + 3�2� +
1

4
M�z

2

= −
QdQw

8�0

e−��w

�w
5 ��2�2�w

2 + 3�2��w + 3�2�

+
1

4
M�z

2 −
1

4
M��

2.

When the coefficient vanishes, we have


��

�z
�2

= 1 −
QdQw

2�0M�z
2

e−��w

�w
5 ��2�2�w

2 + 3�2��w + 3�2� .
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