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The liquid cone-jet mode can be produced upon stimulation by a coflowing gas sheath. Most applications
deal with the jet breakup, leading to either of two droplet generation regimes: Jetting and dripping. The
cone-jet flow pattern is explored by direct axisymmetric volume of fluid �VOF� numerical simulation; its
evolution is studied as the liquid flow rate is increased around the jetting-dripping transition. As observed in
other focused flows such as electrospraying cones upon steady thread emission, the flow displays a strong
recirculating pattern within the conical meniscus; it is shown to play a role on the stability of the system, being
a precursor to the onset of dripping. Close to the minimum liquid flow rate for steady jetting, the recirculation
cell penetrates into the feed tube. Both the jet diameter and the size of the cell are accurately estimated by a
simple theoretical model. In addition, the transition from jetting to dripping is numerically analyzed in detail in
some illustrative cases, and compared, to good agreement, with a set of experiments.
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I. INTRODUCTION

The controllable production of small flowing geometries
is a crucial challenge for chemical engineering �1� and bio-
industry �2,3�. Drops, bubbles, jets, and recirculation cells in
the microscale provide a useful platform for diverse technical
applications. Here we concentrate on cone-jet flow patterns,
looking at the streamline geometry in the jetting to dripping
transition. Recirculating flow is shown to take place just be-
fore the transition. This may have been disregarded in some
experimental setups, whose prime concern was the study of
the cone and jet geometry, or the analysis of drop generation.
Its study requires either specific flow visualization tech-
niques or numerical simulation methods. The conditions for
recirculation are extremely interesting, both as an indicator
phenomenon associated to the jetting-dripping threshold, and
as an attractive technological feature.

Small droplet generation by means of coflowing immis-
cible fluid streams has become widespread. The intrinsic
smallness of the output droplets generally leads to small
Reynolds number flows. Thus, a number of classic studies
back to Taylor �4� including the recently blooming field of
coflowing microfluidics take the low Reynolds number as-
sumption for granted. For example, a simple scheme �a
straight tube surrounds a coaxial, more slender tube, two
immiscible fluids being fed through each tube� has been thor-
oughly explored by Suryo and Basaran �5� using a computer
simulation: A locally extensional flow spontaneously devel-
ops at the tip of the elongated drop drawn by the coflowing
liquid, causing the seemingly continuous ejection of ex-
tremely small droplets by tip streaming under certain para-
metrical combinations. This is obtained without the burden
of complex geometry. It is hoped, therefore, that low Rey-
nolds number coflowing small-droplet generation may be-
come a hydrodynamic standard in a near future. Different
setups have been proposed where the flow is driven by an
external straining flow. Among them, the elegant analytical
solution by Zhang �6� points to parametrical combinations
where extremely thin fluid jets, even down to the molecular
scale, could be continuously reached. Those jets, if con-

firmed, would yield unimaginably small droplets upon
breakup.

An interesting research field is concerned with the behav-
ior of electrified cones and drops of leaky dielectric fluids.
The problem of freely suspended liquid droplets deforming
due to an applied electrostatic field was examined by Hay-
wood, Renksizbulut, and Raithby �7�. Collins et al. �8� re-
ported simulations and experiments supplying a comprehen-
sive picture of the mechanisms of cone formation, jet
emission and breakup that occur during electrohydrodynamic
�EHD� tip streaming from a liquid film of finite conductivity.
Lac and Homsy used a boundary integral method to describe
the axisymmetric deformation and stability of a viscous drop
in a steady electric field �9�. In the present paper, however,
only nonelectrified fluids will be considered.

In spite of their generality and tractability, low Reynolds
number flows are constrained by the requirement that the
overall flow velocity does not grow above a certain threshold
to ensure that inertial forces remain negligible. This con-
straint limits the overall productivity of low-Re systems. Co-
flowing with inertia was successfully explored, aiming at a
reduction of the issued bubble diameter, by Oguz and Pros-
peretti �10�. Subsequently, new perspectives were open by
the emergence of moderate-high Reynolds number flow fo-
cusing �11� as a high-productivity alternative to low Rey-
nolds number coflowing systems. Compared to other coflow-
ing techniques, flow focusing �FF� stands today as a mature
microfluidic standard yielding steady capillary jets or drop-
lets whose size is well below the scale of the flow bound-
aries. As originally conceived, FF aimed at the generation
�11� of continuous steady microjets upon focusing by a cof-
lowing gas stream at moderate-high Reynolds number. Fur-
thermore, FF was shown �12� to produce perfectly monodis-
perse microbubble streams when the coflowing current is a
liquid. A slight variation of the concept was subsequently
introduced by Takeuchi et al. �13� to produce microbubbles.
When the axisymmetric geometry originally proposed was
reduced to a planar topology �14�, particularly suitable for
microfluidics, the scientific literature on flow focusing under-
went an enormous boost �15–17�. In addition, axisymmetric
multiple-phase FF leading to compound coaxial microjets
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�11� has been developed by other authors to produce micro-
capsules in a microfluidic setup at relatively low �18� and
moderate Reynolds number �19�.

The technological applications of FF were evident from
its very inception. A crucial advance resulted from the com-
bination of massive production �high production rates of mi-
croscopic fluidic entities� and accurate tailoring. Depending
on the geometry and arrangement of the involved fluids �a
decision determining which interfaces are to be created�, the
nature of the fluids involved, gas or liquid, and the system
geometry, an output including nearly monodisperse micro-
droplets, bubbles or complex capsules can be obtained at an
unprecedentedly controllable rate. Surface tension becomes a
paramount ally in the conformation of discrete �generally
spherical� fluidic units. Capillary jets have long ago been
observed to give rise to continuous drop streams at fast emis-
sion rate upon Rayleigh axisymmetric breakup. Here, al-
though surface tension is negligible compared to other driv-
ing forces in the global scale, it becomes the main driving
agent for jet instability and breakup. Obtaining a jet is there-
fore the precondition for the creation of a fluid domain with
higher velocities and smaller dimensions at no cost in terms
of control; and surface tension is free to perform its confor-
mation task in this new scale. Thus, as first proposed in FF,
the steady capillary thin jet conformed by pressure forcing
by an immiscible coflowing fluid provides favorable local
conditions, a suitable environment for the generation of
bubbles, capsules or droplets.

A FF capillary jet is driven by three main agents: fluid
inertia, viscosity and surface tension. Owing to the simplicity
of the slender jet geometry, which asymptotically renders all
forces strictly additive in one dimension, FF can be scaled
with the help of two dimensionless parameters: �i� the inertia
to surface tension forces ratio �Weber number� and �ii� the
viscous to surface tension ratio �capillary number�. Other
classic numbers such as Reynolds are combinations of the
former. Nevertheless, as early noticed �11�, an intrinsic fea-
ture of FF, namely the presence of a focusing fluid, gives rise
to supplementary influences issuing from the correlation be-
tween the properties of the focusing and focused fluids. In

particular, when a liquid is being focused by a gas, the gas
sheath flows much faster than the liquid jet at the exit orifice
�Fig. 1�. Thus, in addition to the extensional viscous forces at
the neck of the meniscus, transversal viscous diffusion of
momentum causes a nontrivial axial velocity profile. Some
simplifying assumptions have been adopted, yielding accu-
rate first-order solutions �11,20,21�. However, they are not
applicable to predict critical phenomena like the onset of
steady jetting, or the jetting-dripping transition, as a function
of the working parameters. These problems have been made
analytically tractable at the expense of a drastic geometry
simplification, i.e., assuming infinite jet slenderness �22–24�.
Such simplified models are predictive in a variety of situa-
tions, but FF systems exhibit an intrinsically three-
dimensional meniscus from which the jet or the small drop-
lets issue. Simultaneous modeling of the meniscus and the jet
goes beyond the scope of present theoretical frameworks.
Thus, numerical simulation or experiment are the only av-
enue to discern the physics of the fluid emission and its
parametric conditions. Some further insight can be gained by
general scaling laws. This is the approach chosen for the
research presented here.

Many authors have applied numerical simulation �25� to
this class of problems, where it has supplied welcome infor-
mation on the droplet dynamics of complex flows �26�. A
significant number of studies have been proposed on micro-
fluidic FF devices; occasional comparison with experimental
data is provided to validate the numerical model. A liquid-
liquid configuration for the production of microemulsions
has been simulated �27� to good agreement with experiments
�14�. Other authors have considered the microbubbling setup
�17,28�, where good experimental fit is also obtained �15�.

In this work, we make use of numerical simulation, with
some experimental support, to study the generation of a liq-
uid jet focused by gas in an axisymmetric FF device, at
moderate-high Reynolds numbers. The jet diameters ob-
tained in the simulation are in good agreement with our ex-
periments and scaling laws �11�, a fact that fully validates
our hypotheses. Among other findings, we determine the
flow rate at the jetting-dripping transition for two combina-
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tions of Reynolds and Weber numbers. We observe that ei-
ther the jet or the cusplike meniscus are responsible for the
global instability of the system, which drives it into well-
defined dynamical cycles �global dripping�. A detailed de-
scription of the flow pattern sheds light on the physics of the
jetting-dripping transition and the peculiar appearance of
these two regimes in coflow problems, as opposed to faucet
jetting and dripping.

One of the key findings of the simulation is the occur-
rence, under favorable driving conditions, of a recirculation
cell in the meniscus. This is in perfect analogy to recirculat-
ing meridian fluid flows observed inside Taylor cones when
electrospraying liquids with sufficiently large values of both
the viscosity and the electrical conductivity �29,30�. Addi-
tionally, in experiments aiming at the production of tip
streaming patterns in liquid-liquid two-dimensional FF �sur-
factant treated interface�, the streamline image of fluorescent
particles seeding the flow of the internal, aqueous liquid dur-
ing thread formation, was shown to consist of symmetric
recirculation vortices �31�. In both types of motion, either
driven by the electrical stresses acting at the cone surface or
by the external focusing flow, the liquid flows towards the
meniscus �cone� tip, along the generatrix, and away from it
along the axis. The problem under consideration here is com-
parable to these other instances of recirculating cell, because
the driving action of the gas sheath, which causes a strong
tangential forcing at the interface, plays a similar role to
either tangential electric stress �29,30�, surfactant-aided
liquid-liquid interaction �31�, or purely surfactant-driven tip-
streaming �32,33�. In this work, scaling arguments are devel-
oped to describe the size and occurrence of purely FF recir-
culation cells.

II. GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS

The axisymmetric flow-focusing device and the computa-
tional domain used are sketched in Fig. 1. A constant liquid
flow rate Ql, flowing through a capillary tube �outer diameter
D2=2R2, inner diameter D1=2R1�, is forced through a co-
axial round orifice of diameter D=2R �nozzle� located at a
downstream distance H from the tube outlet. The liquid
stream is drawn by a constant flow rate Qg of focusing gas
stream discharging through the nozzle into a infinitely large
chamber. The gas flow is assumed incompressible, in
asymptotic consistency with the low pressure drop at the exit
orifice, a condition prevailing when maximum droplet size
monodispersity is required. Therefore, the incompressible,
axisymmetric and unsteady Navier-Stokes equations in cylin-
drical �z ,r ,�� coordinates are used to describe the time evo-
lution of both fluids.

Figure 1 also shows the boundary conditions: �a� At the
liquid inlet, z=−zl, a Hagen-Poiseuille profile, Ul�r�=V1�1
− �r /R1�2�, is specified; �b� at the gas inlet, z=0,R2�r�R3,
a uniform axial flow, Ug�r�=V2, is assumed. This assumption
is based on the following: The gas Reynolds number under
the conditions explored is relatively high �of the order of, or
above 100�, while most flow-focusing devices have a gas
inlet length Lg which is not much bigger than the width

�R=R3−R2, so that the relevant dimensionless number for
boundary layer development, �gUg��R�2 / ��gLg� is suffi-
ciently above unity; �c� on all solid walls we assume no slip
and no penetration u=0; �d� at the axis r=0 a symmetry
condition is applied; �e� the outlet discharge chamber has
been modeled as a rectangular box, z=zout and r=rout being
two open surfaces where the pressure is set to zero. This
assumption is discussed later on.

Note that the corresponding gas and liquid flow rates can
be derived from the inlet velocity field,

Ql = �
0

R1

2�rUl�r�dr, Qg = �
R2

R3

2�rUg�r�dr . �1�

Parametric studies of the dimensionless variables in-
volved are carried out next. The velocity field u= �u ,v� is
scaled with the mean gas velocity at the nozzle V
=Qg / ��R2�, while length is scaled with the nozzle radius R,
time t with R /V, and pressure p with �gV2, �g being the
density of the focusing gas. All of the figures presented make
use of dimensionless magnitudes based on this scaling. A
single geometrical configuration is considered in this work,
characterized by the following aspect ratios: R1 /R=0.75,
R2 /R=1.75, R3 /R=3.5, H /R=1, and L /R=0.75. We have
chosen a liquid-gas combination where

�l

�g
= 833.33,

�l

�g
= 55.55, �2�

� and � being the density and viscosity of the liquid �subin-
dex l� and the gas �g�. This choice is representative of the
experimental jetting of air-focused water. The problem is
governed in addition by the Reynolds and Weber numbers

Re =
�gVR

�g
, �3�

We =
�gV2R

�
; �4�

� being the surface tension between the two phases. Q is
defined as the flow rate quotient,

Q = Ql/Qg. �5�

For a given value of Re and We, we wish to analyze the
formation of a steady liquid jet and the dependence of the
flow on the quotient Q. In particular, we identify the mini-
mum value of Q, Q*�Re,We�, below which the liquid jet
ceases to be steady and a dripping regime is observed in the
simulation. The regime is considered to be steady �and the jet
convectively unstable� if the liquid meniscus remains steady
for a sufficiently large period of time.

We should point out that in order to focus a jet of liquid
by gas, moderate-high Reynolds numbers are needed. We
consider in detail two different conditions for the focusing
gas:

Case 1. Re=465.83, We=8.137.
Case 2. Re=931.666, We=32.55.
Each case will be explored under different flow rate quo-

tients.
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III. NUMERICAL PROCEDURE

In order to predict the interface geometry during the time
evolution , several techniques have been used, falling into
one of three categories. These are �i� interface tracking meth-
ods, including a moving mesh �34�, �ii� front tracking and
particle tracking schemes �35�, and �iii� interface capturing
methods, including volume of fluid �VOF� �36,37� and level
set techniques �38�. We chose a VOF method consisting of
two parts: an interface reconstruction algorithm to approxi-
mate the interface from the set of volume fractions and a
VOF transport algorithm to determine the volume fraction at
the new time level from the velocity field and the recon-
structed front. The basic method is robust and flexible, and is
based on widely used VOF schemes �39–42�.

For convenience and with the aim of making our results
readily reproducible for others, we have used the well-tested
commercial solver FLUENT v 6.3 �laminar unsteady� to re-
solve the discretized mass continuity, momentum conserva-
tion, and the liquid volume fraction equations in the mesh
depicted in Fig. 2, generated by commercial code GAMBIT in
FLUENT v 6.2. The cells are polygons, mostly square and
rectangular; some are triangles. Observe that the smallest
cells lie between the needle edge and the nozzle, where the
liquid meniscus is located, and in the near-axis region, where
we expect the development of the liquid jet. The basic mesh
should be sufficiently refined to capture, in the absence of the
liquid, the strong velocity gradients experienced by the gas
flow at the orifice region. In the grid shown in Fig. 2 the
minimum cell radial and axial lengths are ��z�min= ��r�min
=0.02. Several numerical tests with smaller size mesh cell
have shown that this level of accuracy is comfortably suffi-
cient to describe the gas flow pattern for the two cases con-
sidered �Re=465.83 and 931.666�. All results presented here
were initially computed in that mesh. In all instances where
Q was very small, the results were recomputed in a refined
mesh with rectangular cells in the nozzle and jet region, with
��z�min= ��r�min=0.01. Finally, only for the more difficult
cases �case 2 with Q small�, the results were recomputed in a
finer grid with ��z�min= ��r�min=0.005.

A factor requiring consideration is the location of the out-
let boundaries. They are to be sufficiently remote from the
nozzle to avoid the numerical reflection of pressure waves,
since the pressure is artificially kept fixed at these boundaries
during the time evolution of the flow. Moreover, the artificial
boundary condition causes problems when the jet flows
through the outflow boundary, and more acutely, when a
string of drops flows through it. When a jet extends all the
way to the outlet boundary of the flow domain, the pressure
within the jet and the surrounding fluid cannot be equal ow-
ing to surface tension. However, for our particular problem,
as will be shown later, these undesired effects are confined to
a length below two diameters upstream of the boundary.
Therefore, we have chosen simulations with a sufficiently
large external chamber, zout=10 and rout=3.5, to minimize
artificial boundary effects in the results obtained. On the
other hand, the z position where the inlet boundary condi-
tions for the liquid are imposed, has been located sufficiently
far away from the needle edge, at z=zl=−3. This choice has
been made, as will be shown later, because a liquid recircu-
lation cell intrudes upon the capillary tube when Q de-
creases. Therefore, in order to impose a Hagen-Poiseuille
profile for the liquid velocity as a well-posed inlet boundary
condition, this boundary should be set sufficiently far up-
stream from the recirculating region.

Tracking the interface between the phases is accom-
plished by solving a continuity equation for the volume frac-
tion of one of the phases using an explicit time-marching
scheme. The rest of the equations are solved implicitly. The
time steps selected were fixed and sufficiently small to en-
sure that the global Courant number based on the mesh cell
size, the mean velocity in the cell and the time step was
always smaller than one. Regarding the spatial discretization
of the equations, the third-order modified MUSCL scheme
�43� is used to obtain the face fluxes whenever a cell is
completely immersed in a single phase. When the cell is near
the interface, the CICSAM algorithm is used �44�. The pres-
sure corrections are computed with the body forces weighted
scheme and the pressure-velocity coupling in segregated
solver is treated with the PISO method �45�. All under-
relaxation factors are set to one to avoid any numerical
masking of fade-out effects in our physical problem.

IV. NUMERICAL RESULTS: DISCUSSION

A fruitful interpretation of the results obtained needs to be
situated in the frame of the literature on the dripping faucet.
Shaw �46� gave rise to a rich and insightful series of studies,
among them major contributions by Fuchikami et al. �47�,
Ambravaneswaran and co-workers �48–50�, and Coullet,
Mahadevan, and Riera �51�. To discriminate between the jet-
ting and dripping modes, it is helpful to make use of the
categories introduced by Ambravaneswaran and co-workers
�49�:

�1� The dimensionless limiting length Ld /R1 from the cap-
illary edge to the extremity of the first drop at detachment.

�2� The ratio of the distance Ls between the centers of
mass of the drop that is about to form and the previously
formed drop, and Ld.

FIG. 2. Grid of the domain under study. A denser mesh is pro-
vided in areas where the interface is expected to lie. To avoid nu-
merical diffusion of the interface, the interface region is defined
with a higher density of nodes.
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�3� The ratio of the volume of the drop that is about to
form, Vd, to that of the drop that is attached from the capil-
lary, Vp.

When undergoing the transition from dripping to jetting,
the first parameter undergoes a sudden increase, while the
two other ones experience an opposite trend. In general, the
dripping mode is characterized by bulky drops, relatively
distant from each other, whose diameter is considerably
larger than the jet diameter from which they detach.

The usual categories applicable to faucet dripping need
some adaptation before being used in a coflow problem,
where there is considerable stretching of the cone-jet and
droplet train by the coaxial current: The drops are deformed,
their radial extent is limited, and they may undergo second-
ary breakup �particularly so in the dripping regime, whose
bulky drops are more vulnerable to shear� after detachment
from the filament. Therefore, under coflowing, the classical
aspect of the jetting and dripping regimes is modified, and
the transition between them is not sharp: Such features are
confirmed by experiment, as explained below. This is the
reason why the behavior of the meniscus can be used as a
further indicator of the jetting mode. Dripping leads to a
pulsating meniscus, each detached drop giving rise to recoil
and oscillating; while, in jetting, the detachment of the drops
does not cause any fluctuation of the meniscus and jet �see
Fig. 19�. In a full dripping regime, these pulses are perfectly
regular �see Fig. 14�; in most cases a slender unsteady liquid
ligament detaches from the meniscus and breaks up into
droplets of heterogeneous size �52�. However, at the onset of
dripping �a situation which will be labeled “incipient drip-
ping”�, completely irregular fluctuations of the meniscus are
observed �49�.

Accordingly we begin by studying the formation of a
steady �convectively unstable� liquid jet in the FF device.
Initially, the capillary needle is filled with liquid up to z=0
while the rest of the domain is filled with gas. We start the
simulation from rest �u=v=0� in the whole domain except at
the inlet sections, where velocity profiles are prescribed. Fig-
ures 3�a�–3�h� shows the formation of a steady liquid jet for
case 1 and Q=0.004, going through the stages of interface
entry, meniscus growth, and jet consolidation. The shape of
the liquid-gas interface is computed in the figure as the
isolevel of the liquid volume fraction 	=0.999, obtained
with the VOF method. Given that the flow might be un-
steady, we consider that the meniscus jet has reached a
steady condition whenever two conditions hold:

�1� The angle between the liquid meniscus and the radial
coordinate at the capillary needle, 
�t�, has reached a con-
stant value in time, 
�t�=
o.

�2� Both the jet diameter at the nozzle inlet, din�t�, and at
the nozzle exit, dout�t�, should reach a steady regime or a
stable oscillating regime around a mean value; these quanti-
ties are of course to stay above zero. This amounts to exclud-
ing jet breakup in the nozzle region, a feature associated with
a nonslender jet and possible dripping behavior �unsteady
meniscus jet�.

Here, din�t� and dout�t� are computed at each time step, by
integrating radially the liquid volume fraction, 	, at the
nozzle inlet, z=2, and at the exit, z=2.75,

din�t� = 2�2�
0

1

	�t,z = 2,r�rdr ,

dout�t� = 2�2�
0

1

	�t,z = 2.75,r�rdr . �6�

For sufficiently large Q, as illustrated in Fig. 3, both din
and dout evolve towards a steady value.

However, oscillations of these two quantities are observed
when Q is reduced. For example, Fig. 4 shows the time os-
cillation of din and dout for case 1 and Q=0.0006 after allow-
ing a steady jet to develop. It can be observed that the jet
diameter at the nozzle exit is smaller than at the inlet; mass
conservation arguments imply the inlet velocity to be smaller
than the outlet velocity �in inverse proportion to the diameter
squared�. This explains why the oscillation frequencies of the
jet diameter are shorter at the outlet. Although the oscillation
of the jet in the nozzle region may play an important role in
the dynamics of the droplets generated upon jet breakup, our
main concern here is to characterize the jet diameter, the
angle of the meniscus at the attachment, 
, and the flow
structure inside the meniscus as a function of Q. Since the
flow is unsteady, we will use a mean value of the jet diameter
at the nozzle inlet and outlet as defined by

d̄in =
1

T
�

ti

T+ti

din�t�dt, d̄out =
1

T
�

ti

T+ti

dout�t�dt , �7�

where ti is a time position once a steady jet has developed
and T is a time period long enough to ensure a significative
mean value. For example, selecting ti=0 and T=500 leads to

d̄in=0.2456 and d̄out=0.1527 �conditions as in Fig. 4�.
The procedure is the same for the two cases under con-

sideration. The simulation is started from rest with a value of
Q sufficiently high to obtain a steady jet. Then, Q is reduced
and the solution is monitored in time until a new steady jet is
obtained. Figure 5 shows the stabilized liquid-gas interface
for case 1 and different Q. It should be pointed out that Q
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FIG. 3. A sequence of snapshots from the simulated growth of
an eventually steady jet �case 1, Q=0.004�: �a� The interface arrives
to the needle edge; �b� and �c� the meniscus grows in the nozzle
region; �d�–�f� a jet begins to issue from the nozzle; �g� and �h� the
meniscus-jet system is steady.
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=0.0004 is the smallest flow rate compatible with a steady jet
for case 1. Therefore, it can be identified as the minimum
flow rate Q* for steady jetting: Q*=0.0004 for case 1.

Figure 6 shows the interface for case 2 and different Q
values once a steady regime is reached. The smallest jetting
flow rate here is Q*=0.0001, four times smaller than in case
1. Accordingly, the smallest jet diameters are obtained for
case 2. The jet diameter evolution is shown in Fig. 7, where

the mean steady values d̄in and d̄in are plotted as a function of
Q for �a� case 1 and �b� case 2. To complete the picture, Fig.
8 shows the dependence of the meniscus angle 
 with Q for
the two cases. In both examples, 
 becomes smaller as Q
decreases �smaller flow rate quotient implies stronger focus-

ing action�. Just before dripping, as the liquid flow rate is
reduced, the angle appears to become independent from Q:
The interface geometry becomes invariant �local hydrostatic
balance�. The smallest angles are obtained in case 2. This is
to be expected since the normal pressure forces produced by
the gas stream, which cause the focusing flow, are larger for
that case.

Analyzing in more detail the structure of the flow inside
the liquid meniscus in jetting mode, in the lower-Q range, a
meniscus recirculation cell is observed, in analogy with other
coflowing systems �5,31� and Taylor cones �29�. Figure 9
shows instantaneous streamlines for case 1 and different val-
ues of Q. The recirculation increases when Q decreases, the
cell penetrating into the capillary needle. Figure 10 depicts
instantaneous streamlines for case 2 and four different values
of Q. Again, a recirculation region appears before the menis-
cus jet system ceases to be steady. The size of the recircula-
tion can be calculated by finding the two z positions where
the velocity at the axis becomes zero.

Figure 11 shows the axial velocity at the axis, uaxis, as a
function of z for five different values of Q: �a� case 1 and �b�
case 2. It is worth observing that uaxis is roughly uniform
inside the capillary needle, its value being given by the
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Hagen-Poiseuille expression; in the nozzle region it increases
owing to the focusing effect of the gas stream, which creates
the issuing jet. A region where uaxis decreases is located in
the meniscus region, between the capillary and the nozzle;
note that when Q decreases, a local minimum of uaxis is
observed at a given position z=zmin in the meniscus region. If
Q is sufficiently small, uaxis becomes negative near the local
minimum in a region delimited by the two z positions, z1 and
z2, where uaxis=0. Therefore, the size of the recirculation
region, sR, observed in Figs. 10 and 11, can be computed as
sR=z2−z1. There is a threshold value of Q, QR, below which
a recirculation pattern is observed. At the threshold flow rate
uaxis=0 at z1=zmin=z2 and uaxis�0 elsewhere.

Figure 12 shows sR as function of Q for �a� case 1 and �b�
case 2. Looking back at Fig. 9, note that the size of the
recirculation cell increases as Q decreases. In situations of
incipient recirculation �Q smaller than but similar to QR� this
growth appears to be linear, as derived later from dimen-
sional arguments. In Fig. 12, the discrete points “�” have
been obtained directly from the simulations. The dashed
lines are linear interpolations computed in the recirculating
regime, sR�0. The linear interpolation is not only in good
agreement with the data but also provides a reliable approxi-
mation to compute QR. The estimations are QR=0.001 453
for case 1 and QR=0.000 708 for case 2. According to the

above, the linear expression relating the size of the recircu-
lation region and the flow rate Q is

sR � A�QR − Q� . �8�

This means that sR is proportional to a back flow rate Qb
made non-dimensional as Qb /Qg=QB= �QR−Q� for a given
set of fluid properties, geometry, and gas flow Reynolds
number. The relative location of the jetting threshold Q* and
the recirculation threshold QR is, in both cases, Q*�QR.
Therefore, recirculation can be taken as a dripping precursor:
As far as can be gathered from our simulation, it always
precedes global instability of the meniscus-jet system.

Finally, some results are presented with flow rate values
below the jetting threshold. For Q�Q*, with Q close to Q*,
our simulations show the flow to exhibit different behaviors
in a sequence: A period where a thin jet breaks up in the
nozzle region alternates with other periods where a thin jet
breaks up downstream of the nozzle. The irregular time be-
havior of the flow for Q�Q*, but Q close to Q* �incipient
dripping� can be observed in Fig. 13, where din �a� and dout
�b� are shown as a function of time for case 1 and Q
=0.000 322. For Q�Q* but Q sufficiently different from Q*,
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the flow behavior becomes more regular and periodic with a
unique dripping frequency.

As anticipated at the first part of this section, our results,
while belonging to the dripping regime, are untypical in that
the coflowing current gives rise to axial stretching of the jet
and drops, so that unusual breakup geometries result. The
radial extension of the drops is limited, and the axial stretch-
ing gives rise to secondary breakup, immediately after de-
tachment. The pattern observed in Fig. 14 points to a drip-
ping regime: It is perfectly periodic �transient jetting can
therefore be excluded� and each period is associated with the
filling up of a drop, its breakup from a thinning filament, and
the recoil of this filament. Figures 14 shows a complete time
sequence of a dripping process �case 1, Q=0.000241�. Fig-
ures 14�a�–14�e� show the growth of the meniscus and the
formation of a jet issuing from the nozzle; Figs. 14�g� and
14�h� show the jet breakup into droplets of different sizes
and the meniscus recoil. This is a periodic sequence, the
period being T�210 for each cycle. Figure 15 plots din �a�
and dout �b� as a function of time for this case. Initially, a
liquid meniscus is growing with no jet production, and din
=dout=0. Subsequently, a liquid jet issues and din and dout
become positive. Both diameters reach a maximum at a cer-
tain time and then start to decrease. Finally, the jet breaks
into droplets, din and dout are set to zero and the process
begins anew. In spite of the observed differences, the drip-
ping process in this case is quite similar to regular faucet
dripping, the time period being mainly imposed by the filling
of the meniscus until reaching a critical volume.

A similar situation is observed in case 2. Figure 16 shows
a complete time sequence of a regular dripping process with
Q=0.000 04. Figures 16�a�–16�d� show the meniscus growth
and the emission of a jet, much thicker and longer than ob-

served in Fig. 14. Again, this sequence is time periodic with
a period T�500 for each cycle �see din �a� and dout �b� in
Fig. 17 as a function of time�.

Influence of the boundary conditions and the spatial and
temporal resolution on the numerical results. The numerical
problem addressed is quite complex: It involves a high speed
stream of gas discharging through a nozzle into a infinitely
large chamber plus a meniscus-liquid jet which may break
into droplets within the finite numerical domain. This com-
plexity leads to different time and spacial scales associated to
a plurality of interacting physical phenomena �jet breakup
due to capillary and Kelvin-Helmholtz instabilities, mixing
layer instabilities in the main gas stream�. Therefore, an ac-
curate analysis of the jet breakup is difficult to achieve. On
account of it, though our VOF method is fully reliable in
qualitative terms as a predictor of jet breakup and drop for-
mation, we have devoted this section to check that our nu-
merical results �meniscus-jet shape as a function of Q for
different setups� are independent of the selected boundary
conditions �BCs� and numerical meshes.

As indicated above, the most problematic simulation
choice is setting p=0 at the outlet boundaries, since any jet
or a drop crossing the boundary is influenced by the strong
and artificial restriction that the pressure remains fixed. Our
choice is a simplification �p=0� which takes advantage of

Rs

Q QQ Q

FIG. 12. Size of the recirculation sr as a function of Q: �a� case
1 and �b� case 2.
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FIG. 13. Time evolution of �a� din and �b� dout in a irregular
dripping regime for case 1 and Q=0.000 322.
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the essentially parabolic character of the equations. A second
option has been explored, the so-called outflow conditions
�assuming uniformity, i.e., Neumann type�, but they give rise
to a false constraint on the flow pattern, because they imply
that the gas flow is coaxial. A minisymposium held in 1994
on the open boundary condition problem in incompressible
flow, by Sani and Gresho �53� led to the concluding remark:
“We have made some attempts at shedding more light on the
difficult and unresolved area of seeking good open boundary
conditions �OBCs� for incompressible flow simulations. It
has been an exercise in frustration and we are not thrilled
with the results obtained.”

There is an evident inaccuracy involved in our p=0
choice: The pressure jump associated to an interface will
lead to high local pressure inside the liquid jet or droplets.
However, this assumption can be reconciled with our aim,
which is not a study of the breakup process and its transient
geometries. We are addressing a wider scale: the cone-jet
flow pattern, and the general drop generation regime. To
show that the distortion caused by this artificial BC is local
and does not modify the global behavior at the cone-jet re-
gion, some exploration as been carried out. It can be shown
that setting the external boundary sufficiently far down-
stream from the nozzle region, at zout=10, the meniscus jet is
not affected by the boundary condition. To show this, we
have considered the worst scenario: We choose large liquid

flow rates Q and weak gas flow �case 1�. Figure 18 shows the
stabilized liquid-gas interface for case 1 and two different
values of Q, computed in the original domain and in a
shorter one. In Fig. 18�a�, the jet does not break up within
any of the two numerical domains and the jet and meniscus
interface in the nozzle region is evidently not affected by the
artificial p=0 boundary condition. The influence of the arti-
ficial BC is confined to a few diameters upstream of the
downstream boundary. In the case considered in Fig. 18�b�,
the jet is breaking up into drops within the large domain.
Even in this case, the meniscus and jet interface in the nozzle
region is not affected by the artificial boundary condition.

Let us now show the consistency of the model by com-
paring the results in two different meshes. In this case again,
we have considered the worst scenario, by selecting smaller
values of the liquid flow rate �Q small� and a large gas flow
�case 2�, since thinner jets are obtained in these cases. Figure
19�a� shows a instantaneous picture of a steady �convectively
unstable� liquid jet breaking up into drops �case 1, Q
=0.0001� computed in two different meshes. Observe that
although we are comparing the liquid interface at two differ-
ent times and with different spatial resolution, the shape of
the meniscus of the liquid in the nozzle zone coincides. The
main difference is that the liquid jet is slightly longer in the
finer mesh. As mentioned, an accurate description of the jet
breakup is not the objective of this paper. It requires specific
analytic tools in order to capture the diverse physical phe-
nomena involved.

This can be illustrated by Fig. 19�a�, showing instanta-
neous contours of the vorticity field for this case, computed
with the best spatial resolution. It can be seen that, owing to
the large density and velocity difference between the liquid
and the gas, the vorticity is large in the liquid-gas boundary
layer which develops at the liquid-jet meniscus. When the jet
breaks up, the behavior of the flow around the drops is simi-
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lar to high Reynolds number flow around a round object
�since the gas is traveling faster that the liquid drops�. There-
fore, boundary layer separation is to be expected at the sur-
face of the drops, and a wake will originate downstream of
the drop. In addition to this, a mixing layer is developing
downstream of the nozzle edge owing to the difference be-
tween the velocity of the gas flowing through the nozzle and
the stagnant atmosphere surrounding the outlet. This mixing
layer yields to the development of vortices as shown in the
figure. Figure 20�a� shows the time evolution of the vorticity
magnitude at a point of this mixing layer computed with two
different time steps. Strong fluctuations of the vorticity mag-
nitude are apparent. The flow evolution shows some sensi-
tivity to the resolution, particularly as the simulation time
increases. However, both time resolutions are reliable to pre-
dict the characteristic frequencies of the problem at the ob-
servation point. Figure 20�b� show the frequency content of
the vorticity as obtained by applying the fast Fourier trans-
form �FFT� to the two signals. The main frequency �1
�0.46 is related to the passage of the vortices generated in
the gas mixing layer. There is a secondary characteristic fre-
quency, �2�0.56, associated to the interaction between the
mixing layer and the vorticity wake of the drops. This inter-
pretation was strengthened by recomputing the flow without
the liquid jet: The frequency content of the vorticity signal at
the same observation point only showed the main frequency
peak �1�0.46.

V. COMPARISON WITH ANALYTICAL MODELS
AND SCALING LAWS

The first predictive model for the jet diameter dj at the
orifice exit �11� assumes that viscous and capillary effects are

small enough compared to liquid inertia. This demands large
enough Reynolds and Weber numbers of the liquid jet, in
reasonable agreement with most experimental conditions
�common solvents including water, down to the micron
scale�. In this limit, the overall pressure difference �P
=�P�Qg� �pressure difference between the gas inlet and the
gas outlet� imposed in the downstream direction �i.e.,
through the orifice�, transmitted to the liquid stream by nor-
mal surface stresses, is converted into kinetic energy, so that

�P �
1

2
�lv

2 � �l

8Ql
2

�2dj
4 �Ref. �11�� , �9�

which readily gives

dj = 	 8�l

�2�P

1/4

Ql
1/2. �10�

Furthermore, the jet is assumed sufficiently small compared
to the orifice diameter D such that not only does it not touch
the orifice borders, but also the boundary layers of the focus-
ing fluid �gas� at the orifice and at the jet’s surface are suf-
ficiently small compared to the corona defined between the
jet and the orifice. This is why D does not enter expression
�10�. Neither does D1 have any direct influence on the jet
diameter; only as a parameter determining the liquid flow
rate Ql.

Interestingly, if viscous effects and surface tension are
neglected, and we assume dj 
D, the only operating param-
eters left in the analysis are ��l ,�P ,Ql�; using these three
parameters, a scaling law identical to 10—regardless the
constants—follows from dimensional reasoning. Figure 21
illustrates the accuracy of this first simple prediction. How-
ever, that expression does not provide information on how
small the neglected effects are. Would it be possible to quan-
tify both the dependence of the jet diameter on the three
main parameters and the relative magnitude of each one of
the neglected effects? The answer is yes, by retaining either
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�, �l, or D in the dimensional analysis, and using
��P ,� ,�l�, ��P ,�l ,�l�, or ��P ,D ,�l� as independent pa-
rameters, respectively.

In physical terms, the relative effect of surface tension
may be determined by observing that the liquid Weber num-
ber must be of order unity �Wel=�l8Ql

2 / ��2�dj
3�� for a given

pressure �P, from which one obtains the limiting diameter
do and flow rate Qo. The result is do=� /�P and Qo
= ��4�l

−1�P−3�1/2, so that dimensional analysis together with
Eq. �10� readily yields

dj/do = kd�Ql/Qo�1/2, �11�

where kd= �8 /�2�1/4. This expression provides a first-order
approximation to the jet diameter �asymptotically true for
Re→�� as far as dj �do �negligible surface tension�. The
ratio Ql /Qo spans the whole domain from jetting to
dripping—where dj becomes comparable to do. Jet diameters
and flow rates comparable to do and Qo, respectively, lead to
absolute instability, where the characteristic velocity of up-
stream capillary waves O���l

−1dj
−1�1/2—a product of surface

tension—becomes of the order of the downstream convective
velocity, Ql /dj

2. Besides, Eq. �11� is explicitly independent of
the orifice diameter D, an illustration of the jetting regime
independently of its forcing geometry.

Similarly, viscous effects can be weighted by defining a
viscosity-related length d�= ��l

2�l
−1�P−1�1/2 and flow rate

Q�= ��l
4�l

−3�P−1�1/2. Using these and Eq. �10�, an entirely
analogous expression is obtained in the limit of dominant
inertia, i.e., when dj �d� and Ql�Q�,

dj/d� = kd�Ql/Q��1/2. �12�

This equation expresses the jet diameter as compared to a
limit where viscous effects become important. Again, jet di-
ameters and flow rates comparable to d� and Q�, respec-
tively, amount to non-negligible viscous effects and signifi-
cant departures from predictions �11� or �12�.

A third expression can be obtained in terms of the orifice
diameter D, and the maximum liquid flow rate that can be
ejected through the orifice for a given �P in the absence of
viscous effects: Qmax= ��2 /8�1/2Qm, where—naturally—Qm
= �D4�P�l

−1�1/2 is obtained from dimensional analysis using
��P ,D ,��. Using �10� anew, one has

dj/D = �Ql/Qmax�1/2 = kd�Ql/Qm�1/2. �13�

This alternative expression reflects how close the experiment
is from a situation where the entire orifice section is filled
with liquid: It provides information—from continuity
arguments—on the fraction of the orifice cross section occu-
pied by the liquid jet.

Each of the above three expressions �11�–�13� amount to
interesting but partial pictures of the particular working con-
ditions of our system in a given flow situation. Taken as a
whole, they provide a more complete picture on the FF jet-
ting conditions. Some corrections can be obtained for several
neglected effects �21�.

A. Correction for surface tension effects

The liquid surface tension reduces the effective pressure
drop �Pl in the liquid stream as

�Pl = �P − 2�/dj . �14�

Consequently, the jet velocity decreases and its diameter in-
creases accordingly. The resulting expression for the nondi-
mensional jet diameter dj /do, neglecting third-order terms
proportional to O�do /dj�
1, reads as

dj/do = �8/�2�1/4�Ql/Qo�1/2 + 1/2. �15�

In other words, the second-order correction of the jet diam-
eter dj to account for surface tension effects is asymptotically
equal to do /2.

B. Correction for liquid viscosity effects (extensional stresses)

Assuming that the extensional viscous forces in the liquid
are smaller than inertia, the balance of the different terms of
the momentum equation, including the second-order terms of
the expansion, leads to the following order of magnitude for
the correction to the first-order diameter �10�:

de = O
d�	Qmax

Ql

1/2� . �16�

C. Correction for tangential stresses owing
to the gas stream

In the same way, the diameter correction �decrease� owing
to the momentum injected by the much faster gas stream
through the jet surface is of the order of

dg = O	�gUgD

�P

1/2

, �17�

where �g and Ug are the gas viscosity and velocity. The latter
is of the order of Ug�O��P /�g�1/2, where �g is the gas
density.

oj dd /

ol QQ /

FIG. 21. Jet size measured at the entrance of the nozzle using d̄in

�� correspond to case 1 and * to case 2� and at the exit using d̄out

�� correspond to case 1 and � to case 2� compared to the theoret-
ical prediction �continuous line�.
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The relative weight of these three corrections provides
information on the importance of the surface tension and the
viscosity of the liquid and gas phases. Interestingly, for most
common solvents, these relative weights are of order unity.
This happens to be the case when measuring the relative
importance of the surface tension and the gas tangential
stress effects for water focused by any gas at standard con-
ditions. Therefore, since both corrections are opposite, the
best agreement with experimentally measured jet diameters
and numerical simulations is obtained, interestingly enough,
using the first-order expression �10�, or its alternative forms
�11�–�13�.

D. Correction owing to the nozzle flow pattern

The jet diameter as measured at the nozzle may also differ
from the simplest theoretical prediction given by Eq. �10�
because of local flow effects. A complex but symmetric
structure develops owing to the coexistence of �i� a core
potential flow and �ii� the detachment of a radially conver-
gent boundary layer at the inner lip of the nozzle. In any real
situation where the gas viscosity is nonzero and the con-
tinuum hypothesis holds, this flow pattern is not aptly de-
scribed by the pure potential flow through a round orifice
given by Morse and Feshback �54� �p. 1294� for a stationary
discharge. The potential flow solution is characterized by an
axial velocity distribution with a minimum value at the axis,
v�r=0�=2Qg / ��D2� �one-half the average velocity through
the orifice�, and an infinite value at r=D /2, Qg being the
theoretical gas flow rate discharged. The actual flow geom-
etry is characterized by the well-known vena contracta ef-
fect, a consequence of the radial momentum carried by the
collapsing potential flow, which slips at the nozzle border
owing to the boundary layer. The vena contracta flow exhib-
its an axial velocity distribution which echoes the potential
flow solution, showing a local minimum velocity at the axis,
and a maximum value at the streamlines coming just from
the outside of the boundary layer detached at the orifice �see
Fig. 9 and explanation given in �55�, Fig. 1�. The immediate
consequence of this particular flow structure is that the trans-
versal pressure gradients are negligible only sufficiently far
downstream of the inner lip of the nozzle: In fact, they be-
come negligible at the axial downstream station where the
vena contracta effect ends, i.e., where the streamlines be-
come almost parallel. It occurs relatively close to the inner
orifice plane, at an approximate D /2 downstream distance.
From this point downstream �before shear instabilities of the
gas stream with the external environment develop�, the gas
pressure can be considered almost constant, equal to the out-
side stagnation value. It is at this point where the liquid jet
diameter obtained from the numerical simulation should be
compared to the simplest prediction �10�.

E. Scaling of the recirculation zone

For a given gas flow rate Qg and orifice diameter D=2R,
the typical gas velocity close to the meniscus surface can be
estimated as V=Qg / ��R2�. Given the small �=�g /�l values
in liquid jets focused by gas, liquid velocities are much
smaller than V everywhere. As the liquid approaches the

neck, the boundary layer will collapse �Fig. 22�. This implies
that at least a liquid flow rate

Qr � Us�l
2 �18�

would be drawn into the jet in the absence of recirculation
�Us is the velocity of the interface, that can be obtained from
V, and the densities and the viscosities ratios �56��. On the
contrary, whenever Ql�Qr, part of Qr must have been recir-
culated back into the meniscus �Fig. 22�. Therefore QR can
be interpreted as the minimum flow rate for no recirculation
�scaled as QR=Qr /Qg�.

The boundary layer in the liquid meniscus is confined. It
grows along the cone during lengths comparable to R �the
orifice radius� until the apex of the meniscus is reached. In
this area,

�l � ��lR/�lUs�1/2. �19�

Whenever there is recirculation, the peripheral boundary lay-
ers merge at the meniscus apex and give rise to a jet, whose
initial radius at the neck will accordingly be of the same
order. In the absence of liquid emission, maximum recircu-
lation will be observed. Experimentally, however, a dripping
instability will occur before reaching this limit. In the oppo-
site case �no recirculation�, the boundary layers do not
merge, and an inviscid core should be observed at the neck.
The threshold flow rate for recirculation can therefore be
estimated as Qr�Us�l

2, a result which happens to be inde-
pendent of the gas velocity. In effect, by definition of the
meniscus boundary layer, the viscous stress �lUs /�l

2 must be
of the same order as the momentum convection �lUs

2 /R, so
that, interestingly,

Qr � R
�l

�l
⇒ QR �

�

� Re
, �20�

where �=�g /�l and �=�g /�l. This scaling is fully confirmed
by the numerical simulations: The values of Qr Re are
0.6768 for case 1 and 0.6596 for case 2, deviating by less
than 2.6% from the scaling predictions.

� g�

� l�

2/~ D RD 2�U RD 2

lQ bQ
sU

lQ

SrS

FIG. 22. �Color online� Sketch of the recirculation zone, show-
ing boundary layers, cell size �Sr�, and typical velocities.
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Assume now the recirculation cell to be Sr in axial length.
The backflow Qb= �Qr−Ql� will come to rest within a length
of the order Sr. In this length, viscous momentum diffusion
should slow down the flow and deflect both the incoming
flow injected by the feeding tube and the recirculated flow at
the axis �Fig. 22�. Thus, viscous and inertia forces should
balance within that length Sr: In other words, the liquid Rey-
nolds number associated to axial lengths of order Sr should
be of order unity so as to deflect the unidirectional flow
issuing from the feed tube �Hagen-Poiseuille�. This is in
analogy to the entry length or exit length in laminar pipe
flow. Two cases need to be considered, depending of the
relative size of the cell compared to the feed tube radius R1:

�i� When Sr�R1, viscous stress, of the order O��lQbSr
−3�,

balances inertia, O��lQb
2Sr

−4�, which leads to Sr��lQb�l
−1.

�ii� When Sr�R1, viscous stress, O��lQbR1
−3�, balances

inertia, O��lQb
2R1

−3Sr
−1�, leading again to Sr��lQb�l

−1.
Interestingly enough, again, the length of the recirculation

flow is independent of the gas flow for any given geometry.
The latter scaling can be expressed in nondimensional terms
as

sR � Sr/R � �l�Qr − Ql��l
−1R−1. �21�

Using Eq. �18�, one may write

sR = C1 − C2 ReR, �22�

where ReR=�lQl / ��lR� is a Reynolds number of the liquid
flow, and C1 and C2 are constants which depend on the ge-
ometry only �i.e., R1 /R, H /R, etc.�. In our case, we have
represented all our measured sr values from numerical simu-
lations versus ReR in Fig. 23. Linear fitting to all points leads
to C1=2.636 and C2=0.0819 with a correlation coefficient of
94.4%. Equation �22� can be expressed in terms of QR−Q
and Re as well, as

sR = k��−1�QR − Q� , �23�

where k is again a constant depending on the geometry only,
in full agreement with expression �8�, as anticipated by nu-
merical experiments.

VI. EXPERIMENTS

In the following, we provide experiments corresponding
to the same local geometrical parameters as in cases 1 and 2
in the vicinity of the exit orifice. The basic flow focusing
chamber is a box consisting of five aluminum faces and one
clear methacrylate face. It is 5�5�5.65 cm3, with its long-
est side along the capillary-orifice axis. The chamber is situ-
ated with the methacrylate face horizontal and pointing up-
wards, the capillary being located parallel to this face. The
orifice is made in a stainless steel orifice disk attached to the
box side, perpendicular and opposite to the capillary. The
disk is 4.0 mm in diameter with a thickness of 75 �m and an
orifice of diameter 0.200 mm. Both the air tube and the cap-
illary enter through the face opposite the orifice. After the
capillary tube has been aligned with the orifice, the distance
H from the tube to the orifice can be simply adjusted by
carefully sliding the capillary in its housing on the opposite

face to the orifice disk. H is measured with a microscope
through the methacrylate face. Figure 24 shows some views
of the feeding tube-orifice setup as seen through the thick
methacrylate window �inevitable liquid spills leave behind
some debris on the inner face of the window causing a
blurred image�. In particular, Fig. 24�a� shows the geometry
numerically simulated in this work.

After setting H and ensuring that the capillary is perfectly
coaxial with the nozzle orifice, the pressure is set using a
pressure gauge and a pressure meter. A water flow rate is
then supplied using a syringe pump �Cole-Palmer 74900 Se-
ries� with a 20 ml syringe. The system is given sufficient
time to relax until either a characteristic steady or unsteady
flow is present. This can be checked by illuminating the jet
that exits the orifice or by looking at the meniscus when the
distance H is 0.100 mm or greater. Unsteady jet flow appears
very faint to the naked eye and contains thin streaks of water
along with large scattered spray. This is in significant con-
trast to steady jet flow, which has bright illumination as a
result of a finer, concentrated stream with uniform character-
istics. In experiments where the meniscus was visible, it was
also possible to discriminate steady versus unsteady flow
�see Fig. 24�b�, �A� jetting; and �B� dripping�, in perfect
correlation with the spray observations: A steady meniscus
had sharp edges and a clear, unwavering glasslike appear-
ance �Fig. 24, part �A�, see steady jet reflected in the metal
plate�, while an unsteady meniscus had blurred edges and
flickered �Fig. 24, part �B�, no jet is visible at all�. Both the
jet test and meniscus test displayed clear and abrupt transi-
tions between the two states. Once unsteady flow is estab-
lished for a given pressure, the rate determined by the sy-
ringe pump is increased in steps of 0.1 ml /h. After each flow
rate increase, a 30 s waiting period was established, so as to

RRR CCs Re)(Re 21 ��
66.931Re �
75.698Re �
83.465Re �

Rs

RRe

FIG. 23. Recirculation cell size sr as a function of ReR: Dots,
squares, and stars are obtained by numerical simulation; the line is
a theoretical prediction resulting from dimensional arguments. An
additional series of simulations have been performed for an inter-
mediate gas flow condition �Re=698.75 and We=18.31� to assess
the validity of the scaling proposed: Note the good degree of col-
lapse obtained. The small deviations can be attributable to the small
differences in the geometry of the cone for different gas flow
conditions.
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ensure that the system had relaxed and all the readings were
accurate. This period has been chosen after it was found that
15 s was not enough to observe fluctuations in the system:
occasionally a steady regime would revert back to an un-
steady one after the 15 s period. The 30 s delay has proven
long enough to accurately characterize the flow. Accordingly,
the rate was increased until the unsteady jet sharply transi-
tioned to a steady one; at this point, the flow rate was read
from the syringe pump and recorded as the minimal flow rate
�increasing, or up; Fig. 25�. Keeping this same steady flow
rate the process is then reversed to find the minimum de-
creasing �or down� flow rate �steps of 0.1 ml /h and intervals
of 30 s until an unsteady regime developed�. When the flow
became unsteady, a rate 0.1 ml /h above the reading on the
syringe pump was recorded, since the rate which produced
the last steady flow �i.e., minimum flow rate� was one step
�0.1 ml /h� higher. The resulting value was recorded as the
minimal �decreasing, or down� flow rate. This process is re-
peated for varying pressures and distances of H to get an
accurate mapping of minimal jetting flow rates as a function
of varying geometry and flow conditions. Following this pro-
cedure, we collected the experimental data plotted in Fig. 25
for H /R=1. The gas �air� pressure �P increases as indicated
by the arrow.

Six conditions numerically tested for cases 1 and 2 are
plotted in Fig. 25. In order to make our results readily trans-
latable in most of the capillary jet stability literature �which
uses the jet radius as a characteristic length�, we may intro-
duce liquid Reynolds and Weber numbers consistent with
previous definitions and using scaling law �10�,

Rel = 	 2

�2
1/4	�l
3Ql

2�P

�l
4 
1/4

, Wel = 	 8

�2
1/4	�lQl
2�P3

�4 
1/4

.

�24�

As it follows from the plot, using these definitions, jetting or
dripping conditions are accurately predicted by the numerical
model. This lends additional support to the use of full VOF
simulation analysis in flow focusing systems.

VII. CONCLUSIONS

The cone-jet geometry associated with flow focusing has
been handled by a diversity of tools, numerical, experimen-
tal, and theoretical. Order-of-magnitude estimations follow
from dimensional arguments: Such procedures contribute a
valuable theoretical framing and provide the scaling criteria
for data representation. Analytical approaches are generally
based on the consideration of a perfectly cylindrical infinite
jet, a simplification that ignores the influence of the meniscus
�a source of instability� and the role of streamline conver-
gence or divergence in the jet. Experiments are burdened by
the diversity of influencing parameters and visualization dif-
ficulties associated with the small scale of the meniscus and
jet.

In this paper, experimental results are backed up by a
numerical simulation based on VOF elements. Numerical
schemes allow a more systematic exploration of the paramet-
ric influence. In addition, the shortcomings of theoretical
models �unavoidable in a situation where the geometry of the
fluid domain is complex, as in a cone-jet flow pattern� are
overcome, and a detailed description of the streamlines can
be readily obtained.

The key results of the above exploration are the follow-
ing:

�i� The theoretical scaling leading to jet diameter esti-
mates is confirmed by the simulation. The expressions for

100 �m

200 �m

150 �m

(a)

(b)

FIG. 24. �Color online� �a� Experimental tube-orifice setup as
numerically simulated in this work �D=200 �m, D1=150 �m, H
=100 �m; here, �P=10 KPa, Ql=3 mL /h�. �b� Photographs of ex-
perimental conditions with two times the distance from the feeding
tube to the exit orifice, using a different tube material �fused silica�:
�A� Jetting �D=200 �m, D1=150 �m, H=200 �m, �P=30 KPa,
Ql=6.1 mL /h� and �B� dripping �as in �A� with Ql=2.8 mL /h�.

4

We Case 2
l

3
(gas pressure increasing)

2

(gas pressure increasing)

2

Case 1

1 H=0,100mm Up
H=0,100mm Down,
Numerical, dripping
Numerical, jetting

0
20 30 40 50

, j g

Re l

FIG. 25. Jetting-dripping transition in the �Rel ,Wel� plane. Dia-
monds: Experimentally determined conditions. Filled symbols, liq-
uid flow rate decreasing, “down;” open symbols, liquid flow rate
increasing, “up.” In most cases, both “up” and “down” points coin-
cide. Circles, numerically tested conditions. Filled circles, jetting
conditions. Open circles, dripping conditions.
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flow focusing scales, notwithstanding their simplicity, are
therefore to be considered a reliable shortcut for the predic-
tion of jet dimensions.

�ii� The complete sequence from meniscus growth to jet
emission �jetting regime� and to the sequential filling of
drops �dripping regime� is portrayed in detail.

�iii� The jetting-dripping transition is documented in de-
tail, both by experiment and simulation. A two-branch struc-
ture is observed in the plot, showing the simultaneous influ-
ence of the jet and the meniscus as instability sources.
Incipient dripping �Fig. 13� is shown to give rise to highly
irregular fluctuations; while fully developed dripping �Fig.
15� produces perfect cycles of drop detachment.

�iv� A recirculation cell is identified in the jetting regime
at the meniscus tip. This occurrence appears to be linked to
intensive forcing by the gas sheath, leading to high interface
velocity along the meridians; the issuing jet is unable to con-
vey all of the mobilized flow, so that a return flow around the
axis is observed. The recirculation cell grows as the liquid
flow rate is reduced: Eventually, dripping conditions are
reached. Similar recirculation cells have been observed in
electrospray cones, under thread emission, and in liquid-
liquid two-dimensional flow focusing, assisted or not by a
surfactant �5,29,31�. All of the recirculation instances re-
ported thus far appear to share a common attribute: Strong
interfacial forcing, either electric, capillary or hydrodynamic.

�v� A reliable scaling is provided, identifying the paramet-
ric conditions where recirculation is to be expected and esti-
mating the size and flow rates of the cell.

A key feature in the flow pattern explored is the recircu-
lation cell, and its conceptual link to the merging of the
boundary layers which grow from the meniscus edge and
fuse together at the neck of the jet. Controllable recirculation
is an extremely attractive feature, providing adjustable resi-
dence times within a very simple flow setup. The cell can be
viewed as a flow trap or reactor, where biosynthesis or
chemical operations take place in a protected environment;
the liquid flow rate can be increased to flush the recirculation
products.

An additional focus deals with the peculiarities of the jet-
ting and dripping regimes under the influence of a coflowing
sheath current. The aspect of the jet and droplet train and the
dynamics of the meniscus �an indicator of dripping� are a
contribution to a problem whose complexity forbids a global
theoretical approach.
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