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Secondary flows that are absent in Newtonian flows are found for semidilute �-DNA solutions in abrupt
planar 90° microbends at modest levels of elasticity. Flow visualization and microparticle image velocimetry
experiments show that a vortex, which is present in the inner, upstream corner of the bend, grows with
increasing Reynolds and Weissenberg number �9.9�10−7�Re�3.1�10−2 ,0.41�Wi�126�. The vortex
growth is quantified as a function of elasticity; at high elasticity, the vortex occupies a significant fraction of the
upstream channel and distorts the primary flow. The presence of elastic vortices, in which molecules can
become trapped for long times, has implications for the design of microdevices for the processing of biological
macromolecules.
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INTRODUCTION

Understanding the complex behavior of macromolecular
flow in microfluidic geometries is critical to the realization of
lab-on-a-chip and micro total analysis systems ��TAS� in-
tended to systematically manipulate, process, and analyze
these molecules. In sufficient concentrations, the presence of
macromolecules, such as DNA, gives the fluid viscoelastic
behavior that may alter the base flow or lead to flow insta-
bilities for flows along curved streamlines �1–4�. This is par-
ticularly important in microfluidic devices in which canoni-
cal elements force fluids to traverse regions of abruptly
varying cross-sectional area or curved paths, commonly with
sharp corners.

Elasticity has long been known to give rise to secondary
flows; as noted by Bird et al. �1�, these elastic secondary
flows are often in the opposite direction of those caused by
inertial effects. For example, Newtonian flow in a fluid-filled
cylinder driven by the motion of a rotating lid exhibits a
primary tangential flow and a centrifugally driven secondary
flow directed radially outward near the disk, down the sides
of the cylinder, and back upward along the cylinder axis.
Elasticity drives the secondary flow in this system in the
opposite direction: radially inward near the disk, down along
the cylinder axis, and up the sides of the cylinder.

Elasticity, even in the limit of vanishing inertia �Reynolds
numbers much less than unity�, may also make the base flow
unstable to disturbances; such elastic instabilities occur
above a critical condition, typically as a result of the cou-
pling of curvature of fluid streamlines and elastic normal
stresses that impart a tension along the streamlines. Purely
elastic instabilities have been well documented experimen-
tally and numerically for viscoelastic fluids in �macroscale�
Taylor-Couette flow, Taylor-Dean flow, torsional flow be-
tween parallel disks, and complex geometries such as abrupt
contractions �2–6�. The kinematic curvature of the stream-
lines and the dynamic influence of the viscoelastic normal
stresses can be combined, via scaling arguments, into a uni-
versal criterion to describe the condition that must be ex-
ceeded for the onset and growth of elastic instabilities for

two-dimensional �2D� creeping flows in curved geometries
�3,4�. The general form for the criterion Mcrit is represented
by the following:
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R
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where � is the relaxation time of the fluid, U is the charac-
teristic streamwise fluid velocity, R is the characteristic ra-
dius of curvature of the streamline, �11 is the normal stress in
the flow direction, �0 is the zero-shear-rate viscosity of the
fluid, and �̇ is the characteristic value of the local deforma-
tion rate in the flow. Elastic instabilities in Taylor-Couette
flows, torsional flow between a cone and plate, lid-driven
cavity flows, and flows past a cylinder are all well described
by Mcrit values in the range of 4.6 to 8.4 �4�. However, the
numerical value of Mcrit varies with flow geometry and can-
not be determined without a detailed numerical or experi-
mental analysis of a particular geometry. In addition, we note
that the criterion does not differentiate between elastic insta-
bilities in purely shearing flows and those with both shearing
and extensional components, nor does it explicitly describe
the important role that normal stresses in the gradient direc-
tion �i.e., �22� may play in the stability of viscoelastic flows.
Nonetheless, Eq. �1� provides a simple, useful means of es-
timating when elastic instabilities may occur in a wide range
of geometries.

Viscoelastic flows have been explored in a number of mi-
crofluidic geometries for a variety of applications. Viscoelas-
tic flows and the growth of elastic instabilities have been
studied in microfluidic planar abrupt contractions, a vis-
coelastic benchmark geometry �7–9�. Elastic secondary flows
and instabilities have been explored for microfluidic mixing
applications in serpentine channels �10–12� and cross-slot
microchannels �13�. Elastic instabilities have also been har-
nessed for operation of a microfluidic flow rectifier �14�.

Newtonian flows in curved channels of rectangular cross
section have also been studied in detail both at the macros-
cale and at the microscale; here the important parameter is
the Dean number 
, defined as 
= ��UDh /���Dh /2R�0.5
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where � is the solution density, U is the average channel
velocity, Dh is the hydraulic diameter, � is the solution vis-
cosity, and R is the radius of curvature of the channel. At low
Dean numbers, a secondary flow consisting of two counter-
rotating vortices �perpendicular to the primary flow, with one
above and one below the symmetry plane� results from cen-
trifugal forces; above a critical Dean number �
�100�, the
flow becomes unstable through a bifurcation to a flow char-
acterized by the appearance of an additional pair of counter-
rotating vortices in the cross-sectional plane. Recently, use of
both secondary flows and instabilities in Newtonian flows in
curved microchannels has been explored numerically �15�
and experimentally �16–18� for their potential as micromix-
ing elements.

In this paper, we document an elastic secondary flow for
viscoelastic flows in sharp 90° microbends or L-shaped
channels. The channels are rectangular in cross section and
have the same dimensions upstream and downstream of the
sharp corner. The flow is parametrized by a Reynolds num-
ber Re=�UDh /� and a Weissenberg number Wi=��̇, where
� is the relaxation time of the polymer and �̇ is a character-
istic shear rate. Very little previous work on this flow exists.
Numerical simulations for the steady 2D flow in an L-shaped
channel indicate that, at low Re, elasticity leads to modest
deviations from the Newtonian case, with a slight shift in the
streamlines toward the outer wall �19,20�. Two sets of ex-
periments exist in macroscale L-shaped channels. Cochrane
et al. �21� examined a non-shear-thinning, viscoelastic �i.e.,
Boger� fluid in a channel that was 1.2 cm wide and only
2.0 cm deep �in the direction perpendicular to the flow� for
Re of 4 and 16 and Wi numbers of 0, 0.3, and 0.14. These
authors reported negligible changes due to elasticity relative
to the Newtonian case. Chono and Iemoto �22�, in a channel
that was 50 mm wide and 250 mm deep, studied a shear-
thinning viscoelastic fluid for conditions near Re�1, Wi
�1, and reported a slight shift in streamlines consistent with
their 2D numerical simulations. These authors also consid-
ered varying ratios of upstream and downstream channel
widths, and observed a small, viscoelastic recirculation re-
gion at the inside, upstream corner when the upstream chan-
nel was significantly wider than the downstream channel. To
our knowledge, the appearance and growth of the elastic vor-
tex upstream of the corner have not been previously ob-
served in the present geometry with up- and downstream
channels of equal widths, in either microscale or macroscale
flows. The vortex is absent in Newtonian fluids, and thus is
not associated with centrifugal forces that result in Dean vor-
tices in continuously curved channels.

EXPERIMENT

We study a semidilute DNA solution flowing in an abrupt,
planar 90° microbend fabricated in silicon. The microbend or
L-shaped channel device consists of two straight channels of
rectangular cross section that are both 200 �m wide and
225 �m deep and meet at a 90° angle to create a sharp elbow
or L shape. Each channel is connected to a reservoir, and has
a total length of 6 mm between the reservoir and the junc-
tion, ensuring that the flow is fully developed well upstream

and well downstream of the bend. Vertical channel walls are
produced through the use of deep reactive ion etching and
the device is sealed by anodically bonding a Pyrex glass
wafer to the silicon device; details of the fabrication process
have been reported elsewhere �9,23�.

Flows of water and semidilute DNA solutions
��-bacteriophage DNA, 31.5�106 Da, 48 502 base pairs�
are explored in this geometry. The DNA solution is diluted to
a concentration of 400 �g /ml using a buffer �1� 40 mM
Tris acetate and 1 mM ethylene diamine tetraacetic acid
�EDTA�, pH 8.3�; this concentration is four times the overlap
concentration �c*� for the DNA solution. Rheological prop-
erties were characterized using oscillatory flow capillary vis-
cometry and steady and dynamic shear rheometry. The 4c*

DNA solution is found to be highly shear thinning at high
shear rates, with a shear viscosity � described by the power
law �=0.136�̇−0.813 �where �̇ is expressed in s−1 and � has
units of Pa s�. The relaxation time is determined from a fit of
the experimental dynamic rigidity and dynamic viscosity to a
multimode generalized Maxwell model. The detailed rheo-
logical characterization of the DNA solution is included in
Refs. �9,23�.

We report the Reynolds number based on the shear-rate-
dependent viscosity, i.e., Re=�UDh /���̇�. The longest relax-
ation time � is found from the Maxwell fit to be 6.79 s for
the DNA solution; this is the relaxation time used in our
calculations of Wi. The characteristic shear rate �̇ in Wi is
taken to be the average velocity U divided by the channel
half width w /2. We also report an elasticity number El, de-
fined as the ratio of Weissenberg and Reynolds numbers, i.e.,
El=Wi /Re. For completeness, we compute an effective
Dean number 
 in which R is taken as the radius of curvature
of a streamline at the midline of the microbend. Parameter
ranges examined in this study are summarized in Table I. For
the 4c* DNA solution, Reynolds numbers and Dean numbers
are always much less than unity, Weissenberg numbers vary
from 0.4 to 126, and elasticity numbers vary from 4.1�103

to 4.2�105.
The test fluids are seeded with fluorescent polystyrene

tracer particles �1 �m diameter FluoSpheres, Molecular
Probes� for flow visualization and are driven through the
microbend using a syringe pump. Images were obtained us-
ing an epifluorescence microscope with a mercury burner
and neodymium-doped yttrium aluminum garnet �Nd:YAG�
lasers as illumination sources for streak images and micro-
particle image velocimetry ��PIV�, respectively. Streak im-
ages and video microscopy reveal the flow kinematics in the
microbend and �PIV is used to quantify the velocity field in
the vicinity of the bend. Implementation of the streak imag-

TABLE I. Experimental operating space.

Water 400 �g /ml DNA

Re 0.033–0.26 9.9�10−7–3.1�10−2

Wi 0 0.41–126

El 0 4.2�105–4.1�103


 0.041–0.33 1.3�10−6–3.9�10−2

c /c* 0 4
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ing and microparticle image velocimetry is as described in
�9,23�.

RESULTS

Streak images of the flow in the microbend are given in
Fig. 1 and were constructed by overlaying sequential fluo-
rescence images for an exposure time of 4 s. In each of the
images, the fluid enters the channel upstream of the left edge
of the image, flowing from left to right across the image and
then downward through the perpendicular channel �exiting
the frame at the bottom of each image�. Figure 1�a� reveals
that for flows of distilled water no vortices are evident.
Across the parameter range probed for the Newtonian flows
�0.033�Re�0.26�, no secondary flows or flow instabilities
were found. This corresponds to the Dean number range
0.033�
�0.26 and the behavior is consistent with the ob-
servation that the existence of a strong secondary flow gen-
erally occurs for 
�10 �24�.

For flows of 4c* DNA at low Wi �Fig. 1�b�� no vortex was
present, consistent with behavior for the Newtonian fluid.

With a modest increase in Wi, however, a vortex develops in
the inner, upstream corner of the 90° microbend �Fig. 1�c��.
This elastic secondary flow is evident for Wi�0.84. The
corner vortex grows dramatically with increasing Re and Wi
�Figs. 1�d�–1�h�; note the change in magnification between
images Figs. 1�f� and 1�g��, revealing the strong effect of
elasticity on the flow. Over the parameter range probed, the
corner vortices are stable and not time dependent.

The vortex length LV was obtained by measuring the dis-
tance along the inner, upstream wall from the edge of the
vortex boundary to the corner of the microbend. The dimen-
sionless vortex length 
 was then computed by normalizing
LV by the channel width w �200 �m�. Figure 2 shows the
relationship between the dimensionless vortex length 
 and
Wi for flows of 4c* DNA. The growth of the dimensionless
vortex length is fairly well described by the functional form

=0.43�Wi−Wicrit�0.31 where Wicrit is 0.84. The inset indi-
cates the transition from Newtonian-like flow �
=0� for
Wi�Wicrit to the onset of the secondary flow �
�0� for
Wi�Wicrit.

Velocity fields constructed using �PIV can be used to
quantify the magnitude of the flow around the bend as well
as the strength of the secondary flow. The velocity vector
field for the primary flow of 4c* DNA at Wi=42, Re=4.2
�10−3 is given in Fig. 3�a�. The bend position is located at
x /w=0 and the centerline of the channel upstream of the
bend is located at y /w=0, where we are normalizing the x
and y positions by the channel width w. Velocities are nor-
malized by the average velocity U. Interrogation regions for
�PIV were �28�28 �m2 with a 50% overlap for the pri-
mary flow velocity field.

The presence of the vortex acts to constrict the flow in the
channel upstream of the bend creating a smaller effective
channel diameter in this region. As a result, not only is the
primary flow perturbed far upstream �beyond the field of
view� due to the presence of the bend, but it also feels the
effect of the constriction created by the vortex. Additionally,
the fluid must accelerate to pass the vortex region yielding a
larger effective shear rate in the primary flow than would be
predicted from the channel dimensions.

Since the flow within the vortex is significantly slower
than the primary flow, the velocity vector field given in Fig.

FIG. 1. Streak images of the abrupt microbend for flow of water
at �a� Re=0.033 and for flow of the 4c* DNA solution at �b� Re
=3.4�10−6, Wi=0.8, �c� Re=1.1�10−5, Wi=1.6, �d� Re=1.8
�10−5, Wi=2.1, �e� Re=4.3�10−5, Wi=3.4, �f� Re=2.3�10−4,
Wi=8.4, �g� Re=4.2�10−3, Wi=42, and �h� Re=1.5�10−2, Wi
=84. The scale bars are 100 �m. Fluid enters the channel at the left
in each figure, and exits at the bottom.
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FIG. 2. �Color online� Average dimensionless vortex length for
flows of the 4c* DNA solution through the 90° microbend device as
a function of Wi. The vortex length follows the functional form,

=0.43�Wi−Wicrit�0.31 where Wicrit is 0.84.
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3�b� can be obtained at a higher spatial resolution. Here the
interrogation regions were �14�14 �m2 with a 50% over-
lap for the velocity field of the secondary flow. At this higher
spatial resolution the vortex velocity field reflects the obser-
vations from video microscopy of small negative velocities
near the walls and large positive velocities near the vortex
boundary.

Because the vortex growth is not accompanied by a
change in the time dependence or dimensionality of the flow
�i.e., the flow remains steady and three dimensional�
throughout our experiments, the elastic vortex growth may

be the stable evolution of the flow with Wi rather than an
elastic instability. That is, there is no evidence from the ex-
periments of a Hopf bifurcation or a qualitatively different
flow that would signal an instability as the Wi is varied.
Nonetheless, for reference we calculate the value of the pa-
rameter M described by Eq. �1� corresponding to the value of
Wi below which we do not detect vortices �Wicrit=0.84; see
Fig. 2�. Estimating the elastic stress �11 as 2�p��̇2 based on
the upper convected Maxwell fluid where �p is the polymeric
contribution to the solution viscosity at the critical shear rate
and the radius of curvature for flow at the centerline of the
microbend is determined from streak images to be
�130 �m, we find M �0.5. That is, we observe vortex for-
mation for M �0.5. This numerical value of M is roughly an
order of magnitude lower than the values of Mcrit at which
purely elastic instabilities have been observed in other geom-
etries. On the other hand, this value of M indicates some
modest coupling of streamline curvature and normal stresses,
and so one cannot rule out the possibility of an elastic insta-
bility solely on the basis of this M value. A three-
dimensional numerical simulation of this flow as a function
of Wi, using the rheological parameters for the DNA solution
used here, should resolve the question of the stability of this
flow.

In summary, we find that for flows of a shear-thinning,
viscoelastic DNA solution in a planar 90° microbend an elas-
tic vortex forms at the inside upstream corner of the bend.
This vortex grows with Wi and remains stable and steady
over the Re and Wi range probed �9.9�10−7�Re�3.1
�10−2 ,0.41�Wi�126�. Since microbends are canonical
microfluidic elements that are commonly incorporated into
lab-on-a-chip systems and �TAS, it is critical to characterize
the viscoelastic behavior caused by the biological macromol-
ecules used in these systems. Additionally, it is important for
design and operation of these devices to understand the in-
fluence of elastic secondary flows that arise due to streamline
curvature and abrupt changes in geometry on the shear rates
and residence times experienced by macromolecules in these
microdevices.
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