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We perform a direct numerical simulation �DNS� of forced homogeneous isotropic turbulence with a passive
scalar that is forced by mean gradient. The DNS data are used to study the properties of subgrid-scale flux of
a passive scalar in the framework of large eddy simulation �LES�, such as alignment trends between the flux,
resolved, and subgrid-scale flow structures. It is shown that the direction of the flux is strongly coupled with
the subgrid-scale stress axes rather than the resolved flow quantities such as strain, vorticity, or scalar gradient.
We derive an approximate transport equation for the subgrid-scale flux of a scalar and look at the relative
importance of the terms in the transport equation. A particular form of LES tensor-viscosity model for the
scalar flux is investigated, which includes the subgrid-scale stress. Effect of different models for the subgrid-
scale stress on the model for the subgrid-scale flux is studied.

DOI: 10.1103/PhysRevE.78.036313 PACS number�s�: 47.27.ep, 47.51.�a, 47.27.T�, 47.27.ek

I. INTRODUCTION

In the large eddy simulation �LES�, the large-scale fea-
tures of the flow are resolved directly and the effect of the
unresolved, or subgrid scales �SGS� of motion is modeled
�1�. The statistical information about behavior of the small-
scale flow quantities is of great importance for it can be used
to verify the assumptions of existing SGS models and pro-
vide constraints that have to be satisfied by the ones cur-
rently in development �2–4�.

The LES transport equations are obtained by applying the
spatial filter to the Navier-Stokes and scalar transport equa-
tions. The continuity equation does not change its form, the
momentum and scalar transport equations become

�tūi + ūj� jūi = − �iP + �� j j
2 ūi − � j�ij , �1�

�t�̄ + ūi�i�̄ = ��ii
2�̄ − �i�i�. �2�

Here, P= p /� is the modified pressure, �=� /� is the kine-
matic viscosity, � is the passive scalar, � is the diffusion
coefficient, �̄=��G is the resolved part of �, �ij =uiuj

− ūiūj is the SGS stress, and �i�=ui�− ūi�̄ is the SGS scalar
flux. The latter two terms have to be modeled. In the rest of
the paper, �� will be used to denote the subgrid-scale flux,
while �i� will denote its components.

While there exists a large body of work on modeling �ij,
relatively few closures are developed for �� that do not rely
on simplifying assumptions �e.g., Kraichnan advection
model �5��. The most popular models employ the eddy-
viscosity approach �6,7�,

�i� � − �CS	�2�S̄��i�̄ . �3�

Here, 	 is the characteristic length of the LES filter �usually

LES mesh size�, S̄ij =
1
2 �� jūi+�iūj� is the resolved rate-of-

strain tensor, �S̄ � =�2S̄ijS̄ij is its magnitude, and CS is the

Smagorinsky constant which can be prescribed a priori or
determined dynamically via Germano identity using a least
squares technique proposed by Lilly �8,9�. Although the dy-
namic determination of CS seems to improve the result dra-
matically in comparison to constant CS, it does not eliminate
the major flaw of the model �3�, which is the assumption that
the gradient of the resolved scalar aligns well with the SGS
scalar flux. This assumption, which rests on the molecular
analogy, has been criticized by many, including Corrsin as
early as in 1974 �10�, and will be examined later in the paper.

A much better prediction is given by the scale-similarity
model �11�,

�i� � CSSLi�, Li� = ūi�̄
̂ − ūi

̂�̂̄ . �4�

Here, Li� is referred to as the Leonard term and is obtained
using the so-called test filter, which has the characteristic

length 	̂
	 and is applied to the LES �base-filtered� flow.
The scaling constant CSS is to be supplied by the user. Note
that this model is Galilean invariant �12�, as opposed to the

earlier notations �13� where Li� could denote ūi�̄
̂− ūi�̄.

The gradient viscosity, or Clark model �14�

�i� � CC	2� jūi� j�̄ , �5�

gives an excellent prediction in a priori tests, because it rep-
resents the first term in the Taylor series expansion for ��

�15�. Unfortunately, the Clark model has been shown to pro-
duce an effective negative diffusion for the case of incom-
pressible flow, which potentially leads to a blowup in calcu-
lations �16�. This can be attributed to the fact that the
deconvolution operator is unbounded in the natural function
space for velocity and scalar fields, such as Lp �17�.

The most straightforward way to avoid blowups is to aug-
ment the model �5� by the eddy viscosity term, resulting in a
mixed model �18�,

�i� � CC	2� jūi� j�̄ − �CS	�2�S̄��i�̄ . �6�

Here, the value of CC is usually set to 1 /12, and CS is ob-
tained using the Germano identity.*chumakov@lanl.gov
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A model that avoids user-specified constants is the dy-
namic structure �DS� model �19,20�,

�i� �
�

�
Li�. �7�

Here, �=��− �̄�̄ is the SGS scalar variance, �= �̄�̄̂− �̂̄�̂̄,
and Li� is the Leonard term defined above. The model can be
regarded as a scale-similarity model with particular scaling
coefficient or can be derived using dynamic approach via
Germano identity. Note that the SGS scalar variance is un-
available from the resolved field, which requires either a
separate model or a separate transport equation for �.

Lately, the progress in the measuring techniques and rapid
advance in the computational power facilitated a growing
interest in the a priori testing of the SGS models. In particu-
lar, one can judge the model performance by how well the
model matches the topological characteristics of the modeled
quantity such as eigenvalue configuration �20�, or alignment
trends with respect to the resolved flow structures such as
principal strain directions, vorticity, and scalar gradient. Ex-
perimental data �4,21� and direct numerical simulation
�DNS� �22� have been used to investigate and explain the

misalignment of the principal axes of �ij and S̄ij.
Similar a priori tests based on experimental measure-

ments have been performed for ��. Higgins et al. �18� reports
the alignment trends of �� based on the measurements of
temperature fluctuations in the atmospheric boundary layer.
Their measurements indicate that the vectors �� and ��̄ do
not align, but the vectors ��, ��̄, and the vector given by the
Clark model �5� tend to be coplanar, thus supporting the
argument about applicability of the mixed model. Sun and Su
�23� use measurements of passive scalar in a cross-flowing
jet to a priori test the eddy-viscosity, scale-similarity, mixed,
and DS models for ��. Their results indicate that DS and
mixed models give comparable results that are superior to
eddy-viscosity and scale-similarity models.

The goal of this work is to provide a detailed a priori
analysis of the SGS passive scalar flux for the case of
Schmidt number of unity. Based on the DNS results we will
look at the relative importance of several terms in the trans-
port equation for ��. Also we will look at the behavior of ��

from the point of view of statistical geometry by evaluating a
priori the characteristics such as alignment trends. In the
end, a tensor-viscosity model for SGS flux based on the work
by Daly and Harlow �24� is evaluated. Because this model
uses the SGS stress to model the SGS flux, it is evaluated
with two different SGS stress models.

II. DNS DESCRIPTION

The DNS parameters are summarized in Table I, the en-
ergy spectra are shown in Fig. 1. The incompressible Navier-
Stokes equations were solved in a periodic box with sides of
length L=2
 and N grid points in every direction. A standard
pseudospectral algorithm was used, fully dealiased by a com-
bination of spherical truncation and phase shifting �25�. The
turbulence is sustained by a deterministic forcing term �26�

f��k,t� = ��u��k,t�/�2Ef�t�� , 0 � k � kf ,

0, kf � k ,
	

where � is the mean dissipation rate and Ef�t�=
0
kfE�k , t�dk,

E�k , t� is the energy spectrum at a given time. The mean
dissipation rate � was fixed at 0.12, and kf =1.5.

To resolve all important scales of motion, the condition
kmax��1 was satisfied at all times in all simulations �27�.
Here kmax=N�2 /3 is the maximum significant wave number
resolved by the grid, and � is the Kolmogorov length scale.
The flow was initialized using velocity components with
Gaussian distribution and random phases. Forcing was
turned on and the flow was allowed to fully develop, after
that the snapshots of the flow field were taken.

The consecutive snapshots should be separated far enough
in time for the data to be temporally uncorrelated. In our
database, the snapshots in 5123 simulations are separated by
slightly less than half of the eddy-turnover time �e, and in
10243 simulation by roughly �e /6. For the purpose of this
work, we took the snapshots that are about �e apart in time.
Thus the results for 5123 simulations are averaged over 50

TABLE I. DNS parameters.

Run name N � R� � �kmax Sc Scalar forcing Samples

512.20 512 1 /2225 286 4.9�10−3 1.19 1.0 mean gradient 100

512.21 512 1 /1300 246 7.4�10−3 1.78 1.0 mean gradient 100

1024.01 1024 1 /4500 424 3.0�10−3 1.40 1.0 mean gradient 106
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FIG. 1. Energy spectra of the three DNS runs from the Table I.
The inset shows the same spectra compensated by k5/3.
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snapshots, and results from the simulation 1024.01 over 17
snapshots.

It is known that in simulations of forced turbulence with
mean scalar gradient it is sufficient to have �kmax�1.5 for
accurate prediction of the statistics that are second order and
lower in small-scale scalar gradients �28,29�. Since we are
mostly interested in the inertial-range scalar behavior, a
simulation with �kmax�1.2 was also conducted to test the
ability of slightly under-resolved simulations to capture the
scalar behavior in the inertial range.

To obtain resolved and SGS quantities, Gaussian filters
were applied with characteristic widths 	 logarithmically
spaced from 0.05 to 1.6. In the figures, the data is taken from
the run 512.21 unless stated otherwise.

III. DNS RESULTS AND DISCUSSION

Because the SGS scalar flux �� is a vector, we will look at
the probability density function �PDF� of the direction of ��

to gain more insight in the underlying physics, in the spirit of
�18,30–33�. In particular, it is of interest to evaluate the
alignment trends of �� with respect to both resolved and
subgrid structures.

It should be mentioned that in our a priori studies we
assume that the implicit LES filter has a kernel that is posi-
tive in real space and close to Gaussian. Positiveness of the
filter function ensures that �ij satisfies the realizability con-
ditions �34�. The eigenvalues of �ij are non-negative and the
SGS energy ks=�ii /2 is also non-negative, which ensures the
applicability of our results to the eddy-viscosity models that
use �ks as the characteristic SGS velocity �35–37�.

A. Alignment of SGS flux and resolved structures

We denote by ��a ,b� the angle between two vectors a and
b. Figure 2 shows the PDF of cos ���� ,��̄� and
cos ���� , �̄�, where �̄ is resolved vorticity vector. It can be
seen that resolved gradient and the SGS flux are not aligned,
corroborating observation made by Corrsin �10� that gradient
transport models might not work well in turbulence, where
the size of the modeled phenomena is not larger than the
“mean free path” by orders of magnitude. The misalignment

of �� and ��̄ was found to persist for all filter sizes �only
one filter size is shown here� and the PDF of the angle be-
tween the two vectors seems not to depend on the filter size.
The same can be said about the angle between �� and �̄.

To gain more information we conditioned the two cosines
on the invariants of the resolved deformation rate tensor

Āij =� jūi, Rr and Qr �38�, the joint PDF of which is shown in
Fig. 3. The dashed line is given by the zero discriminant D

=27Rr
2+4Qr

3=0. Below the dashed line, Āij has no complex

eigenvalues; above the dashed line Āij has a pair of complex-
conjugate eigenvalues �cr� i�ci, �ci�0. We consider only
the incompressible case here, thus the pair �cr, �ci fully de-

termines the eigenvalue configuration of Āij. The ratio s
=�ci /�cr can be taken as a measure of “swirling intensity,”
similar to �39�, where the reciprocal ratio �cr /�ci is used.
Isolines of the swirling intensity are shown in Fig. 4. In all
figures, Rr is normalized by ��̄2�3/2, Qr is normalized by ��̄2�
�angle brackets denote the average over entire domain�. The
neighborhood of the right part of the dashed curve in the
figures correspond to axisymmetric expansion �either with-
out or with weak rotation�—the most frequent local flow
state in homogeneous isotropic turbulence �40�.

Figure 5 shows �cos ���� ,��̄� � �Rr ,Qr��—the mean co-
sine of the angle between �� and ��̄ conditioned on Rr and
Qr. The plot is truncated at the most outer contour of Fig. 3
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in order to represent only the values of �Rr ,Qr� for which
sufficient statistical samples were obtained. From Fig. 5 it is
evident that in the strain-dominated areas that are close to
axisymmetric expansion �s�� for a small �
0, Rr
0� the
SGS scalar flux �� and resolved scalar gradient ��̄ are close
to being counteraligned; while the alignment trends are less
pronounced in the areas where the vorticity influence is not
negligible ��s� is not close to zero�. This shows that the ef-
fective turbulent diffusion paradigm is applicable only in the
strain-dominated areas. Note that the flow states along the
right branch of the dashed curve are more frequent than the
other states, which explains the ability of the countergradient
models such as Eq. �3� to provide a feasible, however crude,
average approximation to the SGS flux for large LES cell
sizes.

The mean value of the cosine of angle between �� and
resolved vorticity �̄ conditioned on �Rr ,Qr� are shown in
Fig. 6. Together with the unconditioned PDF given in Fig. 2,
it leads us to the conclusion that the angle between the re-
solved vorticity and SGS scalar flux does not heavily depend
on the resolved flow configuration; the two vectors are ap-
proximately orthogonal, which supports the theory about the
scalar sheetlike structures wrapped around the vortex tubes at
small scales �see �41� and references therein�. The only sta-

tistically significant departure from this trend happens when
the swirling intensity is positive and not large, corresponding
to a “weakly rotating unstable focus and/or compressing”
configuration �38�. Apparently, the rotational effect in that
configuration is not strong enough to produce a “sheet” of
high scalar dissipation.

Also notable is the correlation between the swirling inten-
sity levels in Fig. 4 and the cosine values in Figs. 5 and 6.
This will be explored elsewhere.

The alignment of �� in the basis defined by eigenvectors

si of the resolved strain-rate tensor S̄ij is shown in Fig. 7. The
eigenvectors s1, s2, and s3 correspond to the eigenvalues of
the resolved strain, in the descending order: �����. The
alignment trend is nontrivial and does change visibly with
the magnitude of local resolved enstrophy, which is demon-
strated in Figs. 8 and 9. These figures show a persistent mis-
alignment between �� and ��̄ in the regions of high resolved
enstrophy, while in the regions of low enstrophy �� and ��̄
tend to be counteraligned.

Figure 10 shows the alignment trends between the re-
solved scalar gradient and the most compressive eigenvector
of the resolved stress. It is evident that the directions of these
two vectors coincide, regardless of the resolved enstrophy
magnitude. A similar, although weaker, trend is shown in

Fig. 11 between the intermediate eigenvector of S̄ij and �̄.
The alignment trends from the figures do not seem to depend
on the filter size. Other filter sizes �from 	=0.05, . . . ,0.8�
were considered, resulting in similar plots �not shown�. Thus,
the classical result �30� about the alignment of vorticity, the
scalar gradient strain axis also holds in the inertial range,
e.g., the resolved vorticity tends to align with the intermedi-
ate resolved strain, while the resolved scalar gradient tends to
align with the most compressive resolved strain.

Figures 7–10 imply that in the regions dominated by the
large-scale strain, the SGS scalar flux is counteraligned with
the resolved gradient, and both are aligned well with the
most compressive direction of the resolved stress. Thus in
low-enstrophy regions, the flux can be modeled using the
eddy viscosity approach. In the vorticity-dominated areas,
the countergradient assumption is not appropriate, since there
is a persistent misalignment between the gradient and the

FIG. 5. Mean values of the cosine of angle between �� and ��̄,
conditioned on the invariants Rr and Qr of the resolved deformation
tensor �ūi /�xj. LES filter size 	=0.2.

FIG. 6. Mean values of the absolute value of cosine of angle
between �� and �̄, conditioned on the invariants Rr and Qr of the
resolved deformation tensor �ūi /�xj. LES filter size 	=0.25.

FIG. 7. Alignment trends of the SGS scalar flux in the resolved
rate-of-strain eigenframe. LES filter size 	=0.2. Color represents
the PDF.
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flux. From Figs. 7 and 8 we conclude that the areas of mis-
alignment compose the majority of our computational do-
main, since Figs. 7 and 8�b� are similar.

B. Alignment trends of SGS flux in the SGS stress eigenframe

Considering the alignment of �� in the subgrid frame of
reference, namely, the eigenframe of �ij, yields an interesting
observation. The direction of �� seems to nearly coincide
with the direction of the most extensive eigenvector �1 of the

SGS stress �ij, which is illustrated in Figs. 12 and 13. This
alignment, which persists regardless of the configurations of
the resolved flow structures, explains quite complex dynam-

ics of �� with respect to the eigenframe of S̄ij described in
the previous section. The alignment dynamics between �ij

and S̄ij have been investigated a priori in a number of studies
�4,21,22�, but a qualitative explanation of the misalignment

of the axis of �ij and S̄ij has yet to appear. Now we look
closer at the alignment of �� and �i.

In �3�, we introduced two parameters s* and q*, each
ranging between −1 and 1, to characterize the eigenvalue
configuration of a symmetric matrix in a uniform fashion.
Given a symmetric tensor Bij,

s* =
− �6B̃ii

3

�B̃jj
2 �3/2

,

q* =
1

3

�6 sin−1W + 2W�5 − 2W2��1 − W2� ,

where Bii
2 =BijBji, Bii

3 =BijBjkBki, W=Bii /�3Bjj
2 , and B̃ij =Bij

−�ijBkk /3.

(a)

(b)

FIG. 8. Alignment trends of the SGS scalar flux in the resolved
rate-of-strain eigenframe: dependence on the resolved enstrophy
magnitude: �a� low, �b� high. LES filter size 	=0.2. Color repre-
sents the PDF.
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Applied to �ij, s
�
* characterizes the relative position of the

intermediate eigenvalue, while q
�
* characterizes the impor-

tance of the isotropic part of �ij. In this work, Gaussian filters
are employed as base LES filters, which results in non-
negative eigenvalues of �ij. This implies that for a given

value of s
�
*, there exists q

crit
* �s

�
*�
0 such that q

crit
* �s

�
*��q

�
*

�1, where q
crit
* �s*� can be found analytically by setting the

smallest eigenvalue of �ij equal to zero. Thus q
�
*=1 when �ij

is isotropic �all eigenvalues coincide� and q
�
*=q

crit
* �s

�
*��1

when �ij is singular �3�.
Figure 14 shows the means of cosine of the angle between

�� and �1 conditioned on the “relative q
�
*” value

qrel
* �s

�
*,q

�
*� 


q
�
* − qcrit

* �s
�
*�

1 − qcrit
* �s

�
*�

,

which is bounded by 0 and 1.
Figure 14 shows that regions with low q

rel
* �highly aniso-

tropic �ij� correspond to very good alignment between �� and
�1. On the other hand, when q

rel
* =1, which is equivalent to

q*=1 or isotropic �ij, the angle between �� and �1 seems to
go to a universal value.

Let us denote by �i the eigenvalues of �ij and by �̃i the
eigenvalues of �ij normalized so that �ii

2 =1 �or, equivalently,

�̃i=�i /�� j� j�. Assume that �̃1��̃2��̃3, then 1 /�3��̃1�1,

0��̃2�1 /�2, and 0��̃3�1 /�3. We can find the mean
value of the cosine of the angle between the directions of ��

and �i, conditioned on �̃i. Such PDFs for two values of 	
from the inertial range are shown in Figs. 15 and 16. For

each filter size, there are three PDFs plotted, one for each �̃i.
The most striking feature of the conditional PDFs is the

closeness of the correlation between �̃i and �cos ���� ,�i�� to
linear. This implies that in the eigenframe of �ij, the direction
of the SGS flux nearly coincides with one of the eight direc-

tions that are given by the vectors ���̃1 , ��̃2 , ��̃3�. Distri-

bution of the largest normalized eigenvalue �̃1 is shown in
Fig. 17. It can be seen that even for the largest filter consid-

ered �	=0.8� the distribution peaks at values of �̃1 close to
1.

Given the correlation in Figs. 15 and 16, and the PDF
from Fig. 17, the alignment between �� and �1 shown in
Figs. 12 and 14 can indeed be expected. This alignment ap-
pears to be insensitive to the filter size. Other filter sizes �not
shown� produced figures very similar to Fig. 15.

Figures 14 and 15 show results from different simula-
tions: 512.20 and 512.21. The simulations differ in reso-
lution, yet the statistics of the alignment trends are very

FIG. 12. Alignment trends of the SGS scalar flux in the SGS
stress eigenframe. Run 512.21, 	=0.05. Color represents the PDF.

FIG. 13. Alignment trends of the SGS scalar flux in the SGS
stress eigenframe. Run 512.21, 	=0.8. Color represents the PDF.
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close. This demonstrates that �at least for the case Sc=1� the
simulation with �kmax=1.2 shows similar structure of the
coupled velocity-scalar field in the inertial range of scales.

IV. TRANSPORT EQUATION FOR THE SGS
SCALAR FLUX

A. Derivation

To derive the transport equation for ��, we start with the
unfiltered momentum transport equation, multiply it by �,
add to the unfiltered scalar transport equation multiplied by
ui, and apply the filtering operation. The result is the trans-
port equation for ui�. Using similar procedure, starting with
�1� and �2� we obtain the transport equation for ūi�̄. Sub-

tracting one resulting equation from the other, we obtain the
following:

�t�i� + ūj� j�i� = − ���,�iP� + ���ui,� j j�� + ����,� j jui�

− �„uj,� j�ui��… + ūi� j� j� + �̄� j�ij . �8�

Here, for brevity, we used the Germano �12� notations

��a ,b�=ab− āb̄.
The right-hand side �RHS� of Eq. �8� has six terms. The

first term DP
��� ,�iP� is the scattering of the scalar by the
subgrid pressure effects, which we are going to neglect for
the purposes of this work. The diffusion terms �the second
and third terms� can be combined in various ways. A possible
combination is

Di� = m� j j�i� − 2m��� jui,� j�� + �M − m�C , �9�

where

m = min��,��, M = max��,�� ,

C = ���ui,� j j�� , � 
 �,�Sc � 1� ,

0, � = �,�Sc = 1� ,

���,� j jui� , � � �,�Sc 
 1� .
�

The last three terms in Eq. �8� are source and sink terms.
Using the Taylor expansion formula developed in �13,15�
and the procedure outlined in �19�, we can rewrite these
terms, disregarding the entries of the third order in 	 and
higher. This results in the following transport equation for
�i�:

�t�i� + ūj� j�i� = − DP + Di� − � j�� jūi − �ij� j�̄ , �10�

where Di� is given by Eq. �9�. In this form, the source terms
represent the creation and destruction of �� by the action of

the resolved deformation tensor Āij on ��, and action of the
SGS stress �ij on the resolved scalar gradient ��̄.

We investigate the relative importance of the terms on the
RHS of Eq. �10� using available DNS. In this work we re-
strict our investigations to the case Sc=1. This simplifies Eq.
�10� to
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FIG. 15. �Color online� Cosine of the angles �i between direc-
tions of the SGS scalar flux �� and eigenvectors �i of �ij, condi-

tioned on the corresponding normalized eigenvalue �̃i, i=1,2 ,3.
Data sets �a� 512.20, �b� 512.21.
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value of the SGS stress �ij. Legend corresponds to the filter size.
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�11�

B. Relative importance of the terms

We assume that we can neglect the effects of pressure and
diffusion. Thus we concentrate only on the terms I, IV, V, and
VI in Eq. �11�, which respectively represent convection, un-
resolved gradients’ interaction, deformation of the SGS flux
by the resolved flow structures, and effect of the SGS stress
on the resolved scalar gradient. To estimate how the relative
magnitude of these terms changes with the filter size, we plot
the magnitude of these terms, normalized by the sum of their
magnitudes, in Fig. 18.

It is evident from the figure that the term IV is insignifi-
cant and can be discarded for the modeling purposes.

The convective term is clearly dominant when 	 is close
to the dissipative scale, thus supporting the hypothesis of
“sweeping by large eddies” �see �42� and references therein�.
The sweeping effect weakens with the growth of the filter.
The other two terms, V and VI, are of the same order of
magnitude, with VI being about twice as large as V. The term
VI becomes dominant at the upper end of the inertial range.
The Reynolds number effect is also apparent: with increasing
R� the role of the convective term I is diminishing for all
filter sizes, while the source terms V and VI grow in magni-
tude. It is worth noting that we do not see any plateau in the
inertial range.

V. MODELING THE SGS FLUX

A. A tensor viscosity model

The order-of-magnitude analysis in the previous section
shows that the assumptions made by Daly and Harlow �24�

are reasonably valid for the locally-averaged flows and the
model

�i� � �i�
mod 
 −

1

�S̄�
�ij� j�̄ �12�

might give a good approximation for ��. One can also in-
clude the other dominant term �V� in the modeling �43�, or
use it as a first approximation in the expansion of tensor
viscosity �44�. The distribution of the cosine of angle be-
tween ��

mod and �� is given in Fig. 19 and the PDF of relative
error in the magnitude E= ����

mod �−��� � � / ���� is shown in Fig.
20.

The model �12� predicts the direction of the flux with
reasonable accuracy, although for the smallest filter sizes �or-
der of magnitude of �� a counteralignment with the flux can
occur. In the inertial range �	=0.4,0.8� the PDF seems to
reach some asymptotic state. The PDF of the relative error in
the magnitude of the flux also collapses in the inertial range,
which is shown by solid lines.

The time scale 1 / �S̄� is taken from the resolved flow, and
it gives a consistent magnitude of the flux, as opposed to
SGS time scale 	 /�ks that was also tested �not shown�. Since

ks contains information from all subgrid scales, and �S̄� is a
feature of the length scales close to 	, it shows, in our opin-
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FIG. 18. Mean relative magnitudes of the terms I, IV, V, and VI.
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512.21, thin lines show data from 1024.01.
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clarity, in �b� the curves corresponding to the inertial range 	
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ion, that the dominant portion of the SGS scalar flux comes
from the scales �in both scalar and velocity fields� that are
close to 	, which illustrates the locality of the cascade �45�
for the case of a passive scalar.

Also the model �12� does not require any additional trans-
port equations or operations; it relies on the quality of the
model for the SGS stress �ij.

B. Dependence on the SGS stress model

To provide a comprehensive study, we conduct a priori
tests of the model �12� with two different models for �ij:
�1� the Smagorinsky model �27,46�

�
ij
* � − 2�CS	�2�S̄�S̄ij, CS = 0.18,

�2� the dynamic structure model �20,47�

�ij �
�mm

Lnn
Lij, Lij = ūiūj

̂ − û̄iû̄ j .

Here, �
ij
* =�ij −�ij�kk /3 is the deviatoric part of the SGS stress

and “� �ˆ ” denotes the test filtering with the characteristic

width 	̂=2	.
This results in two models for the SGS flux:

�i� � −
1

�S̄�
�

ij
*� j�̄ � C12�CS	�2S̄ij� j�̄ , �13�

�i� � −
1

�S̄�

2ks

Lnn
Lij� j�̄ . �14�

The advantage of the model �13� is smaller computational
overhead, while Eq. �14� does not have user-specified con-
stants.

Note that in Eq. �13� we use the model only for the de-
viatoric part of the stress. Addition of trace results in severe
degradation of the model’s performance, as shown in Fig. 21
which depicts PDF of the cosine of the angle between �� and
the model and the magnitude of the relative error. The solid
lines correspond to the model �12� with full Smagorinsky

model �ij =−2�CS	�2 � S̄�S̄ij +�ij�kk /3, dashed lines correspond
to the model �13�, and the circles correspond to the compos-
ite model that has the trace of �ij found a priori and added to
the Smagorinsky model for �

ij
*. It can be seen that the addi-

tion of the trace degrades the performance of the model sig-
nificantly, especially the prediction of the magnitude of the
flux.

For models �13� and �14�, the resulting PDFs of the angle
between models and �� and the relative error in the magni-
tude prediction are shown in Fig. 22 for 	=0.2. The other
filter sizes produce similar plots; the means of the PDFs of
relative error are shown in Table II for different filter sizes.

Surprisingly, the model �13�, based on the deviatoric part
of the Smagorinsky model with C1=2, gives the most accu-
rate prediction for the flux direction for all filter sizes, out-
performing model �12� which has the “ideal” SGS stress.

Model �14� gives the distributions of angle and relative
error which are close to the “ideal” model �12�, which cor-
roborates the earlier findings about the good quality of the
dynamic structure model itself.

Overall these figures show that a priori the simplest
tensor-viscosity approach can very well predict the direction
of the flux while the accurate prediction of the magnitude
may either require some higher-order corrections �44� or a
different approach, such as scale similarity. However, if we
directly incorporate the model �13� in the LES equations �2�,
the following term appears in the right-hand side of the

transport equation: S̄ij�ij
2 �̄. This, similarly to the Clark
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model, gives effectively negative diffusion �16�, which, if
unchecked, might lead to a blowup in the LES calculations.
The a posteriori stability of this model is outside of the
scope of the present paper and will be investigated in future
work.

VI. CONCLUSIONS

We performed several DNS runs of forced homogeneous
isotropic turbulence with passive scalar, which is forced by
mean gradient, with Sc=1 and different degree of resolution
��kmax=1.2,1.4,1.78�. The DNS data was used to investi-
gate a priori the alignment trends of the SGS scalar flux for
various LES filter sizes ranging from several Kolmogorov
scales to forcing scale. Some persistent alignment trends be-
tween the SGS flux and resolved flow structures were found,

but they were observed to depend on many parameters. We
found that the degree of resolution in all our DNS runs was
sufficient to resolve the inertial-range statistical geometry
trends.

Our results show that the effective turbulent viscosity ap-
proach is applicable only in strain-dominated �low-
enstrophy� areas of the flow. Because the strain-dominated
states are the most frequent in turbulent flow, as the joint
PDF of �Rr ,Qr� shows, the effective turbulent viscosity ap-
proach gives a feasible engineering approximation, although
it is physically inconsistent.

It was found that the direction of the SGS scalar flux was
strongly connected with the eigenvectors and eigenvalues of
the SGS stress �ij. In particular, the mean cosine of the angle
between the flux �� and an eigenvector �i of �ij was found to
be highly correlated with the relative magnitude of the cor-

responding eigenvalue �̃i; the correlation was found to be
close to linear. This, together with the calculated PDF for the
normalized largest eigenvalue of �ij, leads us to the conclu-
sion that the SGS flux is in general closely aligned with the
maximum eigenvector of �ij.

We derived an approximate transport equation for the sca-
lar flux and looked at the relative importance of the transport,
source, and sink terms. We found that convective effects
dominate in the near-viscous range, while in the inertial
range the dominant term represents the work of the SGS
stress �ij on the resolved scalar gradient, which shows appli-
cability to LES of the Reynolds-Averaged Navier-Stokes
�RANS� model proposed by Daly and Harlow �24�.

We evaluated a model analogous to the one proposed by
Daly and Harlow using our DNS data and found that it gave
good prediction for the SGS scalar flux in the inertial range
of LES filters; both in terms of direction and magnitude of
the SGS flux vector. The time scale that gave the correct flux
magnitude was based on the resolved strain as opposed to the
SGS kinetic energy. This shows that the dominant portion of
the SGS scalar flux comes from the scales that are close to
the characteristic LES filter size, which is coherent with the
locality of the cascade �45�. The model has an advantage of
not requiring any additional transport equations or additional
filtering, it does not have any user-adjustable constants. Thus
for incompressible flows with passive scalars, the quality of
modeling of the SGS stress �ij becomes the primary concern.

We evaluated the effect of two different models for �ij on
the quality of prediction for ��: the Smagorinsky model and
dynamic structure �DS� model. The prediction quality of the
DS model appeared to be consistent with earlier studies.
However, the utilization of the traceless part of the Smagor-
insky model gave an unexpectedly good prediction for the
direction of the flux, while the reasonable prediction of the
magnitude required an additional user-specified constant. In-
clusion of trace of �ij—either isotropic or a priori
calculated—led to degradation in the model performance. It
is worth noting that the application of this particular tensor-
viscosity model �deviatoric part of the Smagorinsky model�
in a posteriori calculations can potentially lead to instabili-
ties due to effective negative viscosity provided by a part of
the model, similar to �16�, however, the negative viscosity
might be counteracted by the other part of the model. A more

TABLE II. Mean values of the relative error for models �12�
�True�, �13� with C1=2 �Smag�, and �14� �DS�, dependence on the
filter size.

	 True Smag DS

0.05 −0.13 0.07 −0.165

0.1 −0.05 −0.05 −0.07

0.2 0.10 −0.19 0.10

0.4 0.20 −0.33 0.25
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FIG. 22. �a� Angle between �� and models �12� and �13� with
C1=2 and �14�. �b� Relative error of the models �12� and �13� with
C1=2 and �14�. The filter size 	=0.2.
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thorough investigation of this modeling issue will be con-
duced in future work.
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