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Extreme events in bimodal systems
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The extreme value statistics of systems possessing a two-hump probability density of the relevant variable,
in which the left peak is more pronounced than the right one, is studied. It is shown that systems of this type
display a nontrivial transient behavior in the form of anomalous fluctuations around the mean, for certain
(finite) ranges of observational time windows. The results are illustrated on independent identically distributed
random variables, systems possessing two locally stable states and subjected to additive white noise, and

dynamical systems in the regime of deterministic chaos.
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I. INTRODUCTION

The study of extreme events is a highly developed branch
of mathematics and is widely recognized to be of paramount
importance in a variety of contexts, from hydrology to engi-
neering to finance [1]. In its classical setting it is formulated
entirely in terms of three universal types of probability dis-
tributions attracting different families of stochastic pro-
cesses, depending on the way the cumulative distribution of
the process F(x) behaves near the upper boundary of the
domain of variation of the relevant variable [2].

Central to the above remarkable universality is the pas-
sage to the asymptotic limit n— o0 of an infinite time obser-
vational window. Now the universality achieved thanks to
this passage is at the expense of erasing information on the
variability of extreme value related properties, as captured by
their fluctuations around the asymptotic means. The situation
is somewhat similar to early studies of phase transitions or
chaos theory where by focusing offhand on the thermody-
namic limit or on the invariant measure, key aspects related
to the approach to criticality or to possible inhomogeneities
in the structure of the underlying attractor and of the
Lyapunov spectrum were overlooked.

In the present work we report results pertaining to the
transient behavior of extremes when finite observational win-
dows are considered, a case expected to be of high relevance
in most of real world situations. We focus on the class of
systems characterized by a bimodal probability distribution,
which is known to encompass a wide spectrum of problems
of interest in, among others, fluid mechanics, optics, electri-
cal engineering, chemical kinetics, and atmospheric dynam-
ics [3]. We first consider the case of independent identically
distributed random variables and show that for such systems
the variance of the relevant observable exhibits under well-
defined conditions a maximum, thereby setting limits in the
relevance of the information contained in the mean values
afforded by classical theory. This property, which turns out to
be generic, is illustrated in the subsequent sections on several
types of more intricate dynamical systems, both stochastic
and deterministic. The main conclusions are summarized in
the last section.
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II. INDEPENDENT IDENTICALLY DISTRIBUTED
BIMODAL RANDOM VARIABLES

Consider an observable x (a<x<hb) whose probability
density P(x) exhibits two well-separated local maxima at
x=x; and x=x, such that x; <x, and P(x;)> P(x,). The as-
sociated cumulative distribution, F(x)=Prob(x’ <x) will start
having small values for x below x;, will possess a first in-
flexion point at x; after which its value will be subjected to a
more or less abrupt increase, and will finally present a further
inflexion point at x, before leveling off at unity for x values
beyond x,. We assume that the successive values x(l), ,x<N)
as x evolves in time, taken to be separated by a fixed obser-
vational window 7 are independent identically distributed
random variables. The (cumulative) probability G,(x) of the
largest value x found in a subsequence x('), . ,x(”) of the full
time series is then G,(x)=F"(x). Clearly, as n is increased,
the values of G,(x) for x below x, will be gradually de-
pressed and G, (x) will be increasingly displaced towards the
upper boundary, the corresponding probability density p,(x)
being increasingly closer to a 6 peak concentrated on this
boundary. As a corollary, the mean x,, of x will tend to the
upper boundary and its variance 5xﬁ around x,, will tend to
zero. Now, if the initial (n=1) peaks happen to be narrow
around the values x; and x,, the variance of the distribution
P(x) will also be small. Under these conditions then the vari-
ance starts (n=1) and ends (as n becomes large) being small,
and one may legitimately expect that there will exist some
intermediate n for which it will go through a maximum. At
this point the value of x,—one of the principal predictors in
the theory of extremes—will be subjected to a maximum
uncertainty, and predictions based on averages will have to
be complemented by information pertaining to the fluctua-
tions.

A simple illustration capturing the essence of the above
ideas is provided by a distribution in the form of two delta
peaks at x; and x, of weights a and 1-a, respectively, with
1/2<a<1

P(x)=adlx—x;)+ (1 —a)dx-x,) (1)

the corresponding cumulative probability distribution being a
step function with two discontinuous jumps at x; and x,:
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Fx)=0, 0<x<ux,

=a, x;<x<Xxp,

=1, x<x<b. (2)

In this setting G,(x)=F"(x) can be determined straightfor-
wardly. By construction, it will keep its step like form the
difference with Eq. (2) being that the intermediate level
value a will now be a". Differentiating with respect to x one
obtains the associated probability density

dG,(x)

p(n) = =d"8x-x)+(1-ad)dx-x,). (3)
The mean and the variance of x can now be evaluated
straightforwardly. One finds

x_” =d"x;+ (1 —a")x,, (4a)

8 = (x,— x1)2(a" — ™) (4b)

from which the limiting behavior x,— x, and 5xi—>0 as n
— o conjectured above follows. Equations (4) allows us,
however, to go one step further and investigate the behavior
as a function of a and n. Specifically, (i) x, is a monotoni-
cally increasing function of n for given a, and monotonically
decreasing function of a for fixed n, (ii) 5x,21 exhibits a maxi-
mum with respect to n for given a(a>1/2) as well as with
respect to a for given n for a"=1/2 or

1
Miax = 1IN 2/ln<—> (5)
a
independent of x; and x,. As a gets closer to unity
increases, the value of 5xi itself at maximum being an in-
creasing function of the distance separating the peaks of
P(x),

_ _ 2
5x2n,max = % . (6)

Notice that at n,,,, the two peaks of p,(x) [Eq. (3)] around x,
and x, have equal weights.

A better representation of a generic distribution consisting
of two well-defined peaks separated by a deep minimum is
provided by two square pulses extending over an interval €
on either side of the points x; and x,:

P(x)= aiﬂ[x— (x;—€)]0(x; + €—x)
2e

+(1 —a)zieﬁ[x— (x,— €)]6(x, + €—x)

(e<x2;xl>. (7)

Following the same procedure as in Eq. (3) one obtains
straightforwardly a cumulative distribution G,(x)=F"(x) in
the form of a piecewise differentiable function
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G,(x)=0, x<ux —e,
alx—x,+¢€)\"
=s|l———— |, x—e<x<x +e¢,
2€

=d", xj+e<x<x,-—e€,

( (x—x+€)(1-a)
=g+ —F7"-—"7F7"-—"—=
2€

n
) , Xp—€e<x<xte,

=1, x>x,+e. (8)

The mean x_,, and variance gﬁ of the associated probabil-
ity density can be evaluated explicitly. The expressions,
which are rather cumbersome, have the general structure

x_n =ad"x;+ (1 —a")x, + €C(a,n), (9a)

8= (a"—a®)(x,— x,)2 + €D, (a,n) + €D,(a,n). (9b)

As an example,

1
Ci(a,2) = 5(1 —2a+2d°),
4 3 4

Di(a,2)= g(xz -x))(a’ +a”),

2
Dz(a,2)=§(1 +2a—-4a*+4a’ - 2a*). (10)

We recognize in the e-independent part of Egs. (9) the

expressions of x, and 5xﬁ for the two delta peak case, Egs.
(4). The presence of correction terms in € and € entails that,
contrary to Egs. (4), the state of equipartition (which still
corresponds to a"=1/2) does not coincide here with the
(a,n) values yielding the extremum of 5xﬁ. For instance, in
the n=2 case Egs. (10) yield for x;=-5, x,=5, and €=2 an
extremum of éxi for a=0.699, which is slightly less than the
value a’=1/2 or a=+2/2 and corresponds to a total weight
of the left pulse equal to 0.489 rather than 1/2. Notice that
sy iNCreases as |x,—x,| increases.
__Coming back to expressions (9), numerical evaluation of
5xi as a function of n for various a’s complemented by direct
simulation of the process, viewed as a superposition of two
uniform noises, confirms this view. Figure 1(a) depicts the
main result. The dependence of n,,,, on the width € of the
original pulses for a given a value, shown in Fig. 1(b), dis-
plays a thresholdlike behavior such that the deviation from
a"=1/2 relation begins to show up beyond a (rather substan-
tial) value of e. The variance x?, ., itself is a decreasing
function of € (not shown). Notice that under the same con-
ditions x, increases monotonically with n, as expected.

The above conclusions extend to the more generic case
where P(x) is the superposition of two narrow Gaussians

centered on x; and x,,
Pi(x)=ad;(x)+ (1 —a)d,(x), —o<x<o (lla)

with
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FIG. 1. (a) Variance of extremes versus the time window 7 in
the case of an independent bimodal random variable distributed
according to two square pulses centered on x;=-5 and x,=5 ex-
tending over an interval €=0.25 on either side of x; and x, as
obtained by direct simulation of the process for three different
weights of the leftmost pulse. Number of realizations for the statis-
tical averaging is 10°. (b) Dependence of the time window n for
which the variance displays a maximum on the width of the pulse €
as obtained from the analytic expression (9b). Parameter values as
in (a) with a=0.95.

1 (x—xi)2>
= expl —-——— 1 (i=1,2). 11b
¢ \'ETO',- P( 20_? ( ) ( )

Figures 2(a) and 2(b) depict the dependence of 5x,2 on n for
the two cases of equal and unequal variances a% and o3,
respectively. In both cases a clearcut maximum, which in the
case of Fig. 2(a) tends to increase with decreasing variance
values, is observed. The dotted lines in the same figures rep-
resent the n dependence of the probability masses Z; and Z,
in the intervals [—-,0] and [0,%], respectively. As can be
seen the value n,,, of 6xi is very close to the case of equi-
partition, i.e., the role of the variance (as long as it remains
weak) is here less pronounced than in the previous case of
two pulses. We argue that this may be due to the fact that in
the case of Fig. 2 one deals with a distribution defined on an
infinite support, whereas in the case of Fig. 1 the support is
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FIG. 2. (a) As in Fig. 1(a) but in the case of two narrow Gaus-
sians of equal variances, ¢2=107> (full line) and o?=5X 1072
(dashed line), centered on x;=—10 and x,=10 with a=0.9 [Eq.
(11a)]. Dotted lines stand for the dependence of the probability
masses Z; around x; and x, on the time window n. Number of
realizations is 10°. (b) As in (a) but variances of the Gaussians are
unequal 021=5 X 1072 and 0'%: 1073,

finite. Now, a probability density defined on an infinite sup-
port and possessing two maxima is asymptotically equivalent
(as far as the computation of its moments is concerned), in
the limit of small local widths around each of the maxima, to
the exponential of a quartic function of x times a normaliza-
tion factor. This reduces, in turn, by a steepest descent type
of argument to two Gaussian peaks similar to Eq. (11a) but
valid now for higher windows n as well, for which the maxi-
mum variance is indeed attained in the state of equipartition.
Notice that the exponential of a quartic function is also the
state that maximizes information entropy—essentially the
delocalization in state space—at given second and fourth
moment values.

III. STOCHASTICALLY FORCED DYNAMICAL SYSTEMS

We now place ourselves in a dynamical perspective, in
which bimodality and extreme value properties are generated
by an underlying evolution law. Specifically, we consider an
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overdamped one-variable system driven by a potential V(x)
and subjected also to an additive Gaussian white noise. As-
suming that V(x) possesses two minima at x; and x, sepa-
rated by a maximum located (without loss of generality) at
x=0, the evolution equation takes the form [4]

dx av
E=_5+F(t)' (12)
Here
PR B
V=)\3—,u§+z (13a)
with
N=Xx1Xy, =X+ X, (13b)
and
(F0)=0, (FOF@)=¢*8t~1"),  (13¢)

where the brackets denote average over the different realiza-
tions of the noise.

To secure the bistable character of the potential we take
x;<0 and x,>0. The relative stability of x; and x,, also
reflected by the relative magnitudes of the peaks of the in-
variant probability density

P(x)=Z"exp| -

PL” ¢
is determined by the distances of x; and x, from x=0. We
here choose |x;|>x,, which guarantees that state x; is more
probable than x,.

From the standpoint of dynamics one is in the presence of
two types of processes, characterized by widely separated
time scales: a local, small scale diffusion around x; and x,
whose characteristic time is
o (dV >
= E i=3xi —2ux;+ N

(15a)

and a sequence of transitions between x; and x,. The mean
sojourn time around each of the states x; prior to a transition
is given by the Kramers formula

B T [V(0) - V(x,)]
=— exp >
=V"(0)V"(x;) q/2

where V(0)—V(x,) is the potential barrier separating each x;
from the other locally stable state and V"(0), V"(x;) are the
second derivatives of the potential V evaluated at x=0 and
x=Xx;, respectively.

We come now to extreme values and their probabilistic
properties. Solving the Langevin Eq. (12) numerically we
generate a time series of the variable x and monitor its suc-
cessive values at times t=7,27,...,N7. For each given
(long) such series we identify the largest value found in suc-
cessively larger windows n along the series and deduce its
probability density and its first few moments. Figure 3 sum-
marizes the main result of this evaluation for parameter val-
ues x;=—1, x,=1/2, q2=0.08, 7=1 time unit. As can be seen
the variance displays a maximum at n,, 7=~ 226 time units,

TK . ( 15b)
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FIG. 3. As in Fig. 2(a) but for a stochastically forced dynamical
system, Eq. (12). Parameter values are x;=—1, x,=1/2, ¢*>=0.08,
and 7=1 time unit yielding a probability mass around state x; for
n=1 Z,~0.96. The number of realizations is 2 X 10%.

whereas the equality of the probability masses in the inter-
vals (=,0) and (0,%) is achieved for n,, 7= 160 time
units. Under the same conditions the correlation and Kramers
times [Egs. (15a) and (15b)] are T[1=3/2, 7'51:3/4, Tx
=234 time units. The similarity between the values of n, 7
and 7 can be understood qualitatively by noticing that the
crossing of the barrier is a necessary condition for the trans-
fer of probability mass towards higher values of x as the
window 7 is increased.

IV. DETERMINISTIC DYNAMICAL SYSTEMS

Fundamentally, the laws governing the evolution of natu-
ral systems are deterministic. In the present section we in-
vestigate the transient behavior of extremes for deterministic
dynamical systems generating nonlinear behavior respon-
sible for a bimodal structure of the invariant probability dis-
tribution of a relevant variable. Previous work by the present
authors and co-workers has shown that the structure of the
n-time probability density p,(x) of deterministic systems pre-
sents some fundamental differences from those featured in
classical theory, in the form of distinct plateaus formed at
discrete (generally n-dependent) sets of values [5,6]. Here
we focus on the specific role of bimodality of the probability
density P(x) of the process in the behavior of extremes.

The systems to be considered are chosen among the class
of one-dimensional chaotic maps subjected (in order to
achieve bimodality) to a multiplicative periodic forcing.
They are constructed around a skeleton consisting of an an-
tisymmetric discontinuous tent map in the interval —1 <x
=< 1, whose parameters are subsequently modified in order to
control the relative values of the probability masses in the
left and right subintervals separated by x=0. Specifically,
setting

fi(x) =[a; + d; sinQ7wk)](0.5 - x;),

f-(xp) =[a, — dy sinmwk)](0.5 + x;) (16)
the map is defined by [7]
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FIG. 4. Time evolution (a), and probability distribution of vari-
able x (b) of the map of Egs. (16) and (17) with parameter values
ay=a,=19, d,=0.25, d,=0.12, and w=0.1.

1-f(x), —1=<x<-05

Xng1 =~
=—1+4+f(x), —05<x=<0
=1—-f,(x), 0<x=<0.5
=1+f,(x), 05<x=<I. (17)

Taking a;=a, and d; sufficiently larger than d, leads, for a
wide range of values of the frequency w, to a clearcut bimo-
dality in which the left part of the interval dominates as seen
in Figs. 4(a) and 4(b), the mean sojourn time in this region
being about 1050 time units. Coming next to the behavior of
extremes, Fig. 5 depicts the cumulative probability F,(x) for
increasing windows n. We recognize the piecewise differen-
tiable structure advanced in the beginning of this section as

PHYSICAL REVIEW E 78, 036222 (2008)

0.25 |

0 L

-0.75 -0.5 0.5

X 1
max

-0.25 0 0.25

FIG. 5. Cumulative probability distribution for the extreme val-
ues of system (16) and (17) for increasing time windows n deduced
numerically using 109 realizations. Parameter values as in Fig. 4.

istence of a maximum at some window value n,,, of about
650 time units, close to the n value for which the equiparti-
tion of the probability masses Z; and Z, is achieved. We
notice that n,,, 7 and the mean sojourn time are here signifi-
cantly different, although they still are of the same order of
magnitude. This difference with what was found in Sec. III is
due to the fact that in a deterministic system there is no
clearcut distinction between “systematic” and “random” be-
havior, owing to the presence of persistent correlations.
Similar conclusions as above are reached for the much sim-
pler class of deterministic systems showing periodic behav-
ior, for which explicit analytic solutions can also be con-
structed. It suffices for this to tune, through appropriate
parameter values, the parts of the overall periodicity that the
system spends in different selected ranges of values of the

variable x.
V. CONCLUSIONS

In this work we analyzed a class of systems showing non-
trivial transient behavior in their extreme value properties, in

1

the principal signature of the deterministic character of the
dynamics. As one might expect the discontinuities are
smeared out at the level of statistical averages. In particular,
as seen in Fig. 6 the variance 6xi displays a smooth depen-
dence on the window. One again sees in this Figure the ex-

> |
d X Z
n 2
o S T o
02t W = '
@w \)\)
@ ®
@ ®
¢ “a 05
015 @ Q 1
@ RS
I ©
I ® S@
e Y
|
0.1 i; g 1 0.25
I o
B 1
0.05 . . . 0
0 500 1000 1500 n

FIG. 6. As in Fig. 2(a) but for system (16) and (17). Parameter

values as in Fig. 4.
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the form of anomalous fluctuations for certain ranges of ob-
servational windows. These systems share the common fea-
ture of having a bimodal probability density of the relevant
variable x, the leftmost peak being much more pronounced
compared to the rightmost one. There are different dynamical
scenarios for realizing such a distribution: the system pos-
sesses two locally stable states separated by an intermediate
unstable one and is subjected to an additive white noise; or it
operates in the regime of nonlinear oscillations or determin-
istic chaos, in which the attractor is highly nonuniform in the
form of two “hot spots” monopolizing much of the probabil-
ity mass.

As is well known, as the observational window is in-
creased the probability mass of the n-fold density p,(x) tends
to be displaced towards the upper boundary of the variable x.
The principal role of bimodality is to postpone this process,
by inducing intermediate regimes in which the probability
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mass of p,(x) in the range of moderate values of x remains
substantial for observational windows that may be large and
physically relevant. For such regimes mean value-related
predictions need to be complemented with information per-
taining to fluctuations.

A straightforward extension of this work would be to con-
sider n-modal (n>2) systems, where a further postponement
for reaching the asymptotic regime can be expected. The
case of multivariate systems would also be worth consider-
ing, since there may now be alternative (and competing)
pathways for transitions between states.
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