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Localized states in out of equilibrium one-dimensional systems are described by the homoclinic snaking
associated with the infinite sequence of multibump localized solutions of the corresponding time reversible
dynamical system. We show that when the pattern undergoes a saddle-node bifurcation the homoclinic snaking
bifurcation diagram becomes slanted and a finite set of localized states continue to exist outside the region of
bistability. This generic behavior offers a local theory resolution of the discrepancy between models and
experiments.
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Pattern formation in out of equilibrium dynamical sys-
tems leads sometimes to the appearance of localized states,
that is, the pattern extends over a limited space region and
consists of only a few cells, eventually one, of the corre-
sponding extended structure. Examples are numerous, such
as oscillons in vibrated granular media �1� and in vibrated
fluids �2�, filaments of current in plasmas �3�, spots in chemi-
cal reactions �4� and in vegetation patterns �5�, magnetic do-
mains in computer memories �6�, cavity solitons in semicon-
ductor microcavities �7�, localized optical structures in
atomic vapors �8�, and in liquid crystals experiments �9,10�.
The large number of experimental observations has inspired
many theoretical works on the origin of localized states.
Starting from the pioneering work of Woods and Champneys
�11�, developed models are based on the one-dimensional
description of the time reversible dynamical system associ-
ated to a generalized Swift-Hohenberg equation. In this
framework, localized states are understood as the homoclinic
orbits originating from a homogeneous stationary state and
passing close to the periodic orbit associated to a pattern
state, generating an infinite sequence of limit points, at each
point the homoclinic orbit creating another bump. Hence, the
bifurcation diagram of the homoclinic displays a snaking
shape �11�. An extension of the above scenario has been
given in Ref. �12� and, more recently, the same dynamical
evolution have been presented in terms of front interaction
�13�. All these models are based on the coexistence of two
states, namely, a stable homogeneous state and a stable pat-
tern.

Despite the ability of these theoretical approaches to give
an intuitive picture of the phenomenon, the comparison with
the experiments remains up to now hard to establish, even
from a qualitative point of view. The main discrepancy origi-
nates from the large robustness of the one-bump solution,
often existing outside the bistability region that is required
by the theory, and from the lack of a clear observation of the
multibump solutions expected from the snaking sequence. A
tentative resolution to the theory-experiment discrepancy has
recently been proposed, which resorts to the addition of a
nonlocal nonlinearity in the Swift-Hohenberg model, leading
to a tilt of the snaking bifurcation diagram �14,15�. However,
even though nonlocality could be justified for some systems,
for many experiments there is no direct evidence or demon-
stration that nonlocality should indeed exist or play a rel-

evant role, and, in any case, introducing a global coupling
implies a strong modification of the physical context into
which the theoretical models are developed.

Here, we present a local theory of the slanted homoclinic
snaking and we show that tilting the snaking bifurcation dia-
gram does not need to invoke an extra mechanism, such as
global coupling or nonlocal nonlinearity, but can generically
result from a modification of the phase portrait associated to
the time-reversible dynamical system as it was considered in
the original theoretical framework �11,12�. As an example,
we consider a generic Ginzburg-Landau model including a
spatial forcing and bistability between an homogeneous and
a pattern state, and we allow the pattern to lose its stability
through a saddle-node bifurcation. We show that the saddle
node of the pattern tilts the homoclinic snaking and thus
destroys the infinite sequence of homoclinic orbits associated
to the multibump localized structures. As a consequence,
only the single-bump solution, or a few of these states, re-
main, which are robust localized structures living outside the
bistability region once the pattern has disappeared. This ex-
ample, that provides an alternative resolution of the discrep-
ancy between theory and experiments, does not need a large
perturbation of the original theory but is instead a quite natu-
ral extension of it, insofar it simply includes the possibility,
not considered before, that the pattern may lose its stability
for some parameter ranges.

We thus consider a model which has a tunable coexistence
region between a uniform state and a pattern, the real sub-
sub-critical Ginzburg-Landau equation with spatial forcing

�tA = �A + ��A�2A − ��A�4A + �A�6A + �xxA + �A2eiqx, �1�

where A�x , t� is a complex amplitude, � is the bifurcation
parameter, �� ,�� control the type of the bifurcation �first or
second order depending on the sign of these coefficients�, �
is the amplitude, and q the wave number of the spatial forc-
ing. This extra term accounts for the nonadiabatic effect and
restores the original discrete symmetry of the pattern solu-
tion �16�. The above model describes simultaneously a pri-
mary and a secondary subcritical spatial bifurcation of a ho-
mogeneous state and a pattern state, respectively. While the
unforced amplitude equation �=0 has been widely used to
explain pattern formation in dissipative systems �17�, the
forced equation ��0 has been used to describe traveling
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waves in convection �16�, localized patterns �13�, localized
peaks �18�, localized structures in monoatomic layer deposi-
tion �19�, and noise-induced front propagation �20,21�.

The unforced amplitude equation is variational, i.e.,

�tA = −
�F

�Ā
, �2�

where the functional

F �	 V��A�� + ��xA�2dx ,

V�−��A�2−��A�4 /2+��A�6 /3− �A�8 /4 is the potential, and
the dynamics is characterized by the relaxation of the func-
tional F. For some positive values of �, � and negative value
of �, the system exhibits coexistence between two stable ho-
mogeneous states, a zero �A=0� and a nonzero �A�0� uni-
form amplitude state. Figure 1 shows the typical bifurcation
diagram as a function of the bifurcation parameter � and the
respective potentials in different regions of the diagram.
There is a particular value of �=�m—Maxwell point—where
a front solution connecting the two homogeneous states is
motionless, that is, the two states have the same potential
value �V=0�. For ���m ����m� the zero �nonzero� ampli-
tude state invades the nonzero �zero� uniform state. When �
is increased or decreased with respect to the Maxwell point,
the nonzero uniform state disappears by saddle-node bifur-
cation, that is, this stable state merges with the unstable uni-
form one. These bifurcation points are represented by �− and
�+ in Fig. 1. The inset figures represent the potential �a� close
to the left-side saddle node, �b� just before the Maxwell
point, �c� after the Maxwell point, and �d� close to the right-
side saddle node. Notice that by changing �� ,��, one can
tune the range of the coexistence region.

Including the nonlinear spatial forcing ��0 modifies the
previous scenario in the following way. The zero uniform
state remains a solution. However, the nonzero uniform state
becomes a spatial periodic state, with wave number q and
amplitude proportional to � and oscillating around the non-

zero state of the unforced system. Hence, the system now
exhibits coexistence between a stable homogeneous state and
a stable pattern state. In the same way as for the unforced
model, the bifurcation diagram as a function of � presents a
coexistence region, now between an homogenous state and a
pattern, whereas the two unstable branches correspond to
two unstable patterns with different amplitudes. Thus, by
changing the bifurcation parameter � the stable pattern dis-
appears by a saddle-node bifurcation either with the large
amplitude ��+� or with the small amplitude pattern ��−�.

The simulation software DimX developed at INLN has
been used for numerical simulations. Figure 2 illustrates the
numerically calculated phase diagram of the above model in
the �� ,�� plane. The area I plus area II is the zone of bista-
bility between the pattern and the homogeneous state. The
dashed, dotted curves represent the saddle-node bifurcation
of the stable pattern with the unstable pattern with large,
respectively, small amplitude. The region II is the pinning
range, where a front connecting the uniform state with the
pattern is motionless �22�. Around this region, one expects
that the system exhibits a family of localized patterns, which
are the multibump solutions resulting from the heteroclinic
tangle of repulsive and attractive manifolds of the homoge-
neous and the pattern state �11–13�. This heteroclinic tangle
generates an infinite number of homoclinic curves, each ho-
mocline representing one of the multibump solutions. The
corresponding bifurcation diagram has a complex structure
and is termed homoclinic snaking bifurcation �11�.

For small �, inside the pinning range, numerical calcula-
tions of the homoclinic snaking bifurcations give a typical
diagram, as the one shown in Fig. 3�a� for �=0.1. However,
when � is increased beyond a critical value �* in the �� ,��
plane, the saddle-node line of patterns collapses with the
pinning range and, as a consequence of the pattern disappear-
ance, the homoclinic tangle changes drastically. Numerical
calculations lead to a slanted homoclinic snaking bifurcation
diagram, as the one reported in Fig. 3�b� for �=0.4. Hence,
when ���*, the homoclinic snaking becomes slanted, that
is, the model �1� exhibits a finite set of multibump solutions
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FIG. 1. Bifurcation diagram of the unforced model �1�, �=0.
The insets represent the potential as a function of �A� in different
regions of the bifurcation diagram: �a� close to the left-side saddle
node �−, �b� just before the Maxwell point �m, �c� after the Maxwell
point, �d� close to the right-side saddle node �+. The solid and
dashed curves represent the stable and the unstable states,
respectively.
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FIG. 2. �Color online� Phase diagram of the model �1� calcu-
lated for �=7.0, �=4.9, and q=12. The whole bistability region
extends over areas I and II while the pinning range is region II. The
dashed, dotted �red� curves represent the saddle-node bifurcation of
the stable pattern with the large, respectively, small amplitude un-
stable pattern. The smallest localized structure, that is, the single-
bump solution, is observed inside the solid �green� open curve and,
after the saddle node, continues to exist in the SB region.
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outside the coexistence region. Eventually, when � is in-
creased only the single-bump localized structure persists in a
large region of the parameter space. Numerically, we observe
that the attraction basin of two-bump, three-bump, and so
forth solutions becomes, respectively, smaller and smaller.
Indeed, when the homoclinic snaking is tilted, it also shrinks
for solutions with a large number of bumps whereas it
stretches for solutions with a small number of bumps �see
Fig. 3�b��. Outside the bistability region and for large �, the
model �1� exhibits single-bump localized states, that is, only
the smallest size localized pattern is observed. This region of
parameter is denoted as the zone single bump �SB� in Fig. 2.
Numerically, we verify that when we perturb the uniform
state in this region, a set of uncorrelated single spots appear
instead of a correlated pattern.

Slanted snaking bifurcations also occur for localized
peaks appearing over a patterned background. Experimen-
tally, localized peaks are observed in liquid crystal optical
systems �10,18� and in vertically driven fluids �2�. Numeri-
cally, localized peaks have been predicted in monoatomic
layer deposition �23� and in optical cavity containing a Kerr
and a photonic crystal �24�. As for the localized structures
over a homogeneous state, the robust observation is that lo-
calized peaks are single bump. In an analogous way as for
localized structures, we can explain this robust phenomenon
as a consequence of the saddle-node bifurcation of one pat-
tern state. We thus consider a model that exhibits two ingre-

dients: coexistence between two spatially periodic states and
a tunable saddle-node bifurcation. This is a variant of Eq.
�1�, where the sign of the highest nonlinear term is inverted,
i.e.,

�tA = �A + ��A�2A − ��A�4A − �A�6A + �xxA + �A2eiqx. �3�

For negative �, �, and ��0, the bifurcation diagram of the
above model is characterized by a primary supercritical spa-
tial bifurcation followed by a secondary subcritical spatial
bifurcation. Thus, for some values of parameters, the system
exhibits coexistence between two pattern states whose am-
plitudes are proportional to �. Figure 4 depicts the phase
diagram in the �� ,�� plane, where the same notation as in
Fig. 2 has been used.

Similar to the model �1�, for small intensity of the forcing
�, the stationary dynamical system of model �3� exhibits a
heteroclinic tangle. Thus, the system presents a family of
multibump localized solutions appearing over a patterned
background. Numerically, we obtain the bifurcation diagram
of these solutions, which is the typical snaking bifurcation
located inside the pinning range �region II of Fig. 4�. How-
ever, when the forcing is increased—after the saddle node of
the pattern—the homoclinic snaking starts to incline and be-
comes similar to that shown in Fig. 3�b�. This leads to single-
bump localized peaks existing in a large area of parameters
outside the bistability region �region SB of Fig. 4�, in quali-
tative agreement with the experimental observations �18�.

In conclusion, we have shown a local theory of the
slanted homoclinic snaking, which results from a saddle-
node bifurcation of the pattern state. As a consequence, we
have shown that localized states can exist without bistability
and that single-bump localized structures are, in general, the
most robust solutions. These results agree with the numerous
observations of localized structures in such different fields as
granular media, magnetic materials, optics, fluids, chemistry,
vegetation, where a nonlocal theory is not always justified,
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FIG. 3. Homoclinic snaking bifurcation of model �1� calculated

for �a� �=0.1 and �b� �=0.4. The horizontal axis is the bifurcation
parameter � and the vertical axis is the norm �N�, where N
=
� Re�A�2+Im�A�2dx. The solid, dashed curves stand, respec-
tively, for the stable, unstable state. The single-bump, double-bump,
and so forth, solutions are depicted by the solid lines 1-b, 2-b, etc.
Points are the results of the numerical calculations.
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FIG. 4. �Color online� Phase diagram of the model �3� calcu-
lated for �=2.43, �=2.87, and q=12. The whole bistability region
extends over areas I and II while the pinning range is region II. The
dashed, dotted �red� curves represent the saddle-node bifurcation of
the stable pattern with the large, respectively, small amplitude un-
stable pattern. The smallest localized peak, that is, the single-bump
solution, is observed inside the solid �green� open curve and, after
the saddle node, continues to exist in the SB region.
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thus providing an alternative, and general, resolution of the
discrepancy between models and experiments. Moreover,
similar homoclinic snaking bifurcation scenarios are ex-
pected to occur with other types of bifurcations of the pattern
state. Work in this direction is in progress.
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