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From the periodicity of regional climate change to sustained oscillations in living cells, the transition
between stationary and oscillatory behavior is often through a Hopf bifurcation. When a parameter slowly
passes or ramps through a Hopf bifurcation there is a delayed transition to sustained oscillations and an
associated memory effect where onset is dependent on the initial state of the system. Most theoretical studies
of the delay and memory effect assume constant ramp speeds, overlooking the problem of slow parameter
acceleration or deacceleration through the Hopf bifurcation. Using both numerical and analytic methods, we
show that slow nonlinear ramps can significantly increase or decrease the onset threshold, changing profoundly
our understanding of the associated memory effect. We found that slow parameter acceleration increases the
threshold, whereas slow deacceleration decreases the threshold. The theory is applied to the formation of
pacemakers in the unstirred Belousov-Zhabotinsky reaction and the onset of elliptic bursting in the context of
nerve membrane excitability. We show that our results generalize to all systems where slow passage through a
Hopf bifurcation is the underlying mechanism for onset.
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I. INTRODUCTION

In many biological, chemical, and physical systems mod-
eled mathematically as bifurcation problems, the bifurcation
parameter may vary naturally and slowly in time or the pa-
rameter may be slowly varied by the experimenter. These are
called slow passage or dynamic bifurcation problems. Of
particular interest is when the dynamic parameter passes
slowly through a Hopf bifurcation before transitioning to
large sustained oscillations. The interesting phenomena is
that this transition may not occur until the parameter is con-
siderably beyond the value predicted from a static bifurca-
tion analysis (delay effect), and that the delay in onset is
dependent on the initial state of the system (memory effect).
Numerous studies have focused on linear or constant speed
ramps [1-5] and the influence of stochastic fluctuations on
the onset of oscillations [3,4,6—8].

Inherent to biological, chemical, and physical systems,
but often overlooked or misunderstood in the literature are
nonlinear ramp problems where a parameter or variable
slowly accelerates or deaccelerates through bifurcation
points. An example from physics is the dynamics of laser
oscillations in response to the slow nonlinear increase in
small amplitude noise [9]. Nonlinear ramps involving a Hopf
transition from steady to oscillatory behavior occur in fast-
spiking cortical neurons [10], “spontaneous” formation of
“pacemaker” centers in chemical reactions [11,12], and burst
dynamics [13,14]. To date, most reported examples associ-
ated with experiment involve slowly increasing saturating
exponential parameters or variables; that is, slowly increas-
ing but deaccelerating ramps.
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In this paper we investigate numerically and analytically
the slow passage of nonlinear monotonic ramps through a
Hopf bifurcation, and apply the results to accommodation in
nerves, target nucleation in chemical reactions, and neuronal
elliptic bursting. The plan of the paper is as follows. In Sec.
I we illustrate nonlinear ramping on the well known
FitzHugh-Nagumo equation and compare the dynamics to
linear ramps. In Sec. III the onset integral condition for gen-
eral slow monotonic ramps is studied. The integral condition
is derived in the Appendix using WKB analysis. In Secs. IV
and V we apply the onset condition to explain in detail onset
of target nucleation in chemical reactions, and to quantify
analytically silent phase duration in neuronal elliptic burst
dynamics.

II. POWER RAMPS: DELAY AND MEMORY EFFECTS

Figure 1 illustrates the delay effect for the FitzHugh-
Nagumo (FHN) model of nerve membrane excitability

%:_U(U_a)(v—l)—w+l(et), (1)
Lji—v::b(v—'}’w)' (2)

Here, I(et)=1y+(et)’ (P>0, e<1), is a slowly increasing
applied current. The membrane potential v is the main ob-
servable, w models a slow recovery current, a, b, vy are ki-
netic parameters. When [ is treated as a static bifurcation
parameter (e=0), the bifurcation structure displayed in Figs.
1(a)-1(c) is computed numerically [15]. The static or refer-
ence Hopf bifurcation point is denoted by /. The current /;

J
denotes the jump to the oscillatory state, defined here nu-
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FIG. 1. Delayed onset of oscillations for linear, accelerated, and
deaccelerated power ramps. The membrane potential trajectory for
the FitzHugh-Nagumo model (¢=0.2, b=0.05, y=0.4) is plotted as
a function of the stimulus current I(ef)=Iy+(et)’, for P=1,2,1/2.
Superimposed for reference is the bifurcation structure for steady-
state (S) and periodic (p) solutions when I is treated as a static
bifurcation parameter in the governing equations. Slowly varying
trajectories (SV) initiate from 7,=0.05 and pass through the refer-
ence Hopf point /5= 0.273 before jumping to periodic solutions at
I;. (A) For a slow linear (constant speed) ramp (P=1, e=5X 107%)
onset occurs when /;—Iy~1Iy~I, as found in previous studies. (B)
For a slow accelerating ramp (P=2, e=5X 107%) the delay to onset
is significantly increased: I;—Iy~2(Iy~1Ip). (C) A slow deacceler-
ating ramp (P=1/2, €=0.5 X 107) significantly decreases the delay
to onset: IJ-—IHZ%(IH—IO).

merically as simply the value of current corresponding to
when the potential exceeds v=0.4. Superimposed are the tra-
jectories for constant speed (P=1), accelerating (P=2) and
deaccelerating (P=1/2) ramps. In all three cases there is a
delay to onset; the trajectories initiating from I, pass slowly
through 7, and jump to the oscillatory state at /;. Figure 1(a)
illustrates the well known case of the linear ramp. The onset
of oscillations occurs when I is approximately midway be-
tween I, and /;. This is in stark contrast to the slow acceler-
ating ramp in Fig. 1(b) where the delay to onset is doubled,
or the slow deaccelerating ramp it Fig. 1(c) where the delay
is halved.

The memory effect is illustrated in Fig. 2 for the FHN
system. The relation I;—1y versus Iy—1, is plotted for hun-
dreds of different initial currents /,. Also plotted are lines
[~1y=P(Iy~1Iy), for P=3, 1, and 2. For Iy~I,>0.1, the
lines provide good approximations to the numerical solu-
tions. In fact, a simple but remarkable application of the
Wentzel-Kramers-Brillouin (WKB) approximation (see the
Appendix and next section) reveals that ramps of the form
I(et)=1y+(et)®, for any P> 0, have the onset condition

IJ—IH:P(IH—I()), P>O, (3)

as €— 0, if the real part of eigenvalues \(7), for Egs. (1) and
(2) linearized (for static I), is approximately linear over the
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FIG. 2. The memory effect for linear (P=1), accelerated (P
=2), and deaccelerated (P=1/2) power ramps I(et)=I,+(et)’. On-
set 1;, computed numerically for many values of /, is defined as the
current at time #; when the v vs ¢ trajectory first crosses the pre-
scribed “threshold” v=0.4. Superimposed (dashed) are the pre-
dicted values of I; using the WKB approximation I;,—Iy=P(Iy
—1y). Same parameters as in Fig. 1.

range of the ramp. For I;—1,<0.1 the numerics for all three
cases deviate from the WKB prediction. This is due in part to
the bifurcation being supercritical when [ is near I; several
small oscillations are required to bring the potential to the
prescribed “threshold” [4]. Even for more precise definitions
of the numerical threshold, there will always be a small satu-
ration effect for I;—1,<<0.1 since the trajectory is too close
to the Hopf point for it to relax to the stable steady state.
Finally, it is important to point out that small amplitude noise
or periodic environmental fluctuations of near resonant fre-
quencies may decrease the delay or destroy the memory ef-
fect [4,6].

III. ONSET CONDITIONS FOR NONLINEAR MONOTONIC
RAMPS

A more general class of functions can also give rise to
delays and memory effects. Consider the slow ramp I(er)
=1y+g(et), where g(0)=0 and g(er) is a monotonic increas-
ing function. The onset condition (see the Appendix) for os-
cillations is

1
f [g_l(l_ I())]’{Re A([)}maxdlz O? (4)
Iy

where [g~!(I-1,)]’ is the derivative of g inverse. The expres-
sion {Re N(I)},.x denotes the maximum real part of eigen-
value N computed from the linearization of the differential
equation system for constant I. At the Hopf point

{Re N(I)} =0, but Im[A(1)]# 0 and 22 ) pegrabi-
lization of the slowly varying solution does not occur at I,
but only after the integrated effect of [g~'(I-1,)]’

{Re N(I)},jax >0 overcomes the accumulated influence of
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[¢'I-1))]" {ReN(D},,x<O0. Moreover, as in previous
WKB analyses [4], Eq. (4) is independent of €, so the delay
persists no matter how slow the ramp is rising. For a linear
ramp (I=Iy+et), the inverse function [g~'(I-1,)]'=1 and
condition (4) reduces to [ 2) {Re N(I)}ax dI=0, the condition
found in previous studies including steady bifurcation prob-
lems [16,17].

It is useful to point out that for monotonic ramps, onset
condition (4) reduces to

f T Re NI}l = O, 5)
0

which should not be confused with Eq. (3.13a) in Ref. [4].
The two integrals look the same, but in Ref. [4] the integral
is in terms of the scaled variable 7, whereas Eq. (5) is in
terms of physical time 7. To derive Eq. (5) substitute into Eq.
(4) the change of variables I—1,=T7, where 7=g(u) for u=et,
and use the fact that [g7'(7)]'=1/g’(u). Note that the deri-
vation of Eq. (5) from Eq. (4) involves g’(u) appearing in the
denominator, which would be problematic for nonmonotonic
ramps.

For many systems, {Re N(I)},,.x=N'" (I-Iy), where \'

d{Re N1)} ax ..
=" |1, over the range of the ramp. This is the case
for the FHN equation and the FitzHugh-Rinzel (FHR)
burster discussed later. Substituting this approximation into
condition (4) and then integrating by parts, the onset condi-
tion becomes

1

(- 1g (U= 1y)= | g1, (6)
Iy

The simplest application of condition (6) is for power
ramps I=I,+(et)’, P>0. Here g(et)=(et)” and therefore
g '(I-Io)=(I-1p)""". Substituting g~'(I-1Iy) and g~'(I;~1p)
into Eq. (6), integrating and simplifying leads to Eq. (3),
namely, Ij—IH:P(IH—IO), for P>0. Note that relative to a
linear ramp (P=1) an accelerating ramp (P> 1) increases I
threshold whereas a deaccelerating ramp (P <1) decreases
the onset threshold.

IV. TARGET NUCLEATION

In many applications the bifurcation parameter varies
naturally with time and the ramp dynamics are generated by
a slow subsystem that either explicitly drives the fast sub-
system or is bidirectionally coupled to the fast subsystem.
One example of an explicitly driven system is the “sponta-
neous” formation of “pacemaker” centers in the unstirred,
ferroin  [Fe(phen)3*/Fe(phen)i*]-catalyzed ~ Belousov-
Zhabotinsky (BZ) reaction [18]. In an extension of the Or-
egonator model, Sobel er al. [11] derived a reduced model
for capturing qualitative BZ kinetics in the auto-oscillatory
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FIG. 3. The dynamical structure of the stoichiometric factor f, in
the Oregonator model, determines the induction period to chemical
oscillations. (A) Parameters (see below) are identical to Fig. 1
(c=0 case) in Ref. [11]. Left: Superimposed is the evolution of
stoichiometric factor f (right axis) and ferriin (z). with no added
initial conditions: x=0, y=0.001, z=0, and f=0. Center: The oxi-
dized induction period (high ferriin) begins when f=f, (=0.167).
As ferriin decreases, f slowly increases through the static Hopf
point f5; (=0.515). At f=f; the ferriin “crashes.” Right: The value
fj=0.6896 is determined analytically from onset condition (4), as
the point where the grey area above zero (dashed line) is equal to
the grey area below zero. (B) The shape of f is changed while
preserving the initial value f; of the oxidized induction period. Re-
ducing the saturation level of f prolongs the induction period (left)
but decreases f; (center) as predicted from the onset condition
(right). With no added Br~ release, the static Hopf point f5 is inde-
pendent of the form of f. Parameter values: k.=1, [H"]=0.316 M,
[MA]y=0.10 M, [BrO;]=0.25M, k,=3X10°M72s7!, ks
=2 M35, ky=1500 M~!s7!, and k5=42 M~2s~!. Above in (A),
kr=0.002 s, fo=1;in (B), ky=0.00333 57!, £»=0.6.

regime. For the case of no added Br~ release, the equations
are

d
;’; = ks[BrOF[H PPy — ko[ H* Txy + ks[BrO3 [H*x — 2k,

(7

D o K BOTH Py~ KfH Do+ (2K Mg, (8)

% — 2k BrO3 | H'Tx - k[MAlz, ©)
af o
0 klf.. — ). (10)

Here, x,y,z denote the concentrations of HBrO,, Br~, and
ferriin, respectively; and f is a slowly varying stoichiometric
factor. Detailed definitions of all parameters in Egs. (7)—(10)
are given in Ref. [11]. When f is treated as a static bifurca-
tion parameter there exists, at a critical value of f, a Hopf
bifurcation from a blue oxidized steady state to an oscillatory
(blue/red) state. When f is dynamic and governed by Eq.
(10), the onset of oscillations is delayed, providing a demon-
stration of target nucleation in the supercritical regime
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[11,12]. The solution to Eq. (10) is the slowly rising saturat-
ing exponential function

fO)=fo(1 =€), t=0. (11)

Figure 3 (left and center) shows the dynamics of ferriin
(variable z) as f increases from its initial value of f=0 to f
=f, for the case of no added Br™ release (¢=0 in [11]). In
both Figs. 3(a) and 3(b) the oxidized induction period (high
ferriin) initiates at fy=53 s (f,=~0.167). The computations
in Fig. 3(a) (left and center) correspond to Fig. 1 (¢=0) in
Ref. [11]. We numerically integrate Egs. (7)—(10) using a
fourth-order Runge-Kutta method (Ar=5X10"%) in qua-
druple precision to reduce the effect of roundoff error [3,4].
This accounts for why the computed delay to onset in Fig.
3(a) (center) is longer (by about 40 s) than the delay reported
in Ref. [11]. In Fig. 3(b) we further deaccelerate f while
keeping f, the initial value of the induction period, fixed.
This is accomplished by slightly increasing k; but reducing
the saturation level f., by 40%. Increasing the deacceleration
of the ramp decreases the onset threshold f; [Fig. 3(b) center]
by the amount shown in the crosshatched area. Note that the
linearization of Eqgs. (7)—(9) is independent of changes in k,
and f., and therefore the value of f at the Hopf point, fy
~(.515, remains unchanged.

The more general condition (4) is required to obtain an
analytic prediction of f}, corresponding to the onset of oscil-
lations. To apply this condition we must first rewrite Eq.
(11), so that =t corresponds to f=f,:

@O =fo+ (o= f)(1 =0, 1=0. (12)
Next, we introduce the change of variables r=s+1, and f(s)
=f(s+1,) to obtain the induction period ramp

F=forew), u=ks, (13)
where g(u) =(f..—f)(1—¢™). Note that g(0)=0, and g(u) is a
monotonic  increasing function with inverse g !(u)
=In( fff;ﬁu) Finally, we substitute the derivative of g~'(u),
evaluated at u=f—f,, into onset condition (4) to obtain
fi {Re N
[N "
fo Joof

Here {Re N(f)}max 18 the maximum of the real part of the
eigenvalues from the linearization of Egs. (7)—(9) for static
values of f.

To determine f;, the integrand of Eq. (14) is plotted versus
f in the right panels of Fig. 3. The eigenvalues {Re N(f)}nax
were computed using the computer program AUTO [19]. In
Fig. 3 (right) the cusps at f=0.4, and in Fig. 3(a) the cusp at
f=0.6, are where the maximum eigenvalues switch between
complex and real values. The “crash” value f; is simply the
value of f where the accumulated area in grey above zero
(dashed line) is equal to the grey area below zero. Thus,
condition (14) predicts f;~0.6583 in Fig. 3(a) (right) and
f;7~=0.5865 in Fig. 3(b) (right), both within 2% relative error
of the numerically computed results (center).
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FIG. 4. Slow deaccelerating ramps influence the duration of the
silent phase in deterministic elliptic bursting. (A) Left: In the
FitzZHugh-Rinzel model of elliptic bursting [Egs. (15)—(17)], as pa-
rameter d increases, the duration of the silent phase increases. Cen-
ter: During the silent phase Z slowly increases. The trajectory is
linear for d=0, but nonlinear (slowly deaccelerating) for d=4 and
d=8. In all three cases the trajectory ramps above the reference
Hopf point Z, (dashed line). Right: As d increases, the value Z;
marking the end of the silent phase decreases by the amount indi-
cated by the crosshatched region. Parameter values for the FHR
system are ¢=-0.775, 1=0.3125, ¢$=0.08, a=0.7, b=0.8, €=0.1
X 107, and the reference Hopf value is Z;~0.33128. During the
silent phase the approximate membrane potential is v=-0.97 and
initially Z,=~0.3239. (B) Analytic versus numerical estimates of
silent phase duration. Silent phase durations 7, for d=0,4,8,9.8,
are computed numerically from the FitzHugh-Rinzel equations
(black dots). Superimposed (solid curve) is the WKB approximation
of T versus d. The silent phase grows without bound as d ap-
proaches d,,, =~ 10.3828.

Comparisons of Figs. 3(a) and 3(b) illustrate that slowing
down the ramp, by increased deacceleration, postpones the
onset of oscillations from 7;~515 s [Fig. 3(a), left] to ¢
~ 1074 seconds [Fig. 3(b), left]. However, the onset value f;
decreases by the amount indicated by the crosshatched re-
gion in Fig. 3(b) (center and right). Hence, increased deac-
celeration reduces the threshold for onset, which is consistent
with the results found for deaccelerating (P<<1) power
ramps. Hence, the dynamic structure of the ramp strongly
influences the onset of oscillations.

V. ELLIPTIC BURSTING

An example where the slow system is bi-directionally
coupled to the fast subsystem is elliptic bursting [20]. Figure
4(a) shows that the underlying dynamics of elliptic bursting
is the slow passage of a variable through a Hopf bifurcation.
Overlooked in the literature is that the dynamics of the slow
variable (here a saturating exponential) contributes to the du-
ration of the burst’s silent phase. To illustrate this, consider
the FitzHugh-Rinzel (FHR) model for elliptic bursting, with
Z substituted for y+1 in Rinzel [13]:
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dv _ U—% +Z (15)
a3 T

d

d—v::¢(v+a—bw), (16)
dz

E:e(—v+c+1d—dZ). (17)

Here, the fast subsystem is composed of Egs. (15) and (16)
and the slow subsystem is simply Eq. (17) for Z. The slow
equation is driven by the membrane potential v and the re-
covery variable w while the slow variable Z drives the fast
subsystem through Eq. (15). Figure 4(a) (left) shows burst
trajectories for three different values of parameter d. The
burst consists of two phases, an active phase characterized by
large amplitude spiking and a silent phase characterized by a
slowly varying steady state. After exiting the active phase,
the trajectory moves slowly to the right as it spirals into the
stable steady state. After passing through the static Hopf
point the trajectory begins to slowly unwind about the un-
stable steady state until it destabilizes into large amplitude
spikes. The slow ramp of Z is shown in the center panels.
During the silent phase Z is monotonically increasing; linear
for d=0, but a saturating exponential for d=4 and 8. As d
increases, the onset of a new active phase, denoted by Z,,
decreases by the amounts shown in the crosshatched areas of
Fig. 4(a) (right). As in the case of target nucleation, the re-
duction in threshold is due to the deaccelerating dynamics of
the ramp (compare, for example, Fig. 3).

To predict analytically the duration T of the burst’s silent
phase as a function of d, we make the following observa-
tions. First, the real part of the eigenvalues for the fast sub-
system (15) and (16) are approximately linear over the range
of the silent phase, and therefore the Re N may be approxi-

mated by Re A=\’ (Z—Z;), where \’ is the slope of the Re
N, and Zy is the Hopf bifurcation point computed from the
fast subsystem for Z static. Second, during the silent phase,
the potential is approximately constant [see Fig. 4(a) left]
and its value v is independent of d. Third, each silent phase
begins at approximately the same value of Z [see Fig. 4(a)
center] and this value is also independent of d. Thus, if we
denote =0 as the beginning of a silent phase, then the slow
equation (17) reduces to the following initial value problem:

dzZ
Z:e(—5+c+ld—dZ), Z(0) = Z,. (18)
The solution to Eq. (18) is
Z=Zy+(Z.=Zy)(1 - <), (19)
where
Zo=1+—" (20)

is the steady-state value of Z. Increasing d decreases Z.,,
which has the effect of further deaccelerating Z. As Z.., ap-
proaches Zy, the duration of the silent phase becomes infi-
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nite. Substituting Z for Z,, in Eq. (20) and solving for d
provides an estimate of d,; that is, dp,c=(c—0)/(Zy—1) is
the critical value for which the duration of the silent phase
becomes infinite. At d=0, the slow equation (17) is dZ/dt
=e(-0+c) and the ramp is linear as displayed in Fig. 4(a)
center (for d=0). For 0 <d<d,,,,, the silent phase ramp is a

saturating exponential of the form
Z=7y+gu), u=(edt, (21)

where now g(u)=(Z,—-Z,)(1-e™). Again, g is monotonic
with g(0)=0. The inverse of g evaluated at Z—Z is

g (Z-2)= 1n<ZZ°° __ZZO> (22)

To compute the duration of the silent phase, first substi-
tute Eq. (22) into Eq. (6) and replace Iy, I;, and Iy by Z, Z,,
and Zy. The onset condition reduces, after some algebra, to
the equation

Zj=Zy=Zo = Zy) = (Zoo = Zo)e (420 &2 (23)

Next, we solve Eq. (23) numerically for Z; and the duration
of the silent phase is calculated by substituting Z; into the

expression
1 Zow—Z,
= — ln( 0), (24)
Z.-2

found by backsolving explicitly for ¢ in Eq. (19). Figure 4(b)
(solid curve) plots the duration of the silent phase 7T versus d
over 0<d<d,,, for the parameter values given in Fig. 4.
The superimposed (black dots) are the duration times ob-
tained by numerically solving Egs. (15)—(17), for d=0, 4,
and 8. Both analytic and numerical estimates of the silent
phase duration are in excellent agreement.

VI. CONCLUSIONS

We have shown that dynamic Hopf bifurcations are
strongly influenced by the dynamic structure of slow nonlin-
ear ramps. We have quantified how the eigenvalue structure
of the associated static problem and the dynamics of the
ramp jointly determine the onset of instability. We illustrated
and analyzed the importance of the dynamical structure of
the ramp by considering two well known examples, target
nucleation in chemical reactions and neuronal elliptic burst-
ing.

Generalizing the slow passage problem to include slow
nonlinear ramps opens up the possibility for a myriad of new
and potentially important research directions. One avenue is
to extend the analysis and methodology to other kinds of
slow passage problems, such as stochastic investigations
[6-8], steady bifurcation problems [9,16,17], and dynamic
Hopf problems where the ramp is from oscillatory to con-
stant steady states [21]. Another direction for future research
is the effect of more complex ramping functions, such as
nonmonotonic ramps. We expect that this can be addressed
by extending the methods in this report to piecewise mono-
tonic ramps.

This study embraces and quantifies a very important con-
cept: that a dynamical system forced by an extremely slow
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process will undergo sudden destabilization as a result of
slow accumulated change due jointly to the dynamic mor-
phology of the forcing and the natural response of the system
to perturbations quantified by the eigenvalues of the linear-
ized system.
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APPENDIX: DERIVATION OF ONSET CONDITION 4)

Here we derive onset condition (4) for a general nth order
nonlinear system of differential equations

dx _

U f[x,I(et)],

(A1)
where vector x(7) represents n dependent variables and the
vector f denotes the n functions for the system. The variable
I is the control or bifurcation parameter, which is slowly
varying in time, and of the form I(et)=1I,+g(et) for small
quantity e. Additionally, we assume g(0)=0 and that g is a
monotonic function.

For the static (constant /) case, when e=0, we assume that

Eq. (A1) admits a basic steady-state solution x, given by
f(x,,1) =0. (A2)

The static Hopf bifurcation point is found by linearizing Eq.
(A1) about the steady-state x, solution, yielding

X _yx (A3)
e "
where J is the n X n Jacobian matrix
ﬁfl/(?xl ﬁf1/§x2 (9f1/r9x,,
df2loxy  df,/ox df/ ox,,
_ fzz 1 fzz 2 f2: (Ad)
I/ Ox If Oxy af,/ ox,

evaluated at x=X,. The linearized problem has solution form
X=Ze, where Z is a constant vector. Inserting X into Eq.
(A3) yields the eigenvalue equation

det(J - \I) =0, (A5)

where I is the identity matrix, and exponent A corresponds to
the eigenvalues of matrix J evaluated at x=x;. We assume
that a single pair of eigenvalues cross the imaginary axis to
change the stability of the steady state, and that at criticality
these eigenvalues satisfy Im \ # 0 and the transversality con-
dition dlj;)‘ #0 when Re A=0. This assumption guarantees
that the value /=1y, for which this crossing occurs, corre-

sponds to a Hopf bifurcation to periodic solutions. Moreover,
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we assume (as is the case in all our numerical simulations)
that Im \(Z) is not equal to O over the entire steady I of
interest. The latter condition implies that we don’t need to
worry about turning point effects in the WKB analysis.

In applications of interest, when I is dynamic and slowly
changing, the solution to Eq. (A1) often follows a trajectory
that closely tracks the static steady-state solution. This
slowly varying “steady-state” solution (for the nonsingular
cases) can be constructed using a regular perturbation expan-
sion of the form

X, (7) ~ Xo(7) + €x,(7) + -+ as €e— 0, (A6)

where 7=g(u), for u=et. Substituting Eq. (A6) into (Al), to
leading order x(7)=x,[I(7)], and therefore x,,(7)=x,[{(7)]
+0(e). To determine when the slowly varying solution be-
comes unstable, we linearize Eq. (A1) about x,,, which re-
sults in a linearized system of the same form as Eq. (A3).
The Jacobian matrix is identical and evaluated at x;, how-
ever, X,=x,[I(7)] is now slowly varying. We substitute the
Wentzel-Kramers-Brillouin (WKB) expansion

X(r;€) ~ e”VIXy (D + Xy (D) + - ]as e— 0 (A7)

into the slowly varying linear system and obtain, to leading

order, the algebraic problem
[J-o'(ng'IX,=0, X,#0, (AB)

where J is evaluated at x=xJ[I(7)]. System (A8) has non-

trivial solutions if
det[J - o' (1)g' (u)I]=0. (A9)

Since the eigenvalue equation (A5) is identical in form to Eq.
(A9),

N=0'(1g'(u) (A10)
e
RCIR A1y

where g~'(7) is defined as g inverse [u=g"'(7].
To estimate / > WE seek the time 7 when Re 0=0 in the
WKB expansion (A7). Solving for Re o in Eq. (All) gives

the onset condition

frj [¢™' (D] {Re NI(D)}maxd7=0, (A12)
0

where {Re N(/)},.x denotes the maximum real part of all ei-
genvalues \. With the simple change of variables I=1,+ 7 in
Eq. (A12), we arrive at onset condition (4), namely

Ij
j. [g_l(I_IO)],{Re )\(I)}maxdlz 09
0

where I;=1(7;) corresponds to the onset of large sustained
oscillations.
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