
Exotic orbits of two interacting wave sources

S. Protière, S. Bohn, and Y. Couder
Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS and Université Paris 7-Denis Diderot, Bâtiment Condorcet, Case 7056,

75205 Paris Cedex 13, France
�Received 8 April 2008; revised manuscript received 24 July 2008; published 5 September 2008�

As shown recently, it is possible to create, on a vibrating fluid interface, mobile emitters of Faraday waves
�Y. Couder, S. Protière, E. Fort, and A. Boudaoud, Nature 437, 208 �2005��. They are formed of droplets
bouncing at a subharmonic frequency which couple to the surface waves they emit. The droplet and its wave
form a spontaneously propagative structure called a “walker.” In the present paper we investigate the large
variety of orbital motions exhibited by two interacting walkers having different sizes and velocities. The
various resulting orbits which can be circular, oscillating, epicycloidal, or “paired walkers” are defined and
characterized. They are shown to result from the wave-mediated interaction of walkers. Their relation to the
orbits of other localized dissipative structures is discussed.
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I. INTRODUCTION

The results we present concern the self-organization of
two mobile pointlike emitters having nonlocal interaction
through the waves they generate. Before presenting our new
results in this domain, we must first recall the origin and
main properties of the propagative structure formed by a
bouncing droplet and the surface wave it emits.

The existence of such structures relies on the fact that a
droplet can be kept bouncing on the surface of a bath of the
same fluid if this substrate oscillates vertically. The condi-
tions for which this sustained bouncing is possible were dis-
cussed previously �1,2�. During each collision the droplet
remains separated from the substrate by an air film. This film
does not have time to break before the drop lifts off again.
The same process repeats itself so that the drop can be kept
bouncing for an unlimited amount of time. At low oscillation
amplitude, the droplet bounces at the forcing frequency but
for a larger forcing, the vertical motion of the droplet be-
comes subharmonic. When it has reached this regime, the
droplet is observed to start moving horizontally on the fluid
interface with a constant velocity �3,4�. This phenomenon
occurs when the system is forced with an amplitude below
but close to the threshold of the Faraday instability. In the
absence of disturbance the interface is flat. The droplet, be-
cause of its period-doubled bouncing, becomes a local emit-
ter of Faraday waves which are very weakly damped. The
horizontal motion of the droplet is due to a breaking of sym-
metry. After each jump, the drop falls on the side of the wave
it generated at the previous collision. The translation motion
of the droplet is thus directly linked to the successive impul-
sions it receives from bouncing on the wave it has generated.
Its velocity vw is a fraction of the phase velocity vF of the
Faraday waves. We called a “walker” the propagative struc-
ture formed by the droplet and its associated wave.

In previous papers the very specific properties of this new
type of wave-particle association were explored �5�. In these
experiments where the trajectories of the droplets were in-
vestigated, it was demonstrated that these trajectories are de-
termined by the propagation of the waves they emit. Being
sensitive to the reflection of its own waves on the bound-

aries, a droplet acquires a kind of nonlocality. Therefore the
phenomena specific to wave propagation react on the drop-
let’s motion. It was shown, for instance, that when a walker
passes through a slit, the diffraction of its wave results in a
probabilistic deflection of the droplet, a phenomenon demon-
strating, at a macroscopic scale, a sort of wave-particle du-
ality �5�.

When several walkers coexist on the surface of a bath of
finite size their motion inevitably brings them close to one
another. Even though the droplets do not come directly in
contact, they veer off their rectilinear course every time they
pass close by. These “collisions” can be of two types. For
some values of the collision parameters the walkers repel
each other, for others they attract each other. In the former
case the two drops have roughly hyperbolic trajectories and
the modulus of their velocities is unchanged after the colli-
sion. In the latter case the attraction usually leads to a capture
where the drops start orbiting around each other. The modu-
lus of the velocity of the droplets is only weakly changed by
their orbiting motion. In the limit where the two walkers
involved in the collision are identical, these trajectories were
studied in detail and the results were reported in a previous
paper �4�. This led to understanding and modeling the nature
of the interaction. When they pass sufficiently near each
other, each of the two droplets bounces on a surface dis-
turbed by the wave emitted by the other. At a given bounce a
drop falls on the slope of the wave radially emitted by the
other. When it falls on the forward front of this wave the
interaction is repulsive, on the backward slope it is attractive.
The steady orbiting regime corresponds to a situation where,
at all bounces, each drop falls at the same position of the
back of the wave emitted by the other. In the present paper
we investigate the various types of orbits �see Fig. 1� binding
two walkers formed by droplets of different size.

II. EXPERIMENTAL SETUP

The experiments are performed on a liquid bath of thick-
ness h0=4 mm placed in a square container �13�13 cm�
submitted to a vertical oscillation with an acceleration �
=�m cos�2�f0t�. The liquid is a silicon oil with viscosity �
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=20�10−3 Pa s, surface tension �=0.0209 N /m, and den-
sity �=0.965 103 kg m−3. The forcing frequency f0=80 Hz
is fixed. With this type of oil, the threshold of the Faraday
instability is observed at this frequency for an amplitude of
the forcing acceleration: �m

F /g=4.2 �normalized to gravity�.
The experiments are performed below this threshold for a
forcing amplitude �m /g=3.8. The drops are created by dip-
ping a pin in the oscillating bath, then removing it swiftly.
The breaking of the liquid bridge between the pin and the
bath can generate drops with diameters 0.1	D	1.5 mm.
The drops which are observed to become walkers have di-
ameters 0.5	D	0.9 mm. We generate two of them on the
interface. The lifetime of the drops being long, the same
drops can be used for long lasting experiments. We usually
wait until the collisions between the drops bind them into an
orbital motion. The droplets have two types of motions with
different time scales. The bouncing at a frequency fF
=40 Hz is observed using a fast camera �with
1000 frames /s�. In the horizontal plane, the drops move at
velocity vw, a fraction of the velocity vF of the Faraday
waves. Typically we have 0	vw
vF /10. In our experimen-
tal conditions this means 0	vw
20 mm /s. Their motion is
recorded with a CCD �charged-coupled� camera. We use a
semitransparent mirror so as to have a nondistorted image of
the surface at normal incidence. A typical image of two or-
biting droplets is given in Fig. 1. The films are processed so
as to extract from their successive images the trajectories of
the drops as well as their velocities.

III. OVERVIEW OF THE VARIOUS SELF-ORGANIZED
ORBITS OF TWO DISSIMILAR WALKERS

As previously demonstrated �4� the velocity of a walker is
an increasing function of the size of the droplet. At the cho-
sen forcing amplitude two drops of diameter D1 and D2 form
independent walkers having velocities v1

w and v2
w. Just as

when they are identical, these walkers can either repel or
attract each other. In the latter case they are observed to form
a variety of different types of orbits.

Four different types of trajectories are observed. These
can be stable circular orbits, oscillating orbits, epicycloidal
orbits, or else a type of trajectory, the “paired walkers”
mode. We have measured systematically the velocities of
various couples of drops and observed their orbits. As can be
seen on the phase diagram shown in Fig. 2, the first three
types of behaviors are observed in well-defined domains of
the parameter space v1 ,v2. The nature of these possible or-
bits depends on the ratio of their velocities v1 and v2. As for
the paired walkers mode, it can be observed for practically
all velocities v1 and v2. We will first describe separately
these four types of orbital motion.

A. Circular orbits

Amongst the observed trajectories, the simplest are the
stable circular orbits. This type of motion is observed in the
central region of the phase diagram of Fig. 2. When the
walkers are similar we have v1

w=v2
w and the two drops are on

the same orbit in a twin-star type of motion. These are the
orbits we investigated previously �4� and we shall only recall
here the main results. After an attractive collision leading to
a capture, two identical walkers form a stable and well-
defined orbiting pair, rotating around its center of mass.
When bound in orbit, the walkers’ velocities are close to
what they had been when they were walking freely. In this
“ideal” orbiting motion, each droplet bounces on a superpo-
sition of its own wave with the wave emitted by the other
droplet. The latter provides a force directed along the diam-
eter of the orbit. This force, being transverse, does not con-

FIG. 1. Photograph of two orbiting walkers of different sizes
and velocities bound in an epicycloidal type of orbital motion. The
white line represents 1 mm. The waves are localized Faraday waves
emitted by the droplets; they have a wavelength �F=4.5 mm. Ve-
locity of the bigger drop: 15 mm /s. Velocity of the smaller drop:
3.2 mm /s. 0
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FIG. 2. �Color online� Phase diagram of the different types of
orbits observed for two walkers as a function of their two individual
velocities v1 and v2. Full circles: circular orbits; diamonds: oscilla-
tory orbits; open circles: epicycles. The simple orbital motions are
observed in the central region bounded by the lines v1=v2 /2 and
v2=v1 /2. The dark gray regions correspond to oscillating orbits.
The light gray regions correspond to epicycloidal modes.
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tribute to the azimuthal velocity. For this reason the drops,
when orbiting, retain approximately the velocity they had as
free walkers.

It was also found that the measured diameters of the orbits
dn

orb can only take a discrete set of values directly linked to
�F, the wavelength of the Faraday instability.

dn
orb = �n − �0

orb��F. �1�

Since the drops have a frequency of bouncing half that of
the forcing, two drops can bounce either in phase or with
opposite phases. In the former case, n can be equal to the
successive integers n=1,2 ,3. . .. In the latter case, the pos-
sible values are 1 /2,3 /2,5 /2. . .. These values are shifted by
an offset �0

orb which is the same for all the possible orbits.
The steady orbiting regime corresponds to a situation where,
at each bounce, each drop falls at the same position of the
back of a wave emitted by the other. The value of the ob-
served offset �0

orb=0.2 shows that the impact is close to the
inflexion point of the sinusoid.

The generalization of this type of motion to drops of dis-
similar sizes is not straightforward for the following reasons.
We now have two drops of velocities v1

w and v2
w. Binding

them in a circular orbit means that they have to have the
same angular velocity 
0. If the two drops retained their free
walkers velocities this would mean that the radii R1 and R2
of their orbital motion of the drops would have to be

R1 = v1
w/
0, �2�

R2 = v2
w/
0. �3�

For the interaction to be attractive and of constant modulus,
the radii of the orbits should also be such that

�R1 + R2�n = �n − �0
orb��F. �4�

In the case of identical drops all three conditions can be
met simultaneously because v1

w=v2
w and R1=R2. However, if

the intrinsic velocities of the two walkers are different, there
is one equation too many so that all the conditions cannot be
met simultaneously. As it turns out the different types of
observed orbits correspond to various ways in which one of
the conditions given by Eqs. �2�–�4� breaks down.

Stable circular orbits are still observed when the free ve-
locity of one of the walkers is half that of the other, v1

w

=v2
w /2. In this case, the center of rotation is between the two

drops �Fig. 3�. The fastest walker has the larger orbit. We
thus obtain the unusual situation where the center of rotation
is closer to the smaller walker.

The condition �Eq. �4�� concerning the sum of the radii
still holds. However, the velocities of two orbiting drops are
now different from the velocities v1

w=v2
w /2 they had as free

walkers. Figure 4 shows these velocities as a function of the
order of the orbit. This is a particularly strong effect �Fig. 4�
when the two drops are at the smaller possible distance �n
=0.5�. The small drop’s velocity is larger than its velocity as
a free walker, whereas the larger drop’s velocity is only
weakly affected by its binding. For all the other orbits the
droplets velocities are always smaller than their velocity
when they were free. This effect decreases when the distance

between the two drops increases so that the radii of the orbits
are then such that R1=R2 /2. The observed shift of the ve-
locities is larger than that which was observed for identical
drops �4�. It thus appears that in simple orbits of dissimilar
droplets the lock-in on a common angular velocity is ob-
tained mostly by a shift of the velocities of the bound walk-
ers.

B. Oscillatory orbits

When the ratio of the velocities of the two drops is
slightly smaller than one half �0.4	v1

w /v2
w	0.5� the drops

still have mean circular trajectories but they also oscillate in
the radial direction �see the phase diagram of Fig. 2�. The
oscillations of the two drops �Fig. 5� have the same fre-
quency but opposite phases. Figure 6 is a plot of the distance
dn

osc separating the two drops as a function of time. On the
oscillating trajectories shown in Fig. 5, the distance between
the two drops can be written as follows:

(1)

(2)

x

x

d

FIG. 3. Superposed images �taken 0.028 s apart� showing the
circular orbital trajectories of two dissimilar walkers having a ve-
locity ratio v1=v2 /2 �v1=3.7 mm /s, v2=7.5 mm /s, and d
=8.2 mm�.
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FIG. 4. �Color online� Velocities of two walkers of different
sizes as a function of the distance at which they orbit. The dashed
lines correspond to their velocities as free walkers: v1

w=6.3 mm /s
and v2

w=13.7 mm /s. The gray lines are guides for the eye.
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dn
osc = �n − �0 + �osc cos �osct��F, �5�

with n=2 and �0=0.2.
This distance varies periodically with a frequency �osc

which is small compared to the forcing frequency and of the
order of 3.5 times the rotation frequency of the walkers. In
all the observed oscillating orbits the time average of dn

osc

always satisfies the “time averaged” Eq. �5� with �0 always
equal to 0.2. This means that the motion corresponds to an
oscillation around one of the discrete stable orbits. The am-
plitude of this oscillation �osc is always �osc	0.1 so that dn

osc

varies between �n−0.1��F and �n−0.3��F. Each drop still
falls on the attractive side of the wave generated by the other.

C. Epicycloidal orbits

When they are very different from each other �v1
w /v2

w

	0.4�, the bound walkers seem, at first glance, to undergo an
irregular orbiting motion with strong drifts. The recordings

�see Fig. 7�, show that the droplets follow well-defined com-
plex trajectories.

These trajectories correspond to coupled hypocycloids or
epicycloids. These curves will be defined and characterized
below in Sec. IV. Their parameters have been measured and
will be given. Despite the fact that most of the observed
orbits are really hypocycloids, we will, in the following, use
the generic term of epicycloid for this type of orbit. As can
be seen on the phase diagram in Fig. 2, they are the only
mode observed when the drops have very different intrinsic
velocities.

D. Paired walkers

In order to be complete we will finally describe another
type of motion observed for all pairs of walkers, provided
that their velocities are not too different. In this mode the two
droplets walk parallel to each other so that they are strolling
together. We called this a “paired walkers” mode. When the
two drops are identical they walk together at the same veloc-
ity in a straight line, but never for long. They usually oscil-
late and whenever they come close to a border the pair is
dissociated. With two drops of different velocities, each drop
retaining its unbound velocity, the pair has a curved trajec-
tory. When the radius of gyration is smaller than the size of
our experimental cell this results in a specific type of orbital
motion. Both drops are now on the same side of the center of
rotation, the fastest drop moving on the larger orbit �Fig. 8�.

In this paired walkers mode, as in the other types of or-
bits, the distance between the two drops is constant and only
takes discrete values: dn

pair. We find that it is still proportional
to the Faraday wavelength �F. In Fig. 9 we find that for a
given pair of drops we have dn

pair= �n−�0
pair��F, with �0

pair

=0.32. These results bring about an intriguing question about
this type of self-organization. The fact that both drops have a
circular motion at a constant velocity means that they are
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FIG. 5. �Color online� The recorded trajectories of two dissimi-
lar walkers bound in an oscillatory orbit �v1=4.9 mm /s, v2

=10.7 mm /s, 
=1.9 rad /s, �osc=8.7 rad /s�.
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FIG. 6. The oscillation �at frequency �osc� of the distance be-
tween the two walkers in the oscillating orbit shown in Fig. 5. Solid
line: experimental results; dashed line: fit by Eq. �15�.
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FIG. 7. �Color online� The recorded trajectory of the two walk-
ers having epicycloidal orbits. These are the two walkers shown in
Fig. 1, which had free velocities v1=3.2 mm /s and v2

=15.1 mm /s, 
=4.3 rad /s, �=−0.8 rad /s.
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both submitted to a centripetal force. We thus have here a
situation where the fastest drop is attracted by the slower
one. But the slower drop has to be repelled by the fastest
one. We will give an interpretation of this effect in Sec. V E.

IV. CHARACTERIZATION OF THE EPICYCLOIDAL
ORBITS

A. Trajectories of the drops and their fit by epicycles

The experimental trajectories of the type shown in Fig. 7
are well approximated by epicycles, geometrical curves

known since antiquity. An epicycle �or a hypocycle� results
from the composition of two circular motions. It follows the
path of the radius vector of one circle rotating with the an-
gular velocity 
 centered on another circle rotating with the
angular velocity �.

The equation for this curve is given by

r��t� = a�cos�
t + ��
sin�
t + ��

� + b�cos��t + ��
sin��t + ��

� , �6�

where a and b denote the radii of the circles. To simplify the
notations we use a description with complex numbers as fol-
lows:

r�t� = aei�
t+�� + bei��t+��.

We can notice that the trajectory remains the same by a si-
multaneous exchange of 
 for � and of a for b. We thus
have to make a coherent conventional choice. As we will see
below, in all situations the two frequencies 
 and � are
common to the two orbiting droplets. As for the amplitudes a
and b, it turns out that one of them is common to the two
drops while the other is different. In the following we will
systematically choose b to characterize the motion which has
the same amplitude for the two drops. For the hypocycloidal
and the epicycloidal modes we find that the common oscil-
lation has the smaller angular velocity. For this reason, with
this choice of b, we have ���	 �
�. The first term of Eq. �6�
thus corresponds to a rapid rotation and the second to a
slower rotation. The directions of rotation of 
 and � as well
as the relative values of a and b define various types of
trajectories. Figure 10 shows the hypocycles �where the di-
rections of rotation are opposite to each other�. The first
graph in �a� corresponds to the case with a	b while the
second in �b� shows a hypocycle where a�b. In both cases
the loops are directed outwards, a characteristic of the hypo-
cycles. If we had chosen the same direction of rotation, we
would have observed epicycles and the loops would be
turned inward.

Let us now illustrate on one example the determination of
the parameters which will give the best fit to a given trajec-
tory. We will first consider the trajectory of the smaller drop
of the orbiting pair shown in Fig. 7. This trajectory exhibits
seven loops. The drop thus undergoes two rotational mo-
tions: one corresponds to each loop, the other to the global
motion around the center of the figure. Since the loops are
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(c) (d)

FIG. 8. Superposed images showing the motion of two dissimi-
lar walkers �with v1�4.0 mm /s, v2�8.2 mm /s, and d=5.4 mm�
paired walkers. They have circular trajectories: both droplets being
on the same side of the center of rotation.
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directed outward, the trajectory is a hypocycle �with a	b
the directions of rotation are opposite to each other�. We first
measure the period T1 of the global motion around the cen-
ter: it corresponds to the time needed by the drop to undergo
a complete rotation and return to its initial angular position.
We thus obtain �1 by T1=2� /�1. We then measure T1

loop, the
time the drop needs to go around a single loop of the trajec-
tory. For a hypocycle we then have T1

loop=2� / �
1+�1�,
from which we deduce 
1. We obtain the amplitude a1 and
b1 by measuring the radius of the two envelopes of the global
trajectory which are a1+b1 and �a1−b1�, respectively.

The trajectory of the larger drop in Fig. 7 is also a hypo-
cycle but with a2�b2. We use the same method to measure
the parameters 
2, �2, a2, and b2.

B. Correlated motions of the two drops

We now seek a description of the correlation between the
motions of the two drops. We measured the trajectories for

several pairs undergoing epicycloidal trajectories. Three of
them are shown in Fig. 11. In �a� and �b� the trajectories are
hypocycles, and in �c� they are epicycles. Even though all
these trajectories seem different we can present a simple
common description.

We assume that the trajectories r1�t� and r2�t� of drops �1�
and �2� can be written in the general form,

r1�t� = a1ei�
1t+�1� + b1ei��1t+�1�,

r2�t� = a2ei�
2t+�2� + b2ei��2t+�2�. �7�

In the experimental reality the two trajectories are coupled
and this brings strong constraints on the values of the param-
eters of Eq. �7�.

In Fig. 12 we have singled out one loop of the orbit of
Fig. 7 and we have correlated the positions of the two drops
at successive times 0.3 s apart. Therefore the distance be-
tween the points indicates the drop’s velocity. When the
small drop is in A, the furthest from the center, its velocity is
minimum. At that same time, the other drop is in A�, the
closest to the center, and its velocity is maximum. As the
small drop’s velocity decreases, the large drop’s velocity in-
creases so that the situation reverses: when the small drop is
closest to the center of the figure, the large drop is at the
furthest in B�.

Several important differences with the circular orbits can
be noted. The line linking the two drops at a given time does
not pass through the center of the two epicycles. It is pos-
sible to define an instantaneous center of rotation of the two
drops. If one traces the two lines between the position of the
two drops at times t and t+�t, they intersect in a point which
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FIG. 11. �Color online� The observed trajectories and their fit by
epicycles or hypocycles. Three measured trajectories of pairs of
walkers are shown in �a�, �b�, and �c�. In �a� where v1=3.2 mm /s
and v2=15.1 mm /s, the two trajectories are hypocycles with a1

	b	a2 �a1=0.7 mm, a2=3.6 mm, and b=1.1 mm�. In �b� where
v1=4 mm /s and v2=11.2 mm /s, the trajectories are also hypo-
cycles with b	a1	a2 �a1=1.5 mm, a2=4.3 mm, and b=0.5 mm�.
In �c� where v1=2.3 mm /s and v2=11.1 mm /s, the trajectories are
epicycles with a1	b	a2 �a1=0.6 mm, a2=2.9 mm, and b
=0.8 mm�. �d�–�f� show the corresponding trajectories as computed
using the equations of epicycles �Eq. �12��.
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FIG. 12. �Color online� Detail of the motion of the two drops.
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has been drawn at these times. When the small drop �1� is in A �at
the furthest point of its loop�, the large drop is in A�, the point of its
trajectory closest to the center.
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is the instantaneous center of rotation. If we repeat this op-
eration we find that it is not a fixed point. Its locus is also an
epicycle.

Another difference with circular orbits concerns the drop-
lets’ velocities. Figure 13 shows the two walkers’ velocities
measured during their trajectories of Fig. 7. When the small-
est drop’s velocity v1 is maximum, the largest drop’s velocity
v2 is minimum. The points A and B �and A� and B�� in this
figure correspond to the labeled points of the trajectory in
Fig. 13. However, some simple general features of these
coupled epicycloidal motions emerge.

Within experimental accuracy, the best fits performed on
the two hypocycloidal trajectories of the two drops show that
their two angular velocities are the same: 
1=
2=
 and
�1=�2=�epi. Furthermore, the amplitude of the slower
component of the motion is also the same: b1=b2=b.

From the measurements of r�1�t� and r�2�t�, the positions of
the two drops as a function of time, we can deduce the vector

linking the two drops d�12�t�=r�2�t�−r�1�t� �see Fig. 12�. Figure
14 shows that for such a complex pair of trajectories as

shown in Fig. 11�a�, d�12�t� rotates at constant velocity 
 and
its modulus; the distance dn

epi between the two walkers re-
mains approximately constant. This result has been observed
consistently for all epicycloidal trajectories.

The modulus of the distance between the drops can be
deduced from the equations of the epicyles; it can be written
as follows:

d2 = a1
2 + a2

2 + b1
2 + b2

2 − 2�a1a2 cos��1 − �2� + b1b2 cos��1 − �2�� + 2a1	b1 cos��
 − �epi�t + ��1 − �1�� − b2 cos��
 − �epi�t

+ ��1 − �2��
 + 2a2	b2 cos��
 − �epi�t + ��2 − �2�� − b1 cos���epi − 
�t + ��1 − �2��
 . �8�

For the distance to be constant the time dependent terms
have to be zero. This means

b1 = b2, �9�

�1 = �2 + � , �10�

�1 = �2. �11�

The distance between drops is then simply

d = a1 + a2.

Consequently, Eq. �7� of the trajectories of the coupled drops
simplify to

r1�t� = a1ei
t + bei�epit,

r2�t� = a2ei�
t+�� + bei�epit. �12�

As a result, a simple description of the global motion
emerges, shown in Fig. 15. These epicycloidal motions can
be seen as a simple destabilization of the circular orbits. In
first approximation the two drops have their normal circular
orbital motion at a frequency 
. Their two different radii of
rotation a1 and a2 have their origin in their difference in
velocity as free walkers. However, the system is not stable
and the whole figure drifts on a circular trajectory with a
weak angular frequency �. The circle on which this advec-
tion occurs has a radius b. Figure 15 shows three possible
situations. In �a� the advection has an amplitude smaller than
that of the orbital motions b	a1	a2. This corresponds to
the situation found experimentally and shown in Fig. 11�b�.
In Fig. 15�b� we have a1	b	a2, the situation observed ex-
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FIG. 13. �Color online� The velocity of two drops of different
sizes as they undergo the epicycloidal trajectory obtained in Fig.
11�a�. Points A and B and A� and B� correspond to the velocities at
the points of the trajectories seen in the previous figure.
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FIG. 14. The time evolution of the vector between the two drops
of the previous figure. It has a constant modulus and rotates at a
constant angular velocity.
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perimentally in Fig. 11�a�. In Fig. 15�c� the advection has a
large amplitude and a1	a2	b.

By measuring the remaining parameters we were able to
obtain excellent fits to all the epicycloidal orbits that we
observed. Some results can be seen in Fig. 11. The three
observed trajectories �a�, �b�, and �c� are well reproduced in
�d�, �e�, and �f�, respectively, by setting the measured param-
eters in Eq. �12�.

Using Eq. �12�, we can also deduce the velocities of the
two bound walkers as follows:

�v1
� �t��2 = �
a1�2 + ��epib�2 + 2
�epia1b cos�
 − �epi�t ,

�v2
� �t��2 = �
a2�2 + ��epib�2 − 2
�epia2b cos�
 − �epi�t .

�13�

These velocities oscillate at the pulsation 
−�epi around
their mean value.

As had been done for circular orbits the same two walkers
can be bound in a discrete set of orbits differing by the dis-
tance dn

epi separating the droplets. We have measured system-
atically the possible observed distances by binding repeat-
edly the same two walkers together. Exactly as for the
classical orbiting motion, the distance between the two drops
can take discrete values dn

epi= �n−�0
epi��F with here �0

epi

=0.23 �see Fig. 16�. In spite of the complexity of their tra-
jectories, the two walkers remain bound at a distance linked
to �F, the Faraday wavelength.

We have also observed that for a given pair of drops in an
epicycloidal mode, the farther apart the drops are bound, the
more solely orbital their trajectories will tend to be. As seen
in Fig. 4, when the drops are placed on larger orbits, their
velocities increase and tend towards the velocities they each
would have as free walkers. This means that the interaction
between the drops decreases. We can thus suppose that the
stronger the interation between the two drops, the more epi-
cycloidal their trajectories will become. We were not able in
this work to find a simple relationship between the two walk-
ers velocities and the resulting parameters b and �epi of the
trajectories. That would enable us to predict the possible or-
bits of two given walkers but would require a systematic
investigation beyond the scope of the present work.

C. Comparisons of the other orbital modes

All the observed modes of self-organization of two drops
comply with a special case of the epicycles equations. The
trajectories of two drops on circular orbits correspond to the
special case where there is no motion at a second frequency.
They are well fitted by Eq. �12� with b=0.

r1�t� = a1ei
t,

r2�t� = a2ei�
t+��. �14�

In the situation of the oscillating orbits, each of the tra-
jectories can also be fitted by the equation of an epicycloid.
The oscillations on the two orbits have the same amplitude.
Contrary to the situation previously described, the harmonic
motion, which has the same amplitude for the two drops, is
now the mode of higher angular velocity. Keeping our con-
vention of choosing b for the common mode, we thus have
now ��osc�� �
�. The two drops oscillate in opposition of the
phase. In order to fit the two trajectories, we thus have to
add, in Eq. �12�, a phase shift � in the term corresponding to
the drops’ motion at �osc as follows:

x
x

Ω

ω

a1

a2

H

x

x

0

ω

Ω

a1
H

x

x

0
b ω

ω
Ω

a1

a2

H

ω

(a) (b)

(c)

a2

0 b

FIG. 15. The various possible types of motion of two drops with
hypocycloidal trajectories �i.e., with 
 and �epi of opposite sign�. In
�a� the drift is weak, b	a1	a2. In �b� a1	b	a2. In �c� the drift is
large, a1	a2	b.
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FIG. 16. The normalized distance between the two walkers for
various epicycloidal trajectories of different orders n.
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r1�t� = a1ei
t + bei�osct,

r2�t� = a2ei�
t+�� + bei��osct+��. �15�

Figure 17 shows the trajectories drawn using Eqs. �15�
and the right parameters so as to match the observed drops’
trajectories of Fig. 5. The distance between the two drops is
not a constant and its time evolution fits the data �see Fig. 6�.
The oscillating mode is a kind of high frequency “optical
mode” of the two walkers, while the epicycloidal modes
would be a low frequency “acoustic mode.”

Finally, the paired walkers mode where the two drops are
situated on the same side of the center of rotation can also be
described using Eqs. �14� but the phase shift � now disap-
pears. We thus have

r1�t� = a1ei
t,

r2�t� = a2ei
t. �16�

D. Common features and differences

In circular orbits, or in the paired walkers mode, the cen-
ter of rotation is fixed and the angular velocity of the motion
is constant. The ratio of the velocities and that of the radii of
the orbit are the same.

For the two other orbiting modes both the velocities and
the radii of rotation vary. For the oscillating trajectories, the
center of the trajectories remains fixed so that we choose to
consider the mean radii along which the drops orbit. For the
epicycloidal trajectories, we can use the instantaneous center
of rotation to find the average drop velocities and the average
radii of rotations. As shown in Fig. 18, we find that for all
types of trajectories the same relation

R1

R2
=

v1

v2
�17�

remains valid if average values of the radii and of the veloci-
ties are used.

More generally, the drops’ interaction via their waves has
unusual peculiarities. The barycenter is the point between
two objects where they balance each other. It is the center of
gravity where two �or more� celestial bodies orbit each other.
When a moon orbits a planet, or a planet a star, both bodies
are actually orbiting around a point that lies outside the cen-
ter of the greater body. However, two orbiting drops will
place themselves on an orbit in order that their velocities
balance each other. Unlike with planets, it is not the drop’s
mass which determines the radius of its orbit, but its velocity.
Here, it is at the velocities’ barycenter that the two drops are
on a stable orbit. If the velocity varies, then the radius on
which each drop orbits varies too.

As for the measured distances between drops, we find that
in all modes, except the oscillating orbits, it is constant and
can only take a discrete set of values directly linked to �F,
the wavelength of the Faraday instability, and of the form

dn = �n − ���F. �18�

The same holds in oscillating orbits for the average value of
dn.

E. Dynamical origin of the complex orbits

Our measurements have provided an accurate description
of the kinematics of the drops motion in the plane of the
interface. The underlying dynamics leading to these various
organizations results from the droplet-wave interaction. The
droplets are the sources of the wave but, in turn, their trajec-
tories result from their bouncing on those waves.

In the following discussion we limit ourselves to two
drops bouncing at the Faraday frequency with approximately
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FIG. 17. �Color online� Oscillating orbits of two dissimilar
walkers obtained using Eqs. �15� and the parameters a1=2.6 mm,
a2=5.7 mm, b=0.3 mm, 
=−1.9 rad /s, and �osc=6.8 rad /s.
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FIG. 18. �Color online� The ratio of the average velocities v1 /v2

as a function of the ratio of the averaged radii of rotation R1 /R2.
Full circle: circular orbits; diamonds: oscillations; open circles: epi-
cycles; triangle: paired walkers modes.

EXOTIC ORBITS OF TWO INTERACTING WAVE SOURCES PHYSICAL REVIEW E 78, 036204 �2008�

036204-9



the same phase relative to the forcing. The same arguments
would hold for drops bouncing with opposite phases.

The simplest case was analyzed previously �see Protière
et al. �4�� revealing that the interaction can be either repul-
sive or attractive. In this model, due to Boudaoud, the drop-
lets motion, as well as the forces to which they are submit-
ted, are averaged over a bouncing period TF. In this limit,

two coupled vectorial equations for their positions r1
� and r2

�

were obtained for the two droplets of masses m1 and m2.

m1r1
�̈ = F1

b sin�2�
�r1

�̇ �
V�

� r1
�̇

�r1
�̇ �

+ �F2→1
b r1

� − r2
�

�r1
� − r2

� �3/2
sin�kf�r1

� − r2
� � + �1� − f1

Vr1
�̇ ,

m2r2
�̈ = F2

b sin�2�
�r2

�̇ �
V�

� r2
�̇

�r2
�̇ �

+ �F1→2
b r2

� − r1
�

�r2
� − r1

� �3/2
sin�kf�r2

� − r1
� � + �2� − f2

Vr2
�̇ .

�19�

The first term on the right is the effective force exerted on a
droplet by bouncing on the inclined surface of its own wave.
Fi

b is proportional to the amplitude of the vertical accelera-
tion �m and to the slope of the surface waves. The argument
of the sine is the phase shift due to the relative displacement
of the drop and the wave since the previous collision at ve-

locities �ri
� � and VF

�, respectively. The third term stands for
the viscous damping due to the shearing of the air layer
between the drop and the bath during the contact.

The second term of each equation accounts for the force
exerted on one droplet by its bouncing on the wave emitted
by the other. The parameter � accounts for the damping of
the wave. In the numerical integration of these ODEs the
spatially oscillating character of the interaction is retrieved.
In the limit where the two droplets are identical, circular
orbits are analytical solutions of this set of equations. In
these solutions, the velocity of each drop is constant and
equal to the velocity it would have as a walker. In the radial
direction, equating the force due to the interaction term to the
centrifugal effect yields a condition on the possible orbital
diameters dn

orb so that the observed discrete set of solutions is
retrieved.

With two unequal drops the differences in the observed
orbits can be ascribed to several origins. The waves emitted
by the two droplets differ in amplitude, in phase, and the
collisions with the interface are not simultaneous.

As seen in Fig. 1 the bouncing of the larger drop is a
stronger disturbance of the interface so that it is the source of
a wave of larger amplitude. Since they modeled successfully
the circular orbits, we tried to obtain exotic orbits in the
framework of Eqs. �19�. In order to take into account the
difference in amplitudes of the waves generated by the drop-

lets we set in Eqs. �19�: F2
b�F1

b, f2
V� f1

V, and F2→2
b �F1→2

b .
Furthermore we tried to account for different times of land-
ing by introducing two different phases �1 and �2 in the
interaction terms of the equations. These simulations did not
permit one to retrieve the exotic orbits described here. The
simulations we did convinced us that the model given by
Eqs. �19� is oversimplified for this purpose because it does
not take into account the temporal variation of the wave
amplitudes during the periodic forcing. An improved version
should include a more realistic description of the space and
time evolution of the waves as well as a better description of
the collision itself. This is beyond the scope of the present
paper. We will limit ourselves to a qualitative discussion of
the observed phenomenology.

The main effect responsible for the qualitative difference
of the orbits can be observed in Fig. 19. Two drops of dif-
ferent size do not impact the surface of the liquid exactly at
the same time. It is observed that, in the walker regime, a
small drop jumps higher than a big one and stays longer in
the air. The origin of this difference lays in the elastic behav-
ior of smaller drops which manifests itself also on the thresh-
old of their bouncing �4�. As a result, the collision of the
smaller drop with the interface is retarded as compared to the
larger one. The smaller drop thus falls on a wave which has
propagated a little further away from its source.

A consequence of this type of asymmetry is particularly
clear in the paired walkers mode. The circular motion shown
in Fig. 8 can only be understood if the drops are submitted to
a centripetal force. Since both drops are on the same side of
the center of rotation this means that the big drop is attracted
to the small one, while the small drop is repelled by the big
one. We can understand this phenomenon as an effect of the
nonsynchronous collisions of the drops with the interface.
The two sketches of Fig. 20 represent the situation at the two
instants when the drops collide with the surface. The bigger
drop touches the surface on the attractive side of the wave
generated by the small drop. When the small drop impacts
the surface, the wave formed by the large drop has had more
time to propagate so that the impact takes place on the “re-
pulsive” side of the wave.

For two drops in an epicycloidal or orbital mode, the
slopes on which each drop falls are both directed toward the
other drop. The attractive slope generates the centripetal
force necessary to the orbiting motion. In the circular orbits
the drops always impact the same slope. However, the epi-
cycloidlike mode must be due to the slow temporal evolution
of both slopes. This makes both drops’ velocities vary con-
tinuously. We can thus associate this slow variation of the
slopes to the phase shift between the two drops.

V. DISCUSSION AND CONCLUSION

In the present work, using bouncing drops as local excit-
ers of a system tuned slightly below the threshold of the
Faraday instability, we obtain pointlike mobile sources of
Faraday waves. We thus excite a localized packet of damped
linear waves in the vicinity of a supercritical bifurcation. The
resulting objects have nonlocal interactions through the de-
creasing exponential tail of waves surrounding them. These
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modes of self-organization are related to those of the other
types of localized structures observed in nonlinear physics.

Isolated localized states are usually associated with sub-
critical bifurcations. They are observed after a decrease of
the control parameter when its value remains constant in the
hysteretic region of the bifurcation. In this case, while most
of the medium relaxes to the basic state, small domains �usu-
ally called localized states� remain in the bifurcated state.
When the transition is a subcritical Hopf bifurcation the
small domains are oscillatory structures. They are sur-
rounded, in the quiescent region, by a tail of exponentially
decaying waves.

These phenomena were first investigated in model equa-
tions �e.g., by Aranson et al. �6� and Moskalenko et al. �7��.
They were also investigated theoretically and experimentally
in the context of nonlinear optics �8–10� or in reaction-
diffusion systems �11,12�.

Localized structures were previously observed in the Far-
aday instability in cases where the transition is subcritical as
in, for example, vibrated sand by Umbanhowar et al. �13� or
by Lioubashevski et al. in thin layers of suspensions or very
viscous fluids �14�. In sand, where they were called oscillons
�13�, they have short range interaction leading to their aggre-
gation. In fluids Lioubashevski et al. �14,15� observed the
formation of highly dissipative localized structures with a
core region having a complex structure. These structures can
become spontaneously propagative. The presence of small
amplitude waves around these localized states is sufficient to
create an interaction between them �16,17�. They have par-
ticlelike interactions which lead to their static aggregation or
to orbital motions. The nonlocal interaction mediated by
waves is the common factor of our experiment and of these
other types of localized objects. This is the origin of the
self-organization of circular orbits in both types of systems.
The more complex orbits investigated here were not ob-
served in other systems.

We can note, however, that epicycloidal orbits have been
observed in a different type of wave-dominated system.
When the oscillating Belousov-Zhabotinsky chemical reac-
tion occurs in a spatially extended system it leads to sponta-
neous formation of spiral waves. While the normal spiral has

FIG. 19. Three photographs extracted from a fast camera re-
cording of the bouncing of two walkers of different size bound in a
hypocycloidal orbit. The white line represents 1 mm. The first pho-
tograph is taken at the time t of the first contact of the larger drop
with the interface. The second one, 10 ms later, corresponds to the
time t+�t of the first contact of the smaller drop. On the third
photograph �5 mm later� the small drop has already taken off while
the large one has not.
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FIG. 20. �a� Sketch of a circular paired walkers mode. �b� Radial
profile of the wave created by drop �1� at the times t and t+�t when
the drops �2� and �1� collide with the interface respectively. By their
interaction with this wave, drop �1� is pushed azimuthally �to the
back of the figure� and drop �2� is attracted towards the center of the
orbit. �c� Radial profile of the wave created by drop �1� at the same
times t and t+�t. By their interaction with this wave, drop �2� is
pushed azimuthally and drop �1� is repelled towards the center of
the orbit.
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a constant rotation it was shown that in some regimes the tip
of the spiral starts “meandering.” Li et al. �18� have studied
the motion of the tip. They show that the spiral’s tip does not
have an erratic motion but rather moves in epicycloidal or-
bits and that there exists a domain where a bifurcation from
simple rotating spirals to meandering spirals occur. Schrader
et al. �19� have also observed these meandering spiral waves
in a periodically excited medium and found these same epi-
cycloidal trajectories.

Our investigation was limited to the orbits of two walkers.
When more than two walkers coexist on the surface of the
bath an even larger diversity of situations is observed. When
the walking threshold is passed while several drops are
bouncing independently, each of them becomes a walker and
we thus form a “gas” of independent walkers. Some of their
collisions lead to capture so that the transient formation of
orbiting pairs is observed. These pairs are usually destroyed
by the collision of solitary walkers. The formation of orbits

with more than two walkers remains exceptional in that case.
However, it is possible to start with different initial con-

ditions. Below the walking threshold, bouncing drops tend to
drift towards each other and to aggregate in clusters with a
crystal-like structure �4�. The simultaneous transition to
walking can then lead to the formation of orbiting structures
involving a larger number of droplets. Though beyond the
scope of the present paper, we can note that they present the
same building rules found in the case of two particles.
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