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Dynamics of perturbations in disordered chaotic systems
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We study the time evolution of perturbations in spatially extended chaotic systems in the presence of
quenched disorder. We find that initially random perturbations tend to exponentially localize in space around
static pinning centers that are selected by the particular configuration of disorder. The spatiotemporal behavior
of typical perturbations Su(x,?) is analyzed in terms of the Hopf-Cole transform h(x,)=In|du(x,?)|. Our
analysis shows that the associated surface h(x,) self-organizes into a faceted structure with scale-invariant
correlations. Scaling analysis of critical roughening exponents reveals that there are three different universality
classes for error propagation in disordered chaotic systems that correspond to different symmetries of the
underlying disorder. Our conclusions are based on numerical simulations of disordered lattices of coupled
chaotic elements and equations for diffusion in random potentials. We propose a phenomenological stochastic
field theory that gives some insights on the path for a generalization of these results for a broad class of

disordered extended systems exhibiting space-time chaos.

DOI: 10.1103/PhysRevE.78.036202

I. INTRODUCTION

Spatially extended chaotic systems (SECS) are of great
importance for the understanding of fundamental problems
in deterministic many-particle systems, including hydrody-
namics and turbulence [1,2] or weather forecasting [3].
These systems exhibit dynamical instabilities that can be
quantified by the spectrum of Lyapunov exponents and their
corresponding Lyapunov vectors (LVs) [1,4-6].

Recently, the application of some tools and concepts bor-
rowed from the physics of nonequilibrium statistical systems
has been shown to be a very promising line of research to
study certain aspects of SECS. In particular, it has been ob-
served that (after a suitable logarithmic transformation) the
evolution of an infinitesimal perturbation in deterministic
SECS can be generically described as a scale-invariant rough
surface [7-11]. In this surface picture, the erratic fluctuations
of the system, due to the chaotic dynamics, are interpreted as
noise. Remarkably, it has been shown [7,8,11] that in many
cases the associated surfaces belong to the Kardar-Parisi-
Zhang (KPZ) [12] universality class of nonequilibrium sur-
face roughening. Nonetheless, the probability distribution of
the randomness generated by the chaotic trajectory can be
crucial. In this regard, the existence of long-range correla-
tions [9] or a fat tail of the distribution [10] may change the
universality class observed in the surface growth picture.

Typically the above discussed studies deal with homoge-
neous systems, where only identical elements are coupled,
often in a diffusive manner. However, much less is known
about the evolution of chaotic perturbations in inhomoge-
neous extended systems, where the many coupled elements
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are either different or the coupling itself is a quenched ran-
dom field that varies along the system. Such conditions natu-
rally arise in some important applications, e.g., in regional
weather forecasting, where inhomogeneity is present in the
form of explicit surface-topography dependent terms
[3,13-15] in the dynamic equations. Inhomogeneous SECS
can indeed demonstrate rather unusual properties, such as,
for instance, taming of spatiotemporal chaos induced by dis-
order [16], disorder-enhanced synchronization [17,18], and
avoided crossing and level repulsion similar to that occurring
for energy eigenvalues in disordered quantum systems [19].

In this paper, we focus on the dynamics of perturbations
in disordered SECS, which is not covered much in the litera-
ture. We analyze here a rather simple but enlightening model
consisting of a lattice of coupled chaotic elements whose
parameters are randomly distributed or the coupling among
them is a quenched random variable. We show that long-
range temporal correlations, induced by the quenched disor-
der, can cause perturbations to strongly localize. The strong
localization observed here is essentially different from the
dynamical localization that has been previously reported for
homogeneous SECS [7,8]. In the latter, the positions of the
localization centers keep fluctuating in space, while in the
presence of quenched disorder we find that the positions of
the localization centers are fixed for a given disorder realiza-
tion. We analyze typical perturbations du(x,t) by making use
of the Hopf-Cole transform h(x,t) =In| du(x,?)| and mapping
to the equivalent surface growth problem. Strong localization
leads to the formation of faceted structures in the corre-
sponding surface picture. These Lyapunov surfaces also ex-
hibit a coarsening behavior and anomalous kinetic roughen-
ing, akin to some nonequilibrium growing surfaces. The
connection of the problem of the propagation of errors in
disordered SECS with the problem of diffusion in random
potentials is also discussed. We propose a phenomenological
stochastic field theory pointing toward a generalization of
our results for a broad class of disordered extended systems
exhibiting space-time chaos.
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II. DESCRIPTION OF THE MODELS

We focus our numerical study on coupled-map lattices
with quenched disorder. We consider L coupled chaotic maps
u,(t), with x=1,2, ..., L, following the evolution equation

ux(t + 1) = Ux,x+1fx+1[ux+1(t)] + Ux,x—lfx—l[ux—l(t)]
+ (1 - Zo-x,x)fx[ux(t)]’

where the o, ,.; are the disordered nearest-neighbor cou-
pling constants, o, , is the on-site contribution, and f, is the
local nonlinear map at site x. Here we choose f,.(0)
=c,(1/2—|0 mod 1-1/2]), which is a periodic continuation
of the tent map. This map shows chaotic behavior for c,
€ (1,%), with a Lyapunov exponent that grows logarithmi-
cally with c,. This choice allows one to study extended
coupled systems with a spatial distribution of Lyapunov ex-
ponents by allowing c, to take randomly distributed values
along the lattice.

Almost any initial random perturbation &u,(r=0) will
grow in magnitude and develop space-time correlations
while propagating along the system, quickly aligning with
the most unstable direction in tangent space, the so-called
main LV:

&tx(t +1)= Oy x+1 ),c+1[”x+1(t)]5ux+1(t)
+ Ux,x—l ),c—l[ux—l(t)]&’tx—l(t)
+(1 =20, )f [ul0)]6u 1), (1)

where f(@) is just the derivative of the local map f,(@) with
respect to its argument Q.

Numerical integration of the tangent space equations (1)
looks apparently rather simple, however, a caveat is in order.
We found that the introduction of quenched disorder leads to
the appearance of very large differences among error field
Su,(r) values at certain sites of the system. The reason for
this is the quenched nature of the disorder so that, if a large
value of the random variable is assigned to a given site, it
will continue giving high contributions for all times. In fact,
these differences can become so large during the simulation
that, if we were to naively integrate Eq. (1) and just multiply
by some global factor to avoid numerical overflow, the per-
turbation field at those sites where the perturbation values are
small would soon be considered as zero by the computer due
to accuracy limitations. It is rather simple to overcome this
technical problem by avoiding calculating the du,(z) directly,
but rather computing the quotients J,(z+1)=3du,(z
+1)/8u,(r) and @, (t)=u,,,(r)/ Su,(t) instead. We therefore
rewrite Eq. (1) as

ﬁx(t + 1) = O-x,x+ ),c+1[ux+l(t)]§0x(t)
x,x—1. ),c—l[ux—l (t)]/(Px—l (t) + (1 - 20—x,x)f),c[ux(t)],

+ 0,

Bun(t+1)

e (t+1)=@1) 90rD)

Now we can numerically integrate this pair of equations in-
stead of Eq. (1). This useful numerical trick resolves the
problem of possible overflows during the simulations.
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FIG. 1. The coupling configurations of one site to its neighbor-
ing sites and vice versa for (a) the random barrier (RB) and (b)
random trap (RT) model.

We have studied three different scenarios for a disordered
couple-map lattice system. In the first scenario (model A) we
consider the case in which the couplings are identical along
the system, but coupled elements are inhomogeneous. In the
simplest setting we can model this situation by drawing the
local map constant ¢, from a uniform distribution, so we
have

. e U(1,2),
model A: (2
Oyy= 1/3,

where y € {x—1,x,x+ 1}. Note that we chose a homogeneous
democratic coupling (o, ,=1/3) all along the system. In this
situation individual elements are more chaotic or less chaotic
depending on the corresponding value of c,. Larger values of
¢, lead to a locally faster growth of the perturbation at site x.
Strictly speaking, this is only true for uncoupled maps.
Things are much more involved here since the maps are
coupled. Thus, the behavior of the perturbation at one site
does not only depend on the map at that specific site, but also
on the dynamics of its neighborhood.

A different source of disorder we have explored is the
existence of a quenched random coupling, while the indi-
vidual maps are all identical. This corresponds to systems
with a disordered diffusion coefficient. From the classical
theory of diffusion in disordered media we know that two
different symmetries are of interest [20,21]. These two mod-
els are sketched in Fig. 1 and described in detail below.

On the one hand, we have the random barrier (RB) model
[20,21]. Physically this corresponds to the existence of a
random potential barrier between every two neighboring
sites so that the diffusion coefficient from site x to site x+1 is
equal to that from site x+1 to site x (see Fig. 1). In other
words, the disorder is associated with the bonds connecting
neighboring sites on the lattice. We call this configuration
model B:

CX=2»

Oy x—1= €
model B: ’ (3)

O-x,x+l = €415

Oxx= (Ex+ 6x+l)/2,

where the disorder is drawn from a uniform distribution e,
e U(0, ¢y) and g, being an arbitrary parameter that we take
as 1/3 unless otherwise stated.

On the other hand, some disordered systems are better
described by the so-called random trap (RT) model [20,21].
In this case a static disordered diffusion coefficient is as-
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FIG. 2. Lyapunov spectra for models A, B, and C in a lattice of
L=256 coupled tent maps after average over ten different disorder
realizations.

signed to each lattice site x instead to bonds. This corre-
sponds to our model C, which is defined by

c,=2,

Oxx—-1= €15 (4)

O-x,x+1 = €41

Oy x= €

where the disorder is uniformly distributed, €, € U(0,¢),
and again €, can be any number in the interval (0, 1/2), here
we use €,=1/3.

Typical Lyapunov spectra corresponding to the three dis-
ordered models introduced here are shown in Fig. 2 for a
system of size L=256 and averages over 10 different disor-
der realizations. One can see that, depending on the model,
one has 30-80 % of the spectra in the region A > 0. Note that
Lyapunov spectra are self-averaging, i.e., as we increase the
system size, Lyapunov spectra for a specific disorder realiza-
tion approach the spectrum averaged over disorder realiza-
tions.

Some remarks are now in order. First, let us stress that
these two disordered diffusion configurations, namely, RB
and RT, were not chosen arbitrarily, but are in fact all exist-
ing physically meaningful ways to introduce disorder in the
diffusive couplings [20,21]. Second, it is important to remark
that in this paper we focus on systems in the presence of
weak disorder, where the probability density of having zero
disorder at any given site P(e=0) is bounded. We do leave
out of our study the case of strong disorder P(e—0)~ e,
where a fraction of the system sites can effectively act as
sinks, which is known to have a great impact on the
asymptotic transport properties [20,21] and will be discussed
elsewhere.

In principle, classical results on the problem of diffusion
in random media [20,21] may also be invoked to argue that
the details of the disorder distribution should be irrelevant in
the sense that weak disorder gives rise to the same
asymptotic dynamical behavior independently of the detailed
form of the disorder distribution. The same conclusion ap-
plies in the case of strong disorder, where the asymptotic
dynamics is fully determined by the form of the divergence
at the origin, i.e., the value of the exponent v. In the follow-
ing we focus on the case of weak disorder and a uniform
distribution P(e)=U(0,¢,) with the parameter €,=1/3 is
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FIG. 3. Typical evolution of a Lyapunov vector surface h(x,1).
As time evolves (from bottom to top) one can observe the emer-
gence of facets that grow until, in the long time limit, the whole
interface is spanned by one single facet. Tiny fluctuations can be
observed at small scales. The data correspond to model C in a
lattice of L=1024 maps.

used to exemplify our results. However, in the presence of
random multiplicative terms the critical behavior might be
affected by the detailed form of the disorder distribution
[22].

III. SURFACE EVOLUTION AND COARSENING

As occurs in the case of homogeneous systems, the dy-
namics of the main LV can be conveniently described in
terms of the equivalent surface picture [7-11]. The reason is
that the logarithm of the perturbation field turns out to be
scale invariant, so that correlations have the form of power-
law functions and critical exponents can then be used to
characterize the space-time structure of perturbations. There-
fore, in this paper we are interested in the scaling properties
of the rough surface defined by the Hopf-Cole transform
of the perturbation h(x,t)=In|u,(t)|=1In| du,(0)]|
30 In] 9,(7).

Space-time scaling properties of chaotic perturbations in
inhomogeneous systems turn out to be very different from
those in homogeneous systems, even in the case of weak
disorder studied here. As can be immediately seen in Fig. 3,
a first observation is the patterned structure of the LV sur-
face, which is visible to the naked eye and contrasts with the
KPZ-type morphologies observed in homogeneous systems
[7,11]. This already indicates that significant differences are
to be expected in the scaling properties of inhomogeneous
systems. Even weak disorder induces self-organization in a
triangular structure, which reflects the strong spatial localiza-
tion of the perturbation in the form of a exponential profile
around some strong pinning centers. Note that a facet
h(x,t)=h(xy)—s(t)|x—x| with a cusp at x=x, and slope s(?)
corresponds to an exponential profile of the perturbation
u, (1) <exp[—s(t) | x—x,|] around the pinning center x.

In Fig. 3 we plot a typical evolution of the main LV ac-
cording to Eq. (1) in a system of size L=1024 for a given
disorder realization in the case of model C. We observe that
at short times, the surface h(x,7) is composed of triangular
facets of varying sizes which grow in time until, in the long
time limit, the whole interface is formed by just one single
facet. Therefore, as time evolves the size of the triangles
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FIG. 4. (Color online) The evolution of the lateral mound size
p(2) is plotted for the three models. The straight lines are plotted to
guide the eye and have slopes 0.78 (dotted), 2/3 (dashed), and 1/2
(solid), respectively. The curves for models A and B have been
shifted for better visibility.

increases and number of triangles diminishes. This surface
dynamics corresponds to nonequilibrium “coarsening.” Simi-
lar triangular morphologies are obtained for the three models
A, B, and C introduced above. Close inspection and analysis
of critical exponents shows that the three models actually
belong to different universality classes.

In order to characterize the growth of the faceted pattern
we have measured the lateral mound size p(z), which gives
the coarsening length or typical length scale of the instability.
This is usually done by calculating the slope-slope correla-
tion function (Vh(x,t)Vh(x+r,r)) and measuring the dis-
tance, p(f), at which this correlation crosses zero. We calcu-
late the surface gradient as the centered discrete derivative
Vh(x,t)=[h(x+1,t)—h(x-1,1)]/2. In Fig. 4 the lateral
mound size, p(7), for the three models is shown. After a short
initial period, p(¢) grows as a power law in time with expo-
nents #p=0.67 =0.03 and 6-=0.48 = 0.03, for models B and
C, respectively. At long times p(r) saturates, as the surface
becomes dominated by a single facet and the coarsening
length becomes comparable to the system size. For model A
the intermediate region does not seems to be following a
simple power law. Nonetheless, we have fitted an exponent
0,=0.78+0.05 for the sake of comparison. The different
scaling exponents for the coarsening length already indicate
that the three models possibly belong to different universality
classes.

IV. SURFACE ROUGHNESS SCALING

We will now perform a scaling analysis of the Hopf-Cole
transform. The idea behind this analysis is to obtain informa-
tion about the spatiotemporal correlations in order to identify
the possible universality classes corresponding to different
symmetries, which might help to identify physical mecha-
nisms underlying real data.

Kinetic roughening of random scale-invariant surfaces is
usually described by the so-called Family-Vicsek scaling an-
satz [23,24]. However, faceted surfaces can often exhibit
anomalous scaling properties in the sense that local and glo-
bal fluctuations may scale with different scaling functions
(and exponents). The existence of anomalous scaling, as op-
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posed to standard Family-Vicsek scaling, was first reported
in the context of surface growth models by Amar et al. [25],
and the need to introduce more general scaling ansatzes was
soon after noticed by Schroeder er al. [26] as well as by Das
Sarma er al. [27] in the case of the so-called super-rough
anomalous scaling. These results were later shown to be just
particular cases of anomalously scaling correlations that can
be understood as subclasses of a generic scaling theory of
surface growth [28]. As it turns out, the present faceted scale-
invariant surfaces do exhibit anomalous scaling properties
similar to those reported in Ref. [29], which are captured by
the generic dynamic scaling form introduced by Ramasco et
al. [28]. In this section we briefly describe the generic scal-
ing theory for surface kinetic roughening that will be used
later on to analyze our numerical data.

The roughness of scale-invariant surfaces corresponds to
the fluctuations of the surface height. These fluctuations can
be computed either locally or globally as follows. On the one
hand, the global roughness exponent « can be obtained from
the scaling behavior of the global width W(L,7)

=([h(x,t)-h(t)]>)""2. Here, the overline denotes an average
over all sites x in a system of size L and brackets denote the
average over different realizations. For scale-invariant sur-
faces one expects the global width to scale as W(L,t)
=t**G(L/t"%), where G(u) is a scaling function that becomes
constant for > 1 and decays as ~u® for u<<1. The rough-
ness exponent « and dynamic exponent z characterize the
scaling behavior of the global surface fluctuations.

On the other hand, one can measure the local roughness
exponent aj,., which is defined via the scaling behavior of
the local width w(l,t)=({[h(x,t)—{(h),(£)]*))"?, where {--),
denotes an average over x in a window of size /. The local
width scales as w(l,t) ~ t¥°G(1/t"?), where the scaling func-
tion Go(u) has a similar asymptotic behavior as G(u), but
with a local anomalous exponent, ~u“lc for u<<1. So that in
the stationary regime (for r>L%) one obtains wg,(l,L)
~ [%oc[*~%0c, In the cases where local and global roughness
exponents do not coincide the scaling is said to be anoma-
lous.

Following Ramasco et al. [28], in order to correctly clas-
sify the different forms that scaling can take it is convenient
to introduce a third roughness exponent, namely the so called
spectral roughness exponent «,. This is defined in terms of
the structure factor (or power spectrum in k space)

S(k, 1) = (h(k,t)h(= k, 1)), (5)

where A(k,?) is the spatial Fourier transform of h(x,t)—h(z).
Ramasco et al. [28] showed that scale-invariant roughening
in d+ 1 dimensions is fully described in the following scaling
ansatz:

S(k,t) = k-t Dg (k') (6)

z being the dynamical exponent that connects temporal
scales 7 and length scales / according to 7~ /%, and the non-
trivial scaling function takes the form
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FIG. 5. (Color online) The spectral power functions of the sur-
faces obtained for model A are plotted for times r=2'%(a), 2'%(b),
216(c), 2'8(d). The straight line corresponds to a,=1.5. In the inset
we show the data collapse according to the scaling ansatz (6) and
(7), using @=1.03 and z=1.3. The dashed and the solid straight line
have slopes —1 and 3, respectively. The plotted data correspond to
model A for a system of size L=16 384 averaged over 100 disorder
realizations.

wema) if >, -
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Here « is the global roughness exponent. With the help of
these three exponents one can distinguish the four different
possible types of scaling that any scale-invariant rough sur-
face can exhibit,

ay=a= Family-Vicsek,

if a, <1= .= a T
a, 7 a= Intrinsic,

. a,=a= super-rough,
ifa,>1= q.=1 (8)
o, 7 a= faceted.
Note that only in the case where standard Family-Vicsek
scaling is valid, which means a= ;.= a;, the surface is self-
affine. In the other cases this will in general not be true, i.e.,
local and global fluctuations will still exhibit dynamical scal-
ing, but will do so with different exponents.

We now use this general scaling ansatz to study the scal-
ing properties of our system. In order to do so, we have
calculated the structure factor corresponding to the Hopf-
Cole transforms of the perturbations at various times. Figures
5-7 show the structure factor for models A, B, and C, respec-
tively. We observe a power-law decay as ~k~%*! for mo-
menta limited by a large scale and a small scale cutoff. At
large length scales the power-law behavior is limited by the
correlation length &(r)~t'"%, as expected from dynamical
scaling. The cutoff at short lengths also grows in time, sug-
gesting the existence of a different dynamics at small scales,
which will be studied in detail in Sec. V. Note that the curves
S(k,t) shift downward for increasing times, indicating the
presence of anomalous scaling with o, > «. Specifically, one
expects  S(k,r)~k>%*Hle-@0dz We have measured a
=1.43%+0.05, 1.47%0.05, and 1.45%0.05 for models A, B,
and C, respectively. This should be compared with the value
of a,=3/2 that can be obtained analytically for interfaces
consisting of random smooth facets [28]. In the insets of
Figs. 5-7 we show a data collapse according to the generic
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FIG. 6. (Color online) The spectral power functions of interfaces
obtained for model B are plotted for times r=2'%(a), 2!%(b), 2'%(c),
218(d), 2%°(e). The straight line corresponds to a,=1.5. In the inset
we show the data collapse according to scaling ansatz (6) and (7),
using a=1.0 and z=1.5. The dashed and the solid straight line have
slopes —1 and 3, respectively. The plotted data corresponds to
model B for a system of size L=16384 averaged over 100
realizations.

scaling ansatz in Egs. (6) and (7), obtaining values for the
roughness and dynamical exponents « and z. As can be veri-
fied, all three models show scaling properties well described
by the faceted interface scaling class in Ramasco’s classifi-
cation, Eq. (8), with a roughness exponent a=1 for all the
three models. Nonetheless, all three systems yield different
values for the dynamical exponent, z,=13*0.1, zp
=1.50%0.03, and z-=2.00%0.03, again indicating that the
three models belong to different universality classes. These
values of z define the typical length scale that correlations
have spread along the system up to time #, &(t) ~ "%, and are
in good agreement with the inverse of the exponents (6
=1/z) that we obtained from the analysis of the coarsening
length discussed in Sec. III for all the three models studied in
this paper.

V. SEPARATING FACETS FROM FLUCTUATIONS

The scaling analysis of the surface fluctuations presented
in the preceding sections has shown that the LV surface self-

S(k£)

10'4

FIG. 7. (Color online) The spectral power functions of interfaces
obtained for model C are plotted for times r=2'%(a), 2!%(b), 2'%(c),
218(d), 2%°(e). The straight line corresponds to a,=1.5. In the inset
we show the data collapse according to scaling ansatz (6) and (7),
using a=1.0 and z=2.0. The dashed and the solid straight line have
slopes —1 and 3, respectively. The plotted data corresponds to
model C for a system of size L=16384 averaged over 100
realizations.
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FIG. 8. For a segment of 1024 maps on a system of L=16 364
we exemplify the separation of the surface A(x) into the triangular
pattern 7%(x) and the difference y(x)=h(x)—h"(x), which gives the
small scale fluctuations.

organizes in a characteristic triangular pattern for all the
three models of disorder. A closer inspection, in particular
the computation of the structure factor, has also revealed the
existence of a cutoff at small scales such that length scales
below that point obey a different dynamics. This suggests the
existence of another dynamical process taking place at small
scales which is different from the mechanism responsible for
the large scale faceted structure.

In this section we show that one can actually separate two
different contributions to the LV surface height: The large
scale pattern h°(x,7) formed by facets of constant slope and a
randomly fluctuating term y(x,f) which becomes the domi-
nant one at small scales. Therefore the surface profile at any
given time can be expressed as the sum of the two indepen-
dent components as /(x,t)=h"(x,t)+y(x,?). This separation
can be carried out numerically as follows. For a given time
the interface h(x,?) is smoothed to remove local maxima and
minima corresponding to local fluctuations upon the triangu-
lar structure. This is done by replacing the heights at every
site by a spatial average over some arbitrary region around
each site. Then, the locations of the cusp sites and valley
sites of the smoothed curve are easily identified and the fac-
eted pattern 4°(x) is defined as the set of straight lines con-
necting the cusp points to the neighboring valley points. The
interface corresponding to the fluctuations is then obtained
by taking the difference y(x,#)=h(x,t)—h"(x,?) as exempli-
fied in Fig. 8.

Interestingly, one can observe that the triangular pattern
10 and the random fluctuation components y(x,?) are uncor-
related. This can be shown by checking that
(h°(k,)$(~k,#))=0, which is equivalent to proving the iden-
tity

S(k.t) = (k)W (= k1)) + Gk)(— k1)), (9)

In fact, the numerical data presented in Fig. 9 confirm that
both components are actually uncorrelated. Figure 9 shows
the structure factor of the faceted pattern 4°(x,?), the local
fluctuations y(x,), and the complete interface h(x,7) at two
different times. In particular, the data shown correspond to
model B, but we obtained identical results for for the other
two models.

It becomes apparent that the anomalous scaling of the
surface stems from that of the faceted structure. Since the
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S(k )

FIG. 9. The power spectra of the interface /(x) (light gray dots),
the triangular structure h°(x) (dark gray lines), and the difference
y(x)=h(x)—h%x) (gray lines) are plotted for two different times 7,
<t,. The straight solid line corresponds to a?: 1.5, while the
straight dashed line corresponds to afiff=0.45.

vertical scale in Fig. 9 is logarithmic, the sum in Eq. (9) will
essentially be dominated by the largest of the two terms, as
one can easily see in Fig. 9. Therefore, the large scale behav-
ior of the complete interface is totally dominated by the scal-
ing behavior of the pattern component. On the other hand,
the structure factor S(k,f) should crossover to that of the
local fluctuations (y(k,7)¥(—k,1)) at short wavelengths. The
structure factor of the pattern component shifts downwards
with time because a<<a,. This is not the case for the struc-
ture factor of the local fluctuations, which scales according
to the Family-Vicsek’ ansatz with a=a,=0.45 is fulfilled.
Thus the length scale at which the local fluctuations domi-
nate the structure factor should grow with time. Whether the
asymptotic scaling behavior of the facets can be observed in
the limit +—o° for a finite system depends on the relative
strength of the local fluctuations.

VI. LYAPUNOV VECTORS

So far we have studied the dynamics of random infinitesi-
mal perturbations, which is equivalent to study the dynamics
of the most unstable direction in tangent space, i.e., the first
LV. We now devote this section to briefly describe the dy-
namics of further unstable directions that growth at slower
rates.

Let us start by introducing a few key quantities that shall
be used in our analysis. The evolution equation for an ini-
tially random infinitesimal perturbation, Eq. (1), can be writ-
ten in vectorial form as du(z+1)=J[u(z)]ou(z), where J[u(z)]
is just the Jacobian evaluated on the trajectory u(z) at time .
Since infinitesimal perturbations evolve linearly there exists
a linear operator M(¢,,7;) such that du(z,)=M(z,,t,)du(t,),
given by M(tz,t,)zl_[i?:_tllJ [u(z,)]. Oseledec’s theorem [30]
implies  that the' (symmetric)  limit  operator
lim,zﬁw[M(tz,tl)M*(tz,tl)]l/z(’Z“l), where M* denotes the
adjoint of M, does exist and the logarithms of its eigenvalues
are the Lyapunov exponents \, (n=1,2,...,L) and the
eigenvectors are the so-called backward Lyapunov vectors b,,
[4,6]. In what follows, we will consider standard ordering of
the Lyapunov exponents A;=N\,=---=\;, and the corre-
sponding vectors. We use standard numerical techniques to
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FIG. 10. The surfaces h,(x) corresponding to the first five
Lyapunov vectors are plotted (from bottom n=1 to top n=5). Note
that all the interfaces converge to a triangular structure. The data
presented were obtained for model B and have been shifted for
better visibility.

calculate Lyapunov exponents and vectors [31,32].

In general, in order to learn something about the physical
properties of a chaotic system, one should study the so called
characteristic or covariant LVs, which were first introduced
by Ruelle [33] (see also Ref. [4] for a review). Very recent
studies have shown that backward LVs might suffer from
artifacts, introduced by the orthogonality imposed during the
construction of these vectors, which is absent in the case of
characteristic LVs [11,34]. The latter vectors are, however,
very hard to compute in large extended systems. Our prelimi-
nary numerical study of the characteristic LVs in small sys-
tems indicates that characteristic and backward vectors are
identical for each realization of disorder. This might be re-
lated to the disorder that breaks the translational invariance
existing in homogeneous systems, which leads to strong and
static localization of errors at different positions (see details
below). Therefore, here we focus on backward LVs in order
to be able to access larger system sizes.

As we have discussed in Secs. III and IV, in inhomoge-
neous systems the main LV, the one corresponding to the
most unstable direction, converges to a faceted structure as-
ymptotically dominated by one single facet in the limit #
—o, In Fig. 10 we plot the LV surfaces h,(x,?)
=In[|b,(x,1)|], ne{1,2,3,4,5}, corresponding to the first
five backward LVs for model B at some arbitrary time ¢
during evolution in a system of 512 coupled maps. The sur-
face profiles in this plot are arbitrarily shifted in the vertical
direction to aid comparison. In the long time limit the inter-
face h,(x,1), the first LV surface, naturally coincides with the
interface h(x,r) corresponding to an arbitrary initially ran-
dom perturbation. It should be observed that not only the first
LV, but each surface h,(x,t) corresponding to the nth LV
indeed converges to a structure dominated by a single tri-
angle as well. This is actually the case for all the inhomoge-
neous models studied in this paper.

Interestingly, the location of the cusp of the triangles,
where the LVs spatially localize, is not arbitrary. It is inter-
esting to compare the positions of the global maxima of the
interface profiles with the values of the quenched disorder at
those sites. For model C, i.e., the RT case, the site where the
first LV takes its maximum value coincides with the site x at
which the coupling €, takes its lowest value, the site where
the second LV takes its maximum coincides with the site
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where €, takes its second lowest value, and so forth. This is
easy to interpret: since errors get trapped at sites with lower
diffusion, the result is that the LVs strongly localize and
utterly get frozen at those sites.

A very similar correlation effect between error localiza-
tion and disorder can be seen for model B, i.e., the RB case.
Note that in the case of RB disorder the diffusion coefficient
at a given site x is the sum €,,;+¢€, of the local diffusive
couplings connecting x to any of the two neighboring sites.
In fact, we find that the site where the first LV takes its
maximum coincides with the site x where the diffusivity
€41+ €, takes its lowest value, the site where the second LV
takes its maximum value coincides with the site where €,,;
+€, takes its second lowest value and so forth. Thus, the
on-site growth velocity is again controlled by the probability
for the perturbation to get trapped at that site.

One would expect that a similar association of LVs
maxima with disorder extrema should also exist for model A.
However, things are not that straightforward in this case. We
recall that in model A the disorder is introduced in the map
constants and not in the diffusive couplings, which are iden-
tical along the system. We think that due to the dominance of
small scale fluctuations up to quite large length scales for
model A (see Fig. 5) as compared with the situation for mod-
els B and C, the maxima get smoothed out and an extended
neighborhood, rather than just one single site, controls the
final position where the LVs get frozen at long times. In
other words, local synchronization of neighboring sites over
short scales makes it difficult to simply identify the region
where, at a coarse-grained level, the vectors will get asymp-
totically trapped in the case of disorder of type A.

VII. TORWARD A PHENOMENOLOGICAL STOCHASTIC
FIELD THEORY

The evolution of perturbations in homogeneous SECSs is
known to be described in statistical terms by the multiplica-
tive stochastic equation

J
5514 =, Ou + &(x,1) du, (10)

where &(x,f) is a noise term that accounts for the chaotic
fluctuations along the trajectory and is assumed to be & cor-
related in space and time (&(x,n)é(x’,1'))y=208(x—x")t
—t"). Pikovsky and Kurths [7] and Pikovsky and Politi [8]
proposed this equation as the proper candidate for modeling
the dynamics of the first Lyapunov vector from a statistical
perspective. They showed that it actually reproduces the
main statistical properties of SECS in a variety of systems
[8]. This equation mimics the linear equations in tangent
space for the dynamics of infinitesimal perturbations in spa-
tiotemporal chaotic systems.

An important feature of Eq. (10) is that, under a Hopf-
Cole transformation 2=In| du| it maps into the KPZ equation

a%h =(3,h)* + . h + E(x.1), (11)

which ultimately justifies why the log-transformed (main)
Lyapunov vector of many spatiotemporal chaotic systems
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scales in space and time as a KPZ surface [7-11]. Interest-
ingly, Eq. (10) also appears in the context of the classical
problem of the directed polymer in a random potential [35]
(also see Ref. [36] for a detailed review).

We now explore extensions of this type of Langevin equa-
tions to the case of disordered systems. A phenomenological
stochastic field theory of this kind should be helpful in order
to identify the essential symmetries and mechanisms that de-
termine the dynamics of perturbations in chaotic disordered
systems. The existence of scale invariance strongly encour-
ages this approach. Therefore, microscopic details of the
models are expected to be irrelevant at a sufficiently coarse-
grained scale, as occurs in the case of homogeneous systems.

In the case of model A, Eq. (1) can be considered as a
straightforward discrete version of

gﬁu = . [0,fCr.u) 8] + [0, fCrt) — 1160

It is important to note that the noisy term d,f(x,u)
= 0,f(x,y)]u(y depends implicitly on time through the tra-
jectory u(x,r) and so, it includes both an annealed and a
quenched component. The origin of the latter is the inhomo-
geneous character of the coupled elements: Sites are more or
less chaotic depending on their position x in the system. For
instance, in the particular case of the logistic map we have
d,f(x,u)=c(x)[1-2c(x)u], where c(x) is the local map pa-
rameter. We argue that in the hydrodynamic limit the
quenched part of the noise dominates over the annealed one.
The reason being that the quenched character of the disorder
generates long-range temporal correlations at each site,
which are expected to control the dynamics over the short-
range correlations of the annealed random terms.

These arguments suggest that for type A models the long
time limit of main LV should be generically described by a
multiplicative Langevin equation such as

ﬁ%au = 0 [ 200 8u] + 0,00 + £(x) b, (12)

where {(x) represents the quenched disorder. This equation
can be further simplified since the disordered diffusion term
Ao [ £(x)Su] is irrelevant as compared with d,,8u. To be pre-
cise, in the case of weak disorder that we study here the
inhomogeneous diffusion term simply renormalizes to an ef-
fective constant diffusion term [47]. Finally we arrive at our
stochastic field theory proposal for model A type of systems

d,6u=D3,.ou+ {(x)du, (13)

where D is an effective diffusion constant and {(x) is a
quenched columnar disorder with & correlations.

Interestingly, Eq. (13) appears in the context of diffusion
in random trapping or amplifying quenched potentials
[37-44]. After the Hopf-Cole transform of the perturbation
field, su=exp(uh/D), one obtains

ah(x,1) = dyh+ w(3.h)* + {(x), (14)

which is a close relative of the KPZ equation, but here the
additive noise term {(x) is quenched and delta correlated,
(L(x)¢(x"))=2608(x—x"). This equation has attracted some in-
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terest in the past, as it also describes the free energy of di-
rected and undirected polymers of length ¢ in the presence of
columnar disorder [22,29,45,46].

Only very recently [29], it has been realized that the sur-
face described by Eq. (14) exhibits anomalous scaling expo-
nents induced by the self-organization in a faceted structure.
In Ref. [29] we studied Eq. (14) by means of extensive simu-
lations and determined the critical exponents to be z
=1.35%0.05, «=1.05%£0.05, and a,=1.50*=0.05. These
values are in excellent agreement with the values reported
here for the critical exponents of the main LV surface in
SECSs of type A (see Fig. 5). This strongly supports our
claim that, in fact, Eq. (13) is a minimal model that captures
the essential ingredients dominating the evolution of errors
in inhomogeneous models of type A [48].

As it has already been discussed in Ref. [29], the intro-
duction of an additional annealed noise term in Eq. (14) is
irrelevant in the renormalization group sense, but leads to an
increase of the typical size over which the local random fluc-
tuations (discussed in Sec. V) dominate. Hence, for a finite
size system the asymptotic scaling behavior may not be ob-
servable if the thermal noise amplitude is too large. This is of
some importance for the situations we are interested in be-
cause, when considering the evolution of perturbations in
SECS, there will always be some temporally fluctuating
noise as explained above. Thus, even if quenched disorder is
present in the studied system, it may be very weak in com-
parison with the temporally fluctuating one. In that case the
behavior described here would only be observable in very
large systems.

Moreover, it should be noticed that, although the rough-
ness exponents «, oy, and a, seem to be the same within
error bars for the three models of disorder studied in this
paper, the dynamic exponent z does take different values.
This suggests that the disorder symmetries that distinguish
models A, B, and C are indeed relevant and lead to different
nonequilibrium universality classes.

One can try to formulate a stochastic-field evolution equa-
tion similar to Eq. (13) for models B and C, but where the
disorder enters in a different form into the diffusion and the
multiplicative term in order to reflect the different symme-
tries of the coupling in these two models. Unfortunately, we
have not been able to find the correct equations reproducing
the scaling behavior of the LV surfaces for disordered sys-
tems in the class B and C. Similar arguments might be used
to write down the stochastic equation

d,0u = d(x)d,0ul + &x,t) Su (15)
for model B and
9,01 = 9,.[ L(x)Sul + &(x,t) Su (16)

for model C, where &(x,7) is a noise term. We have investi-
gated the scaling properties of Egs. (15) and (16) by means
of numerical simulations and found that, while these simple
stochastic models generically lead to faceted surfaces with
the expected roughness exponents, they are unable to repro-
duce the correct dynamic exponent of disordered SECS in
the class B nor C, but instead yield the same dynamical
exponent as Eq. (13). We believe that the reason behind this
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disagreement lies in the existence of correlations between the
quenched and annealed fluctuating terms that are not incor-
porated in this naive approach. These nontrivial correlations
might also explain the, at least at first sight, counter intuitive
result that different dynamic exponents are observed in
SECS of class B and C. Some remarks regarding this point
are now in order.

Classical diffusion in random media involves the study of
equations such as (15) and (16), but where the multiplicative
term &(x,) Su is absent. It is well known [21] that in the long
time limit, dynamics of RB and RT models is identical, even
for strong disorder. Despite the different symmetries in-
volved, the large scale physics is the same. However, our
numerical results indicate that model B (RB symmetry) and
model C (RT symmetry) in SECS seemingly belong to dif-
ferent universality classes. We claim that the multiplicative
noise, which is generically coupled to the quenched disorder
in the systems we have studied, breaks the duality between
RB and RT type of disorder in this case, leading to distinct
dynamical exponents for the two different diffusion configu-
rations.

VIII. CONCLUSIONS

We have studied the evolution of infinitesimal perturba-
tions in inhomogeneous spatially extended systems exhibit-
ing space-time chaos. Inhomogeneity is introduced by means
of a quenched disorder. We have considered one-dimensional
coupled-map lattices as a simple and computationally conve-
nient model system to analyze some aspects of chaos in the
presence of disorder. In this regard, three different classes of
models have been investigated by means of extensive nu-
merical simulations. In all cases we find a strong localization
behavior characterized by an exponential spatial profile
around some localization centers. In the long time limit the
perturbation concentrates around one single final attracting
center. We have also studied the second, third, and so on
backward LVs corresponding to most rapidly expanding di-
rections in tangent space and found a correspondence be-
tween the localization centers and the positions in space cor-
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responding to increasing minima of the diffusion in the
particular disorder realization.

Note that the strong localization behavior described here
is essentially different from the dynamic localization ob-
served in the case of homogeneous SECS. In the latter, per-
turbations do also localize on just a few sites, but the posi-
tion of these sites keeps fluctuating in time. However, in the
presence of quenched disorder the sites where perturbations
localize are fixed by the corresponding realization of the dis-
order.

Moreover, by a standard mapping (Hopf-Cole transform)
of the perturbation into a growing surface we found that the
LV associated surfaces self-organize in a faceted structure, at
variance with what occurs in homogeneous (nondisordered)
systems where one generically obtains a surface in the uni-
versality class of KPZ. Interestingly, this faceted surface was
found to exhibit coarsening and anomalous kinetic roughen-
ing in agreement with previous theoretical predictions [28]
for this type of scale-invariant structure.

The evolution of infinitesimal perturbations in spatially
extended chaotic systems with quenched disorder may be
described at a coarse-grained level as a diffusion process in a
random potential. Note, however, that the value of the dy-
namical exponent z depends on how disorder is introduced.
The reason for this is possibly the influence of the disorder
distribution on the temporal dependence of the coarsening, as
described in Ref. [22] in the context of diffusion (see also
Ref. [29] for a discussion relevant for the present work)

We think that strong localization and anomalous scaling
should play a role, e.g., in realistic weather models, where
quenched disorder is included in the form of inhomogeneous
boundary conditions representing certain geographical and
topographical conditions.
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