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We study the statistics of the interoccurrence times between events above some threshold Q in two kinds of
multifractal data sets �multiplicative random cascades and multifractal random walks� with vanishing linear
correlations. We show that in both data sets the relevant quantities �probability density functions and the
autocorrelation function of the interoccurrence times, as well as the conditional return period� are governed by
power laws with exponents that depend explicitly on the considered threshold. By studying a large number of
representative financial records �market indices, stock prices, exchange rates, and commodities�, we show
explicitly that the interoccurrence times between large daily returns follow the same behavior, in a nearly
quantitative manner. We conclude that this kind of behavior is a general consequence of the nonlinear memory
inherent in the multifractal data sets.
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I. INTRODUCTION

In recent years, the occurrence of rare �extreme� events
has attracted much attention �1–3�. Usually, rare events with
magnitudes considerably exceeding the average magnitude,
have been considered as independent, since the typical time
span between them is very large. In recent years, however,
there is growing evidence that this assumption is not always
true. In particular, in financial markets large volatilities seem
to cluster �4�, and in paleoclimate records a clustering of
large river flows or high temperatures has also been observed
�5�. To quantify the occurrence of rare events one usually
considers the time interval between successive events above
�or below� some threshold Q. One is interested in the prob-
ability distribution function of these return intervals as well
as in their long-term dependencies �autocorrelation function,
conditional return periods, etc.�. In numerical treatments, one
usually considers not too large thresholds Q where the sta-
tistics of the return intervals is good, and then tries to ex-
trapolate the results towards very large thresholds where the
statistics, by definition, is poor.

For independent data sets, the return intervals are inde-
pendent and �according to Poisson statistics� exponentially
distributed. Clustering of rare events indicates a certain
memory in the return intervals, and indeed recent studies
have shown that this kind of memory is a consequence of
long-term dependencies in the time series itself �5–8�, which
occur, for example in climate �5,9� and physiological records
�10–12�, as well as in time series demonstrating human be-
havior, including economic records �13–15�, teletraffic in
large networks �16�, and crowd behavior �17�.

Long-term memory can be either �i� linear, �ii� nonlinear,
or �iii� both linear and nonlinear. In the first case, which is
often referred to as “monofractal” the �linear� autocorrelation
function Cx�s� of the data decays with time s by a power law,
Cx�s��s−�, 0���1, and the exponent � fully describes the
correlations within the record. In this case, the return inter-
vals are long-term correlated in the same way as the original
record, and its distribution is characterized at large scales by
a stretched exponential with exponent �, and at short scales

by a power law with exponent �−1 �5–7�. It has been shown
that those features can be observed in long climate records
�5� as well as in the volatility of financial records �4�, even
though the volatility also contains nonlinear memory and
thus belongs to the case �iii�.

In the second case, where the record is “multifractal,” the
linear autocorrelation function Cx�s� vanishes for s�0 and
nonlinear �multifractal� correlations, which cannot be de-
scribed by a single exponent, characterize the record. Ex-
amples are precipitation records or the returns in financial
records. Using a variant of the multiplicative random cascade
�MRC� model, we have shown recently that the nonlinear
correlations inherent in such time series provide a pro-
nounced effect on the statistics of return intervals, leading to
probability density functions �PDFs�, autocorrelation func-
tions, and conditional return periods that exhibit power-law
behavior, in marked contrast to the independent and mono-
fractal long-term-correlated data series �8�. The exponents of
these power laws significantly depend on the selected thresh-
old, i.e., different behavior is observed for return intervals
between smaller and larger events. Therefore, no straightfor-
ward extrapolation of the laws governing the return intervals
between smaller events can be done for quantifying intervals
between larger events. We have also provided some evidence
that these features characterize the International Business
Machines �IBM� stock-price record �8�.

The aim of this paper is twofold. First, we show that
qualitatively similar results can be obtained for data series
generated by a different kind of model known as the multi-
fractal random walk �MRW�, proposed in �18�. This demon-
strates that the observed behavior is a universal consequence
of the nonlinear correlations inherent in the multifractal data,
and not an artifact of a certain determinism preserved in the
MRC creation procedure. Second, we extend our studies to a
large number of various financial records, in this way pro-
viding the empirical evidence of the universality of the ob-
served behavior on financial markets. We also compare the
empirical results with both MRC and MRW models to elu-
cidate whether the first or the second model fits better to the
empirical evidence and therefore appears more suitable for
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making predictions of the dynamics of certain quantities.
The paper is organized as follows. In Sec. II we briefly

review long-term dependencies and multifractalilty in finan-
cial time series. In Sec. III we describe the two procedures
�MRC and MRW� to generate multifractal data with vanish-
ing linear correlations. In Sec. IV we discuss the return in-
terval statistics, including the PDF, autocorrelation function
�ACF�, and conditional return periods for both models, and
discuss the similarities and the differences between them. In
Sec. V we study the same quantities in financial markets,
including market indices and currency exchange rates, as
well as stock and oil prices. Finally, in Sec. VI, we summa-
rize our results.

II. LONG-TERM MEMORY IN FINANCIAL MARKETS

In financial markets, the central quantity is the return Ri
after the ith unit trading period �which might differ from
minutes to years�, related to the price Pi by

Ri =
Pi − Pi−1

Pi−1
. �1�

Here we concentrate on daily closing prices Pi, where i de-
notes subsequent bank days. By definition, positive returns
characterize gains and negative returns characterize losses.
One of the reasons to consider returns instead of prices is
that the time series of the prices is usually nonstationary �in
most cases, the same holds for the increments Pi− Pi−1 on
long time lags, due to inflation�.

There is empirical evidence that the linear ACF

CR�s� =
1

�R
2�L − s��i=1

L−s

�Ri − �R���Ri+s − �R�� �2�

of price returns on the open markets vanishes for s above
some very short time scale �s=1 day�, that expresses the
latency of the market reaction to new information. We have
confirmed this kind of behavior for all records considered
here. For the ACF of the IBM stock-price record, we refer to
�8�. The absence of linear correlations is consistent with the
efficient market hypothesis, that all the available information
is instantly processed when it reaches the market and imme-
diately reflected in the prices of the assets traded �19,20�.

An important quantity that allows one to quantify nonlin-
ear memory in financial markets is the so-called “structure
function” Sq�s� �21�. To calculate Sq, we first subdivide the
series of returns Ri into Ns nonoverlapping windows of size
s. Next, the absolute values of the local sums in every win-
dow k are calculated,

Yk = 	 �
i=�k−1�s+1

ks

Ri	 , �3�

and Sq�s� is obtained via

Sq�s� =
1

Ns
�
k=1

Ns

Yk
q. �4�

Since the mean value of the returns �i=1
N Ri=0 vanishes, Sq�s�

is equal to the central moment, which is a generalization of

the variance of Yk. For q=2, it reduces to the normal vari-
ance.

For long-term-dependent data, the structure functions
scales as Sq�s��sqh�q�, where h�q� is the generalized Hurst
exponent, which is constant for monofractal data, and q de-
pendent for multifractal data sets �22,23�. h�q� is directly
related to the scaling exponent ��q� defined by the standard
partition-function-based multifractal formalism �22,24�, via
��q�=qh�q�−1 �25�.

Using various methods that allow estimation of h�q� from
a given time series also in the presence of trends �25,26�, the
multifractal character of the price returns has been shown
explicitly in a number of studies �see, for example, �27–29��.
Also some particular parameters related to the structure func-
tion have been introduced, such as the intermittency param-
eter S1= 
− �dh�q� /dq�
q=1 �30�, which is the tangent to the
h�q� curve at q=1.

In addition, much effort have been undertaken to intro-
duce multifractal models for describing the processes in fi-
nancial markets �31–38�. Most of these studies dealt with
time series on the global market, including some integral
market indices �e.g., S&P500, CAC40�, important stocks
�e.g., IBM�, and exchange rates of world currencies �e.g.,
Deutsche mark vs U.S. dollar� that have a sufficiently long
history of trading. Also, the multifractal properties of the
absolute returns �volatility� were studied earlier in
�27,33,39,40�.

A different way of quantifying nonlinear memory is via
the ACF of the absolute returns to different powers q, 
Ri
q,
where pronounced correlations on long time lags have been
found, first for q=1 �41�, and later for general q �42�.

III. GENERATION OF MULTIFRACTAL DATA SERIES

There are several ways to generate multifractal data. Here
we concentrate on two of those that allow us to create mul-
tifractal data series with vanishing linear correlations. The
first algorithm is a variant of the multiplicative random cas-
cade process, described, e.g., in �22,43–45�. In this process
�8�, the data set is obtained in an iterative way, where the
length of the record doubles in each iteration. We start with
the zeroth iteration n=0, where the data set �xi� consists of
one value, x1

�n=0�=1. In the nth iteration, the data xi
�n�,

i=1,2 , . . . ,2n, are obtained from

x2l−1
�n� = xl

�n−1�m2l−1
�n� and x2l

�n� = xl
�n−1�m2l

�n�, �5�

where the multipliers m are independent and identically dis-
tributed �i.i.d.� random numbers with zero mean and unit
variance �see Fig. 1�. The data sets are characterized by a
vanishing autocorrelation function, i.e., Cx�s�=0 for s�0
�8�.

The second algorithm is the multifractal random walk
proposed in �18�. In this algorithm, first we generate a record
ai, i=1, . . . ,N, whose power spectrum decays as 1 / f �“1 / f
noise”�. Next, we exponentiate these numbers and multiply
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them by Gaussian random numbers bi, providing the result-
ing multifractal series xi �see Fig. 2�,

xi = �eai�bi. �6�

Both models create data series with symmetric distribu-
tion characterized by log-normal tails �see Fig. 3�. We wish
to note that, in general, h�q� is influenced not only by linear
and nonlinear correlations, but also by the heavy tails in the
distribution of the simulated data, which is less pronounced
in financial records. There are several ways to elucidate the
effect of the memory inherent in a time series on h�q�. The
first way is to exchange the data rankwise by non-heavy-
tailed distributed data, e.g., Gaussian �8�. The memory is
conserved in this exchange process, but the distributional
effect on h�q� is eliminated this way. The second way is to
shuffle the data. After shuffling, only the distributional effect
is preserved in h�q� �25�, which can be estimated in this way.

In the more general case �for example, when studying
volatilities in financial markets�, when a record contains both
linear and nonlinear correlations, it is possible to distinguish

between them by phase randomization. It has been proved
that after this procedure only linear correlations remain in the
record, since the power spectrum is preserved �46�.

IV. RETURN INTERVALS IN THE SIMULATED
MULTIFRACTAL DATA SERIES

In the following, we are interested in the statistics of the
interoccurrence times, or return intervals ri, between events
above some threshold Q in both the MRC and the MRW
models. For an illustration of the procedure of extracting the
return interval series from a data series, see Fig. 4.

For a given record, there is a one-by-one correspondence
between the threshold Q and the mean return interval �or
return period� RQ, RQ=1 /�Q

�P�x�dx, where P�x� is the distri-
bution of the data. By fixing RQ instead of Q, return interval
statistics remain unchanged, when the rankwise exchange
procedure described above is applied. Accordingly, return in-
terval statistics depend solely on the memory inherent in the
data, and hence can be used as an effective instrument for
quantifying such memory, independent from a multifractal
analysis of the data.

First, we consider the distribution density of the return
intervals PQ�r� for different thresholds Q for the MRC
model. As shown in Fig. 5�a�, PQ�r� scales as �8�

PQ�r� � �r/RQ�−��Q�. �7�

Deviations from the power-law behavior occur only at very
large scales r�30RQ, and can probably be assigned to finite-
size effects. For small RQ values, there are also some devia-
tions on small scales, which probably are caused by discrete-
ness effects, since the smallest return interval in the
considered discrete model is a unit time interval. In the in-
termediate regime �which covers up to four orders of mag-
nitudes�, a power law provides an excellent fit for the PDF
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FIG. 1. Illustration of the iterative random cascade process. Af-
ter each iteration the length of the generated records is doubled and
after n=21 iterations the multifractal set consists of L=221 num-
bers. A subset is shown in the bottom panel.
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�see Fig. 5�a��, but with different exponents for different
quantiles, in particular �=−1.95, −1.6, and −1.4 for RQ=10,
70, and 500, respectively. Accordingly, there is no scaling,
and as a consequence the occurrence of extremes cannot be
estimated straightforwardly from the occurrence of smaller
events.

Qualitatively similar results are obtained for the MRW
model �Fig. 5�e��, despite more pronounced deviations from
the power law at small and large r /RQ values. We think that
these deviations are a consequence of the multiplicative
noise inherent in the MRW model. The dependence of the
exponents on RQ appears to be significantly stronger than in
the MRC model, with �=−2.22, −1.55, and −1.24 for RQ
=10, 70, and 500, respectively.

Next, we consider the correlations among the return inter-
vals. To this end, we consider the ACF of the return interval
series, defined as

CQ�s� =
1

�r
2�LQ − s� �

i=1

LQ−s

�ri − �r���ri+s − �r�� . �8�

Again, for both models under consideration, we find power-
law decay of CQ�s�,

CQ�s� � s−	�Q�, �9�

demonstrating the presence of long-term memory even in the
absence of linear correlations in the original data set, in
agreement with our recent findings for the MRC model �8�.
The exponent 	 exhibits a slight dependence on the size of
the quantile Q, such that the intervals between smaller events
�e.g., RQ=10� appear to be more strongly correlated �i.e.,
show a smaller exponent 	� than the intervals between larger
events �e.g., RQ=500�. For the MRC model, the best fits are
	=0.46, 0.49, and 0.56 for RQ=10, 70, and 500, respectively
�see Fig. 5�b��.

Figure 5�f� shows that for the MRW model a slower decay
of the ACFs appears for all return periods, with 	=0.34, 0.4,
and 0.45 for the same RQ values as for the MRC model. In
addition, the absolute values of the normalized ACF ap-
peared to be larger for the MRW model. It seems that also for
CQ�s� finite-size effects are more pronounced in the MRW
than in the MRC model.

To further quantify the memory among the return inter-
vals, we next consider the conditional return intervals, i.e.,
we regard only those intervals whose preceding interval is of
a fixed size r0. For both models considered, for r0 values
exceeding the return period RQ, the conditional return period
RQ�r0�, defined as the mean value of all return intervals fol-
lowing the return intervals with a certain r0 value, increases
by a power law,

RQ�r0� � r0

�Q� for r0 � RQ, �10�

in agreement with our recent findings for the MRC model
�8�. It is interesting that the exponents 
�Q� are identical for
both models, with 
=0.63, 0.53, and 0.49 for RQ=10, 70,
and 500, respectively �see Figs. 5�c� and 5�g��.

Finally, we studied the dependence of the exponents ��Q�
and 
�Q� on both the global return period RQ and the system
size L. For both models, it seems that, for all system sizes N,
both ��Q� and 
�Q� decay logarithmically with RQ. Again,
for the MRW model, there are earlier and stronger deviations
from this kind of behavior. The RQ dependence of the expo-
nent � is more pronounced, while the system size depen-
dence is roughly of the same level. It seems that for large
system sizes both ��Q� and 
�Q� dependencies demonstrate
the tendency of collapsing into limiting curves �see Figs.
5�d� and 5�h��.

V. RETURN INTERVALS BETWEEN LARGE RETURNS
IN FINANCIAL MARKETS

In the following, we consider historical financial records
of the arithmetic returns Ri �1� of the daily closing prices for
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FIG. 5. �Color online� Statistics of the return intervals for the
MRC �left column� and MRW �right column� data series. �a� PDFs
of the return intervals for the MRC model, for three different quan-
tiles, RQ=10 ���, 70 ���, and 500 ���, rescaled with RQ. Full
straight lines represent the best power-law fits; to avoid overlap-
ping, the distributions for RQ=70 and 500 are shifted downward by
factors of 102 and 104, respectively. �b� ACFs of the return intervals
for the same quantiles as in �a�. �c� Conditional return periods
RQ�r0� divided by RQ versus r0 /RQ, for the same quantiles as above,
with best fits; results for RQ=70 and 500 are shifted upward by
factors of 10 and 100, respectively. �d� Exponents ��Q� and 
�Q�
for the PDFs �filled symbols� and the conditional return periods
�open symbols� plotted versus RQ for different system sizes L=226

���, 221 ���, and 216 ���. The panels from �e� to �h� present the
same quantities for the MRW data series. All the results in �a�–�c�
and �e�–�g� have been obtained for the system size L=221 and av-
eraged over 150 random configurations. Panels from �a� to �d� are
adapted from �8�.
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�i� indices, �ii� stocks, �iii� exchange rates, and �iv� com-
modities obtained from �47–49�. Previous analysis mainly
focused on extreme value statistics �50–52�, or on the return
intervals between volatilities above certain thresholds
�4,53–57�. Intertrading times, waiting times between two
transactions on the market, as well as exit times have also
been analyzed �58–60�. Recently, power-law scaling of wait-
ing times between the consecutive spot price spikes in the
Nord Pool electricity market have been reported �61�.

It is known that multifractal models are capable of repre-
senting several stylized facts in financial records. Here we
study whether this multifractality leads to similar effects in
the return interval statistics as in the simulated multifractal
records. Representative examples of the four types of multi-
fractal financial records we consider are shown in Fig. 6. The
figure displays the bursty behavior characteristic for multi-
fractal records and shows also the distribution of the data.

We discuss the results for the return intervals separately
for each class of records. We start with the market indices in
Fig. 7. Figures 7�a�–7�c� show the PDFs PQ�r� of the return
intervals for RQ=10, 30, and 70, respectively. For compari-
son, we present also the PDFs for the simulated data, gener-
ated for both the MRC and the MRW models for a system
size L=214 which is comparable to the length of the available
financial records, and averaged over N=500 configurations.

The figure shows that for RQ=10 the PDFs of the return
intervals seem to be better approximated by the MRW
model, while with increasing RQ the situation changes. For
RQ=70, the PDFs can be nearly perfectly approximated by
the best fit PQ�r���r /RQ�−1.25 for the MRC model. The fig-
ure suggests that, while the MRW model is a better approxi-
mation when considering return intervals between events of
intermediate magnitude, the MRC model provides a better
approximation for the more extreme returns, and may be
better suitable for better risk estimations.

Figures 7�d� and 7�e� show the conditional return periods
RQ�r0� for RQ=10 and 30, again being compared with the
relevant quantities for the simulated data. For RQ=10, both
the MRC and the MRW models provide nearly a perfect fit
for the market data �the best fit for the MRC model, RQ�r0�
��r0 /RQ�0.4, is provided to compare with the real data re-
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tween daily closing prices: �a� Dow Jones index �1928–1948�, �b�
IBM stock price �1962–1981�, �c� British pound versus U.S. dollar
exchange rate �1970–1989�, and �d� Brent crude oil price �1987–
2006�. Selected fragments of 5000 data points starting from the
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�NASDAQ� �diamonds�, and S&P 500 �triangles�, compared with
the corresponding quantities for the MRC model �thick dashed
lines�, and the MRW model �thick dash-dotted lines� of the system
size 214, all given in arbitrary units. �a�–�c� PDFs of the return
intervals for RQ=10, 30, and 70, respectively; �d�, �e� conditional
return periods for RQ=10 and 30, respectively; �f� ACFs of the
return intervals for RQ=10 �open symbols for financial records,
dashed line for the MRC model, dash-dotted line for the MRW
model� and RQ=30 �filled symbols for financial records, dotted line
for the MRC model, dash-dot-dotted line for the MRW model�. The
thin dashed lines in �c�, �d�, and �f� represent the shifted best fits for
the multiplicative cascade model: PQ�r���r /RQ�−1.25, RQ�r0�
��r0 /RQ�0.4, and CQ�s��s−0.6, respectively. The error bars repre-
sent the 95% quantiles.
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sults�. For RQ=30, due to weaker statistics, stronger fluctua-
tions occur.

Finally, Fig. 7�e� shows the ACFs of the return intervals
for RQ=10 and 30, which for both models are well approxi-
mated by CQ�s��s−0.6.

The corresponding analysis for a number of individual
stocks, exchange rates, and commodities, is shown in Figs. 8,
9, and 10, respectively. Quite surprisingly, they all obey
qualitatively similar laws as the market indices, which are
consistent with the findings for the simulated multifractal
data series.

All figures show that the PDFs of the return intervals, for
RQ=70, show a perfect power-law decay that is in quantita-
tive agreement with the MRC model. This kind of universal
behavior is surprising, since it shows that the very different
financial records behave in the same characteristic way. For
smaller RQ values, RQ=10 and 30, there are deviations from
this kind of behavior at small scales, which are better de-
scribed by the MRW model. Again, it is surprising, that all
records show the same features.

Also the conditional return periods show the same quali-
tative behavior for all records. The increase with r0 /RQ is
well described by both models for RQ=10, while for RQ
=30 due to the limited statistics larger fluctuations occur, but
the results for the financial records agree with the model
results. The ACF of the returns, finally, shows the same �uni-
versal� behavior for all financial records, which agrees nicely
with the prediction of both models. Due to the large fluctua-
tions in the comparatively short financial data series, one

cannot observe the small differences in the exponents for
both RQ values, as predicted by the models.

We wish to note that we mainly focused here on the return
intervals between large positive returns, quantifying large
gains in a unit of time. Figure 11 shows that our results are
not limited to the positive returns above some threshold Q,
but also hold for negative returns below the threshold −Q.
The figure shows the same quantities obtained for the return
intervals between large negative returns for one representa-
tive record from every type considered: Dow Jones index,
IBM stock price, British pound vs U.S. dollar exchange rate,
and Brent crude oil price. Since the applied multifractal
models create records which are symmetric around zero, the
results for the simulated data remained unchanged.

VI. CONCLUSION

In summary, we found that the return intervals in the fi-
nancial records obey nearly quantitatively the same laws as
the return intervals in two multifractal models, the MRC and
the MRW models. The universal character of the laws
�power-law behavior of the PDF of the return intervals and
power-law decay of the ACF of the return intervals� is sur-
prising, since the considered financial records differ very
strongly, varying from global market indices to exchange
rates and oil prices. Since these laws are due to the inherent
nonlinear memory in the records, this indicates that the non-
linear memory has a universal characteristic, being the same
for all financial records.
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FIG. 8. �Color online� Return interval statistics for the arith-
metic returns of daily stock closing prices: Boeing �circles�, General
Electric �squares�, General Motors �diamonds�, and International
Business Machines �triangles�, compared with both multifractal
models �the same as in Fig. 7�.
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FIG. 9. �Color online� Return interval statistics for the arith-
metic returns of the daily closing exchange rates of different cur-
rencies versus U.S. dollar: Danish crone �circles�, British pound
�squares�, Deutsche mark �diamonds�, and Swiss franks �triangles�,
compared with both multifractal models �the same as in Fig. 7�.
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In our study, we concentrated on multifractal data series
with vanishing linear correlations. Our results are not
straighforwardly applicable, for example, to the volatility in
financial records, that show multifractal features and in ad-
dition are characterized by a linear autocorrelation function
that decays by a power law. In this case, linear and nonlinear
correlations are superimposed, and this leads, as we have
shown recently by extending the MRC model �62,63�, to a
behavior of the PDF which is characterized by a power-law

decay at small scales followed by a �stretched� exponential
decay at large scales, which is difficult to distinguish from
the behavior expected for long-term correlated records �5�;
see also �4,7,57�.
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