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Clustering signatures classify directed networks

S. E. Ahnert™
Theory of Condensed Matter, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 OHE, United Kingdom

T. M. A. Fink
INSERM U900, CNRS UMRI144, and Curie Institute, Paris F-75248, France
and Ecole des Mines de Paris, ParisTech, Fontainebleau, F-77300 France
(Received 30 October 2007; revised manuscript received 4 June 2008; published 18 September 2008)

We use a clustering signature, based on a recently introduced generalization of the clustering coefficient to
directed networks, to analyze 16 directed real-world networks of five different types: social networks, genetic
transcription networks, word adjacency networks, food webs, and electric circuits. We show that these five

classes of networks are cleanly separated in the space of clustering signatures due to the statistical properties
of their local neighborhoods, demonstrating the usefulness of clustering signatures as a classifier of directed

networks.
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I. INTRODUCTION

Many types of complex networks have been studied over
the past decade [1], ranging from social collaboration net-
works [2] and the internet [3] to genetic regulatory networks
[4] and transport networks [5]. This research has revealed
remarkable similarities in the properties of many different
types of real-world networks, such as scale-free topologies
[6] and small-world connectivity [7]. However, with a few
exceptions [8—11], most of the research thus far has concen-
trated on undirected networks, that is, networks in which the
edges between nodes are not oriented. This is partially be-
cause directed networks allow a much more complicated
connectivity. For example, in an undirected network there is
only one way to form a triangle between three unlabeled
nodes, whereas directed networks allow seven distinct tri-
angles (see Fig. 1). The relative frequency of these seven
triangles in real-world networks has been studied in the con-
text of network motifs [12], which have been used to identify
superfamilies of networks [13]. In each of these superfami-
lies, particular motifs occur either more or less frequently,
compared to the null case, and the combination of over- and
underexpressed motifs is unique to a given superfamily.

II. CLUSTERING SIGNATURE

Here we use a clustering signature to classify a wide
range of complex directed networks. The components of this
four-dimensional quantity consist of a recent generalization
[11] of the undirected clustering coefficient [7] to directed
networks. By normalizing it we can map this quantity to the
interior of a tetrahedron, thereby providing an effective
means for visualizing and comparing the local connectivity
of directed networks. We find that different types of directed
real-world networks cluster in distinct regions in this tetra-
hedron, revealing the different roles played by the nodes in
these networks.
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For undirected networks the clustering coefficient of a
node i is defined [7] as
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where j<k and j#i+#k, and d; is the degree of node i. This
corresponds to the number of triangles in the network which
include node i, divided by the number of pairs of bonds
which include i, which represent potential triangles.

In the past the task of defining a clustering coefficient in
directed networks has proven difficult, as there is more than
one way of forming a triangle (see Fig. 1). However, in the
very recent literature [11], advances have been made in this
direction, and we use a classification of triangles which is
equivalent to that introduced in [11].

Consider three nodes, of which one is labeled. For these
there are four distinct “basis” triangles with a single edge
between each pair of nodes. Furthermore there are three
types of edge pairs for these nodes which can connect the
labeled node to its two unlabeled neighbors. These are the
three potential triangles of directed networks. We show these
four basis triangles and the three potential triangles in Fig. 2.
One of the four basis triangles is the feedback (FB) loop and
the remaining three are feedforward (FF) loops. The three
feedforward loops differ in the in-degree of the labeled node
(shown black): the labeled node has in-degree O for FF,,
in-degree 1 for FFp, and in-degree 2 for FF.. Thus one can
construct four clustering coefficients for each node, one for
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FIG. 1. Directed networks are much more complex than undi-
rected ones. In undirected networks three unlabeled nodes can form
only one sort of triangle (left), whereas in directed networks there
are seven distinct triangles (right).
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FIG. 2. The three potential triangles (left column) and four basis
triangles (right column) for one labeled node (black). The basis
triangles divide into a feedback (FB) loop and three feedforward

(FF) loops. Note that all seven triangles shown in Fig. 1 can be
recreated by superposing feedforward and feedback loops.

each type of loop [11]. Based on the clustering coefficient for
undirected networks, the number of triangles N is divided by
the number of potential triangles M. This gives a clustering
signature for each node C" given by
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and where a;; signifies a directed connection from node i to
node j. The sums now run over all possible j,k such that i
FjFk #z and there is no longer a constraint of j<k. Note
that M and M(C‘) involve double counting, which corre-
sponds to the two possible ways in which both FF, and FF,
can be formed from MX) and M(‘) The set of these four
quantities forms the clustering signature of a directed net-
work.

As the clustering signature is a point in four-dimensional
space, and thus is hard to visualize, we normalize the signa-
ture and omit the first dimension. In the resulting three-
dimensional space each signature—represented as a point—
lies inside a tetrahedron, the vertices of which are located at
the origin (0,0,0) and the points (1,0,0), (0,1,0), and (0,0,1).
Hence this tetrahedron is spanned by orthogonal unit vectors,
which represent the three normalized feedforward loop com-
ponents. The magnitude of the fourth component, represent-
ing the feedback loop, is given by the perpendicular distance
between a (111) plane running through that point and the
origin (with_the actual component of the normalized signa-
ture being \3 times that distance). The normalized signature
is defined by
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Note that this normalization is not the standard vector
normalization which divides by the modulus of the vector. It
is equivalent to the normalization discussed in Eq. (18) in
[11].

We can then calculate the average normalized clustering
signature over all N nodes i of a given network as
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In the following we will refer to the four components of the
average normalized clustering signature C as EFB, E'FFA,
CFFB, and CFFC.

III. CLASSIFICATION OF DIRECTED NETWORKS

We calculate the clustering signatures of 16 directed real-
world networks. These networks fall into five different
classes: electric circuits, genetic transcription networks, so-
cial networks, language networks, and food webs. We show
that these five classes are clearly separated in the space of
normalized clustering signatures. To measure how tightly the
groups are clustered we employ a k-means clustering algo-
rithm which cleanly separates these networks into their re-
spective classes, with 89% of total variance explained. These
k-means centroids thus provide an effective classifier of di-
rected networks. All k-means clustering is done in the three-
dimensional space of (5FFA,€'FFB,5FFC), which corresponds
to the interior of the tetrahedron. The location of the 16
networks in the clustering signature tetrahedron can be seen
in Fig. 3. In the following we describe the results for the
different classes in detail. These results are seen in Table I.

Food webs. The three food webs studied represent a vari-
ety of ecosystems [14]: the Chesapeake Bay Mesohaline Net
(N=39 nodes, E=177 edges) [15], the Everglades Graminoid
Marshes (N=69, E=916) [16], and the Florida Bay Trophic
Exchange Matrix (N=128, E=2106) [17]. In the clustering
signature of these food webs the FFp component is particu-
larly prominent, with GFFB>O.42. This translates into an in-
creased likelihood that, if species B is eaten by species A and
eats species C (a scenario corresponding to B in Fig. 2), then
species A also eats species C—in a food web, this is a plau-
sible scenario.

Transcription networks. In the two transcription networks,
in the species Escherichia coli (N=423, E=519) and Saccha-
romyces cerevisiae (N=688, E=1079) [12], the clustering
signature shows a highly dominant FF- component (E‘FFC
>0.62). This signifies a markedly increased likelihood that,

if gene C is regulated by genes A and B, then gene A also
regulates gene B, or vice versa. Feedforward loops have been
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FIG. 3. Clustering signature tetrahedron with the positions of
the 16 networks of five different types (see legend). k-means clus-
tering separates these classes perfectly. The tetrahedron corresponds
to the feedforward subspace of the normalized clustering signatures,
ie., (GFFA,GFFBfFFC), so that the FB vertex corresponds to (0,0,0),
and the FF,, FFg, and FF. vertices correspond to the (1,0,0),
(0,1,0), and (0,0,1) points, respectively. If a network has only feed-
back loops and no feedforward loops (such as the electric circuits
studied in this paper), it will be located at the FB vertex. Con-
versely, a network without any feedback loops will be located at the
base of the tetrahedron. The location of a network relative to the
FF,, FFp, and FF vertices signifies the relative dominance of the
given node roles (see Fig. 2). As an illustration, consider the tran-
scription networks (black squares) which have a k-means centroid
of (0.145,0.232,0.622). The normalization implies that C~'FB=1
—0.145-0.232-0.622=0.001 so that these networks will be located
at the base of the tetrahedron. The FF, component is also negli-
gible, so that the networks lie on the edge opposite the FF, vertex,
and closer to FF than FFp because the FF- component is larger.

shown to occur frequently in transcription networks [18].
The reason that the FF, component of the clustering signa-
ture is suppressed is because many genes that are located at
the top of a feedforward hierarchy (i.e., in the FF, position)
regulate many other genes, which increases M, and dilutes
the FF, component. If a gene is regulated by two other
genes, however, as represented by the FF. scenario, the
probability that all three form a feedforward loop is large,
since the in-degrees in these transcription networks are
small.

Language networks. These three word-adjacency net-
works for English (N=7724, E=46281), French (N=9424,
E=24295), and Japanese (N=3177, E=8300) [13] show in-
creased FB (with Cpg>0.32) and FF, (with GFFB>O.31)
components. This reflects the fact that words fall into several
categories such as nouns, adjectives, verbs, and conjunctions,
and that words of the same category are rarely adjacent. This
is why the FF, and FF. components are suppressed, as it
requires words B and C, which can both follow (or precede)
word A, to be able to appear adjacent to each other as well.
Furthermore, the FF; component is also enhanced by the
presence of inserted words, such as adjectives, since it rep-
resents words that could be omitted without making the
grammar invalid.

Social networks. The five social networks represent a
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TABLE I. Comparison of the clustering signature properties of
16 networks of five types. The food webs, transcription networks,
language networks, and social networks are distinguished using
k-means clustering with 89% of variance explained. Electric circuits
were not included in the k-means clustering as they form an infi-
nitely tight cluster. The k-means centroids in the space of normal-
ized, clustering signatures are given in the table. Due to the normal-
ization, the fourth component of the normalized signature is
implicitly given by the other three: EFB=1—€'FFA—5FFB—€'FFC.
Note that the neutral point, corresponding to undirected networks,
lies at (0.25, 0.25, 0.25, 0.25).

networks k-means centroid dominant
(Crr,, éFFB, C’FFC) component(s)
/A
Food webs (3) | 0.283, 0.445, 0.195 O
> 0.42
Transcription (2) | 0.145, 0.232, 0.622 A
> 0.62
Language (3) 0.160, 0.321, 0.178 O O
>0.32 >0.31
Social (5) 0.372, 0.295, 0.183 &
> 0.30
/A
Circuits (3) — °
=1.0

wide range of social interactions, from hyperlinks between
political web logs (N=1491, E=19 090) [19], relationships
between prison inmates (N=67, E=182) [20], selection of
team partners (N=32, E=96) [21], and interactions in an
African tailor shop at two different times (N=39, E=109;
N=39, E=147) [22]. Many social networks are undirected,
and the fact that the five directed social networks studied
here are close to the neutral normalized clustering signature

€’N=(O.25,O.25 ,0.25,0.25) is an indicator that even directed
social networks are rather symmetric. To quantify this one
can consider a measure of reciprocity introduced in the re-
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cent literature [23], which takes values between 1 and —1
indicating whether reciprocal links occur more or less often
than expected by chance. The five social networks studied
here have values of reciprocity between 0.11 and 0.49, which
indicates a definite but not overwhelming presence of recip-
rocal links. The observation that social networks are approxi-
mately symmetric is not surprising as social interactions are
typically reciprocal, and when they are not, the direction of a
social interaction is often difficult to define. Therefore the
direction of the edges in a directed social network has to be
defined particularly carefully, as reversing the direction of all

edges will swap the 6FFA and 6FFc components. In the five
social networks studied here, the direction of the edge can be
understood as an imbalance of benefits between the two so-
cial agents. In the tailor shop this measures whether person B
is more useful to person A than A to B. If so, the arrow points
from A to B. In political web logs, the owner of a site A
chooses to link to another site B, representing a use of site B.
In this case the edge would also go from A to B. In the
prison, where inmate A expresses positive sentiments toward
prisoner B, the arrow too goes from A to B. Students choos-
ing other students as co-workers on a team are an equivalent
case. Overall, the deviation of the social networks from the
neutral point Cy is small, and is most marked in the FF,
component (with 6FFA >(.30). To understand this, consider a
person A who names two others B and C as friends. If B or C
is also popular, chances are that the less popular one of the
two will choose the more popular one as their friend as well.
This creates a feedforward loop with node A as the labeled
node of a FF, loop (see Fig. 2). The suppressed FF compo-
nent, on the other hand, may represent popular individuals
who are chosen by many, who in turn would not choose each
other.

Electric circuits. Due to their specific design, these three
circuits (N=122, E=189; N=252, E=399; N=512, E=819)
from [12], which represent digital fractional multipliers, con-
tain only feedback loops, placing them at the FB vertex of
the clustering signature tetrahedron.

IV. DISCUSSION

To demonstrate that the clustering signature depends only
on the local connectivity of directed network edges and not
on differences in the overall density of edges in the net-
works, we flip the direction of edges between all connected
pairs of nodes, with probability one-half. This keeps the un-
directed connectivity (and thus the edge density) constant,
while destroying the distinction between the four loops FB,
FF,, FFp, and FF_. If clustering signatures are dependent
only on the local connectivity of directed edges, then de-
stroying the information about the direction of edges should
move all randomized real-world networks to the center of the
tetrahedron.
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This prediction is indeed confirmed by the results for ten
such randomizations on each of the 16 networks. After ran-
domization, all networks lie very close to the neutral point of

6,\,: (0.25,0.25,0.25,0.25) with averages always between
0.22 and 0.27, and in most cases between 0.24 and 0.26. The
neutral point lies within one standard deviation in all cases.
This confirms that the clustering signature tetrahedron is an
effective way of measuring the differences in the local con-
nectivity of directed networks.

Note that, for the networks examined, the number of
nodes and edges varies widely—both within the five groups
of networks and between them. The fact that the types of
networks are nevertheless clearly separated, together with the
randomization test discussed above, suggests that the classi-
fication according to clustering signatures is independent of
the network size. Only for very sparse, small graphs would
one expect the size of the network to matter in the form of a
visible discretization of clustering signature values, which
may coarsen the classification. While the dimensional limi-
tations mean that additional network features cannot easily
be included in three dimensions, one could achieve such a
combined analysis by constructing a larger feature vector—
containing the clustering signature—which could then be
analyzed using multivariate methods such as principal com-
ponent analysis or canonical variable analysis [24].

Finally, clustering signatures can be generalized to
weighted directed networks in a straightforward way by us-
ing the ensemble approach [25]. This requires a choice of
mapping from weights w;; to the unit interval: w;; € R—p;;
€[0,1], which depends on the nature of the weights. These
p;; replace the adjacency matrix entries a;; in all seven ex-
pressions for M and N in Eq. (1), in analogy to the ensemble
clustering coefficient for undirected networks discussed in
[25]. Note that, in the case of this weighted generalization,
the individual clustering coefficients differ from those de-
fined for the weighted case in [11].

In conclusion, our analysis reveals that different types of
directed real-world networks are characterized by their clus-
tering signature. The relative strength of the four components
of the signature is an indicator of the way in which nodes
connect to their neighborhood. Thus clustering signatures of-
fer an effective method for the classification of directed net-
works. They also provide an intuitive three-dimensional
space in which the local connectivity of directed networks
can be visualized and compared.
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