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Capillary-driven instability of immiscible fluid interfaces flowing in parallel in porous media
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When immiscible wetting and nonwetting fluids move in parallel in a porous medium, an instability may
occur at sufficiently high capillary numbers so that interfaces between the fluids initially held in place by the
porous medium are mobilized. A boundary zone containing bubbles of both fluids evolves, which has a
well-defined thickness. This zone moves at constant average speed toward the nonwetting fluid. A diffusive
current of bubbles of nonwetting fluid into the wetting fluid is set up.
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When a fluid displaces another one in a porous medium
the interface separating the two fluids may become unstable.
In the case of two-phase immiscible displacement, local cap-
illary barriers on pore-scale levels affect the behavior on
larger scales, and it turns out that there is an extraordinary
richness to the ways instabilities occur and how the separat-
ing interface subsequently develops. Depending on several
flow properties like the viscosity ratio, wetting properties
with respect to the porous medium, and how fast the dis-
placement occurs, a wide range of behaviors is found in both
drainage and imbibition ranging from pure invasion percola-
tion to viscous fingering [1,2]. A huge effort has gone into
classifying and understanding this rich behavior, both from a
fundamental scientific point of view, and also due to its im-
portance in a number of very important fields ranging from
oil recovery, to spreading of pollutants in the ground water,
to problems related to CO, sequestering.

It is then surprising to discover that the related problem of
immiscible fluids flowing in parallel to the interface between
them rather than normal to it in a porous medium has re-
ceived very little attention in comparison. Such parallel flow
is, e.g., seen in connection with fully developed viscous fin-
gers [3] and in connection with flow in stratified reservoirs
[4-8]. When the flow rate is low so that capillary forces
dominate at the interface, the parallel interface is stable and
each phase behaves as in a single-phase flow system. Never-
theless, it has been recognized that above a certain threshold
in the flow rate, but where capillary forces still dominate,
imbibition processes become important in the evolution of
the interface and hence the cross flow of the immiscible flu-
ids. However, at larger flow rates, where viscous forces
dominate, shear-driven Kelvin-Helmholtz-type instabilities
are believed to occur [9-11]. Both theoretical and experi-
mental work has been invested in studying the Kelvin-
Helmholtz instability in vertical Hele-Shaw cells [3,12,13],
as it provides a model for parallel flow in porous media in
the viscous regime.

It is the aim of this Rapid Communication to investigate
the instability that occurs at the interface between two im-
miscible fluids flowing in parallel in a regime where capil-
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lary effects cannot be ignored. This regime has remained
essentially untouched in the literature. We find that, above a
threshold flow rate and with a viscosity ratio between the
two fluids favoring the formation of viscous fingers, the in-
terface becomes unstable, and a boundary zone appears con-
taining intermixed bubbles of both fluids. This boundary
zone has a well-defined width and moves at constant average
speed toward the nonwetting fluid. A diffusive current of
bubbles of nonwetting fluid into the wetting fluid is set up,
but the situation of bubbles of wetting fluid entering the non-
wetting fluid is absent.

This instability may prove to be an important mechanism
for mixing nonwetting fluid into wetting fluid. A practical
application may be CO, sequestering in porous rock forma-
tions. A less-wetting gas is blown into a porous medium
which is already saturated by a more wetting fluid. A mixing
zone will then form at the boundary between the gas and the
fluid where gas bubbles will be generated. These bubbles are
then transported into the wetting fluid where they eventually
are absorbed.

We study this instability here using a two-dimensional
network simulator first developed by Aker et al. [14] with
later extensions by Knudsen et al. [15] and Ramstad and
Hansen [16]. The network forms a square lattice oriented at
45° with respect to the overall flow direction. Each link
forms an hourglass-shaped tube. Disorder is introduced in
the model by having the average tube radius r be drawn from
a flat distribution on the interval r € (0.1¢,0.4€), where ¢ is
the link length. Capillary pressure in the links is caused by
the presence of interfaces in them.

As the tubes are hourglass shaped, the capillary pressure
difference caused by a meniscus at position x, the distance
from one of the two nodes it is attached to, is given by p,
o« 1—cos(2mx/€). We assume cylindrical tubes so that the
flow rate ¢ in a tube is given by the Hagen-Poiseulle relation
from laminar flow

4

q=—8z;ff(Ap—Epc), (1)

where Ap is the pressure difference between the nodes con-
nected by the tube. The effective viscosity is the volume-
weighted average of the viscosities of the fluids contained in
the tube. The sum runs over the number of menisci in the
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tube. We accept up to ten menisci in any given tube. If this
number is exceeded or the distance between two bubbles is
too small, we merge the mensici.

The flow equations are solved by assuming flux conser-
vation at each node, i.e., invoking the Kirchhoff equations.
This is done by defining a pressure p at each node. We use
the conjugate gradient method for this [17]. After the node
pressures have been determined, the positions of the menisci
are integrated forward by an adaptive time step Af so that no
single meniscus movement exceeds one-tenth of a tube
length €. When menisci reach the ends of a tube, they are
moved into the other eligible tubes connected to that node.
For details, see [15].

The flow of the two fluids in the network is controlled by
the ratio between capillary and viscous forces at the pore
level and quantified through the capillary number

_ MO0t
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where u is the largest viscosity of the two immiscible fluids,
>, is the cross-sectional area of the network, and Q,, is the
total flux through this area.

In addition to the capillary number, the ratio between the
viscosities of the two fluids forms the second dimensionless
number to control the flow,

Ca (2)

M=oy (3)

M

We set M=1 in the following. Hence, there is initially no
pronounced shear in the flow patterns in the network.

We implement periodic boundary conditions in the aver-
age flow direction [15,16]. This implies that the flow con-
figurations experience no boundaries in the flow direction,
and the fluid configurations may develop over large times
and distances. There is no periodicity in the direction normal
to the average flow direction. The boundaries parallel to the
average flow direction are in contact with a reservoir of ei-
ther wetting or nonwetting fluid. A constant pressure drop
AP is set up across the network in the average flow direction,
causing the total flux Q.

The network is prepared either with a band of nonwetting
fluid parallel to the average flow direction, surrounded by
wetting fluid, or vice versa. Hence, the saturation of nonwet-
ting fluid, S, and wetting fluid, S, is nonuniform. We
show in Fig. 1 the network initially prepared with a band of
nonwetting fluid in the middle. If the pressure drop AP is too
small, the interfaces in the tubes forming the boundaries be-
tween the two fluid types will be stabilized by the capillary
pressures, and the boundaries are stable. However, when the
pressure difference is above a minimal value so that the ini-
tial capillary number Ca,,; > Ca,;,, the boundaries destabi-
lize and the system evolves.

Early in the evolution of the system, fingers of nonwetting
fluid form when the viscosity ratio between the two fluids
allows this. This is a signature of unstable nonwetting front
propagation in the viscous regime. The fingers are bent in the
direction of the average flow. Due to the flow typically being
at an angle compared to the fingers, they are susceptible to
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FIG. 1. Different stages of the development of an initially
straight band of nonwetting fluid (black) inside a region filled with
wetting fluid (white). The flow is from top to bottom with periodic
boundary conditions in this direction. The boundaries are open in
the transverse direction. The size of the network is L,XL,=64
X 64.

break up. The broken-off fingers form bubbles that migrate
into the wetting fluid, and consequently the wetting fluid also
migrates into the nonwetting fluid. This is due to the appear-
ance of an effective pressure gradient AP, normal to the
average flow direction across the boundary region between
the two fluids. This gradient is in turn due to the appearance
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FIG. 2. (Color online) (a) S, vs x for different average times ¢,
(b) dS,w/dx vs x for different ¢ which correspond to (a), and (c)
dS,/dx vs (x—vt)/L, for different ¢ for a moving front with start-
ing point xy=0. All figures are for an L, X L,=128 X 32 lattice with
open boundaries in the direction parallel to the overall flow and
with Ca;,;;=0.03 and constant pressure drop AP=3.0 kPa over the
model.

of a gradient in the effective permeability. The effective pres-
sure gradient AP, leads to imbibition of the wetting fluid
into the nonwetting region. This process creates a compact
front and a saturation profile moving in the direction normal
to the average flow direction, resembling that of Buckley-
Leverett flow [2].

There is a length scale N associated with the saturation
profile. We define it through the width of the bell-shaped
nonwetting saturation gradient as shown in Fig. 2 based on
an average over five samples. From the motion of the two
maxima of dS,,/dx along the x axis, which is the direction
normal to the average flow direction, we determine the mean
velocity of the nonwetting saturation profile. The data col-
lapse shown in Fig. 2(c), where dS,,/dx is plotted against
(x—vt)/L,, shows that the mean velocity v of the profile is
constant and the shape of the profile is also constant. The
length scale \ is for this system N\/L,~0.04. Hence, unlike
the Kelvin-Helmholz shear instability, the interfacial instabil-
ity between two different fluids in a porous medium proceeds
through the creation of a well-defined saturation profile char-
acterized by a length scale N and an average speed v which
remains constant.
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FIG. 3. (Color online) Nonwetting saturation profiles for the
initial configuration of a band of wetting fluid surrounded by non-
wetting fluid. The profile stabilizes at different levels for different
AP. For higher AP the saturation S, in the boundary region stabi-
lizes at a higher level and the wetting front advances further.

The shape of the nonwetting saturation profile corre-
sponds to there being a boundary region where bubbles are
created. This boundary region moves into the nonwetting
zone. There are no bubbles migrating into this zone ahead of
the moving boundary region. On the other side, there is a
diffusion current of bubbles of nonwetting fluid into the wet-
ting zone. The diffusing bubbles stem from the nonwetting
fingers that break off because the average flow is at an angle
with respect to the fingers. When the two approaching
boundary regions eventually meet, the middle nonwetting
band is disconnected as shown in the last picture of the se-
quence shown in Fig. 1.

We now reverse the initial configuration so that a band of
wetting fluid is surrounded by nonwetting fluid. We show in
Fig. 3 the evolution of the nonwetting saturation profile as a
function of time. As before, boundary regions where bubbles
form are created. However, after some initial time, they sta-
bilize and do not move. This is in sharp contrast to the pre-
vious situation where the boundary regions move with con-
stant mean velocity. It is caused by there being no bubble
transport outside the boundary region and into the nonwet-
ting region. Inside the wetting band, there is diffusive bubble
transport, but, as the width of the band is finite and it is
surrounded by bubble-generating boundary regions on both
sides, the net diffusive current stabilizes at zero.

We consider in the following the evolution of the total
flow rate Q, as the system evolves for both configurations
we have studied. We consider first the case of a nonwetting
fluid band surrounded by wetting fluid. As the flow is sus-
tained by a constant pressure drop across the network in the
average flow direction, AP, the total flow rate Q,, will at all
times be proportional to the permeability of the network. We
show in Fig. 4 the evolution of the total flow rate as a func-
tion of time for networks initially prepared with a nonwetting
band in the middle and with a wetting band in the middle.
We analyze first the case when the network starts with a
nonwetting band in the middle. The evolution of Q, for two
different pressure drops is shown in Fig. 4. We see that, for
both pressure drops, Q.. decreases linearly in time after an
initial transient. In the case of the larger pressure drop, the
gray (red online) curve, the flow rate starts increasing again,
reaching essentially the flow rate it had initially. This behav-
ior can be understood as follows. After the initial transient
and before the rapid increase of Q,,, in the high-AP case, the
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FIG. 4. (Color online) Qy as a function of time for constant
pressure differences AP=3.0 (black) and 5.0 kPa [gray (red on-
line)], when the middle band is nonwetting. Inset (a) shows the
same for AP=3.0 kPa when the middle band is wetting. Inset (b)
shows the flux profile normal to the flow profile for an initial non-
wetting band in the middle and AP=3.0 kPa.

system consists of three zones: (1) a nonwetting zone char-
acterized by an effective local permeability k,,,, (2) a bound-
ary zone characterized by a local permeability k,, and (3) a
zone where nonwetting fluid forms diffusing bubbles in the
wetting fluid. The local permeability here is k;,. If the width
of the nonwetting zone is €, that of the boundary zone is \,
and that of the mixed zone is €, then the total permeability
of the network is given by

24 i 2\ ¢
mix + k)\L_ + knw nw

X X

(4)

keff = Kix

As the boundary region moves with constant average speed
v, we have that € ;=€ o+vt and since L,=2€ ; +2\
+4{y, it follows that €,,=L,—2€; o—2N—2vt. Inserting
these two equations in Eq. (4) gives
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@(knw - kmix) . (5)

X

keff = keff,() -

Since the viscosities of the two fluids are equal, Q% kog- As
k. 1s larger than k;,, the total flow rate Q, falls off with
time.

Figure 4 shows that, at a larger pressure difference, the
total flow rate starts increasing again after the linear regime
we have just described. This is due to the nonwetting band in
the middle having been depleted and the nonwetting bubbles
diffusing out of the network. Thus the network is being de-
pleted of nonwetting fluid and hence interfaces, which low-
ers the effective permeability. The opposite situation, a
middle wetting band, is shown in inset (a) in Fig. 4. We see
that the total flow rate saturates, indicating that the system
enters a steady state as already discussed in connection with
Fig. 3.

We have in our numerical experiments kept the pressure
difference across the network constant. If we rather had kept
the total flow rate Q,, constant, the instability that sets in
when Ca> Ca_;, will be much more violent. This is so since
the pressure drop AP will increase to keep Q.. leading in
turn to an acceleration of the boundary region.

In this Rapid Communication, we have investigated the
stability where two different fluids flow parallel to each
other. We find that, under constant pressure conditions, for a
sufficiently high capillary number a boundary region devel-
ops with a well-defined width when the viscosity ratio be-
tween the two fluids favors the formation of viscous fingers.
This region, which essentially is foam, moves at a constant
average speed into the nonwetting region. On the wetting
side, a diffusive current of nonwetting bubbles develops
away from the boundary zone. It would be of great interest to
see this instability reproduced in the laboratory, e.g., in two-
dimensional glass-bead-filled Hele-Shaw cells.
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