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We demonstrate experimental evidence of noise-induced attractor hopping in a multistable fiber laser. Mul-
tistate hopping dynamics displays complex statistical properties characterized by nontrivial scalings. When
hopping is encountered between two states, the dynamics of the system is characterized by the −3 /2 power law
for the probability distribution of periodic windows versus their length, just as in the case of two-state on-off
intermittency. A surprising noise saturation effect is found: average output noise in the hopping regime is
almost independent of input noise. Such robustness of the system against external noise may be beneficial for
some applications: for example, for communications with multistable systems or for designing noise-
insensitive detectors.
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Many real complex systems demonstrate the coexistence
of more than two attractors corresponding to the long-term
behavior in phase space. In addition to a bistable system
which displays the positive role of noise in the form of sto-
chastic and coherence resonances �1�, a system with multiple
coexisting attractors subject to stochastic modulation can ex-
hibit other interesting features, such as noise-enhanced mul-
tistability �2�, noise-induced preference of attractor �3,4�,
noise-induced resonances �5�, etc. Noise in such a multi-
stable system provokes a competition between different at-
tracting states; as the system seeks a regular motion in the
neighborhood of one attractor, we can see it jumping among
the different states �4,6�. This phenomenon, often called at-
tractor hopping �7�, is closely related to chaotic itinerancy
�8�, which has already been observed experimentally �9�,
showing the alternate motion between fully developed chaos
and an ordered behavior. Chaotic itinerancy is often observed
in high-dimensional systems such as globally coupled maps
�10� and networks of neuronal oscillators �11�. The noise-
induced attractor hopping is different from the low-
dimensional ordered motion in chaotic itinerancy because the
latter takes place between stable and unstable manifolds and
therefore involves a saddle point. A particular case of attrac-
tor hopping in a bistable system, two-state on-off intermit-
tency �12�, has been observed experimentally in a laser �13�.
Both feedback and nonfeedback techniques have been sug-
gested to control such an intermittent behavior �14�. Re-
cently, Kraut and Feudel �7� showed that in contrast to a
bistable system, attractor hopping in a multistable system
depends on the structure of the chaotic saddles separating the
attractors.

In spite of a large number of theoretical papers devoted to
noise-induced switches between multiple states, there has not
been to our knowledge a previous experimental report on this
phenomenon. In this Rapid Communication we provide what
we think is the first experimental observation of noise-
induced attractor hopping. This phenomenon manifests itself
as multistate intermittency and requires the coexistence of
multiple invariant subspaces. In a multistable system, rela-
tively strong noise destabilizes the coexisting states and con-
verts the multistable system into a metastable one. Multiple
states that were stable without noise become unstable when
noise is applied, giving birth to a new attractor: an intermit-

tency state. As the noise amplitude is increased, the number
of the coexisting attractors decreases, as they get involved in
the hopping dynamics. It is in this sense that noise allows
multistability control.

The experimental setup we used is similar to those al-
ready described by some of the present authors in previous
papers �15–17�. The experiments are carried out with a
Fabry-Perot-cavity 1560-nm erbium-doped fiber laser. The
laser is subjected to the harmonic modulation of a diode
pump 976-nm laser. Such a laser has various applications
and is commonly used in many laboratories. This laser dis-
plays a very rich dynamics that has extensively been studied
theoretically �17,18� and experimentally �15–17�. The 1.5-m
laser cavity is formed by an active heavily doped erbium
fiber of a 70-cm length and 2.7-�m core diameter and two
fiber Bragg gratings with a 0.1-nm FWHM �full width on
half-magnitude� bandwidth, having 91% and 95% reflectivi-
ties for the laser wavelength. In our experiments the diode
current is fixed at I=69 mA corresponding to the pump
power P=19 mW. The harmonic signal A sin�2�fmt� �A and
fm being the amplitude and frequency of external modula-
tion, respectively� from a signal generator and the additive
Gaussian noise Nin� �Nin and � being the external noise am-
plitude and a random generated number, respectively� from a
noise generator are both applied simultaneously to the diode
pump current.

Without external modulation �A=0� and in the absence of
external noise �Nin=0�, the fiber laser power exhibits small-
amplitude oscillations �1%–2% of the magnitude of the
steady-state power� with an average broadband frequency
f0=30 kHz of its relaxation oscillations. Figure 1 shows the
laser dynamical state diagram in the parameter space of the
modulation frequency and the external noise amplitude. One
can see how more and more periodic orbits are involved in
the hopping dynamics within a wider parameter range, as the
noise amplitude is increased. Moreover, higher periodic or-
bits not observed prior to noise introduction appear in the
hopping dynamics. This is in contrast to earlier theoretical
prediction that higher-periodic orbits disappear with increas-
ing noise strength �4�. The opposite effect was also previ-
ously predicted: attractors with a small basin gain more ini-
tial conditions, and the basins of many of them become even
larger as compared with no noise basin �3,19�. Experimen-
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tally it is not yet possible to vary all initial conditions in
order to give a final statement of whether an attractor with
small basin existed without noise or a new periodic orbit was
induced by noise.

In this work we are interested in a high-frequency region
where the laser exhibits multistability �15�. In Fig. 2 we plot
the time series and their corresponding power spectra for
three coexisting attractors. As seen in Fig. 2�f�, the frequency
for P4 is not exactly fm /4 because of nonlinear interaction
with f0 �20�. Switching on and off the signal generator, the
laser initial conditions are changed and the corresponding
coexisting attractors can be found. At a relatively low noise
amplitude, the fiber laser is in a periodic state determined by
the initial conditions. For instance, if the laser starts with the
initial conditions corresponding to P3, it will remain in this
state for an infinitely long time showing noisy oscillations
with frequency fm /3 �Fig. 2�b��. As the input noise amplitude
is increased, the ground level for each attractor also increases
until a certain noise threshold is reached and the laser starts
jumping back and forth from P3 oscillations to P1, as shown
in Fig. 3�a�. In a multistate intermittent regime, the trajectory
visits more than two periodic states �Figs. 3�b� and 3�c��. The
number of periodic states among which the laser jumps in-
creases with the noise amplitude. For example, the period-5
orbit not existent for low noise appears only when Nin
�1.3 V �Fig. 3�c��.

With the aim of studying characteristic properties of hop-
ping dynamics in mind, we address the following question:
how does output noise depend on input noise? Figure 4�a�
shows, for different coexisting attractors, the dependence of
the average output noise Nout taken at the modulation fre-
quency fm of the power spectrum on the input noise ampli-
tude Nin. For each coexisting state �P1, P3, and P4�, the
output noise spectral component can be approximated by a
linear dependence on the input noise amplitude �solid lines in
Fig. 4�a�� with the slope increasing as does the orbit’s period;
the larger the period, the higher the slope. When the input
noise amplitude is increased above 0.2 V, P3 and P1 melt

into the intermittent P3-P1 attractor, apparently keeping the
P3 regime slope for noise dependence. When noise again
increases above 0.7 V, the laser starts jumping between three
periodic states �P3-P1-P4�, showing that the output-input
noise dependence is practically lost. The same diminute
slope remains when P5 takes part in the hopping dynamics
�P3-P1-P4-P5�. It is only for very strong input noise that all
periodic states are mixed and the output noise increases
again with the P1 attractor’s slope. The output noise given in
volts can be approximated by Nout�V��exp��iNin�, where �i
is the scaling exponent of the i-periodic orbit. We find �1
=1.54, �3=4.52, and �4=15.89, whereas for the hopping at-
tractor �3-1-4=0.20; i.e., it is smaller than �1 by a factor of
7.7. The physical mechanisms of the noise-saturation effect
observed in the experiment are not yet clear. The phenom-
enon itself is very interesting and as such requires further
investigation. One could look for a possible explanation in
the noise energy distribution over the increasing number of
jumps between higher-periodic orbits, so that the average
noise level may remain almost unchanged.

Similar to other intermittent regimes, the hopping dynam-
ics can be characterized by particular scaling laws. To reveal
the physical mechanisms responsible for these scaling rela-
tions, we use a statistical approach which is often employed
in the study of noisy systems. We are now interested in the
nonzero transition probability of every periodic orbit to ev-
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FIG. 1. �Color� Fiber laser state diagram in the modulation fre-
quency and noise amplitude parameter space. Different colors stand
for different periodic and intermittent states.
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FIG. 2. �a�–�c� Time series and �d�–�f� power spectra of the laser
intensity for coexisting �a�,�d� period-1 �P1�, �b�,�e� period-3 �P3�,
and �c�,�f� period-4 �P4� regimes when an external noise Nin

=150 mV is applied. This noise is relatively small, so that no hop-
ping dynamics is observed. For each dynamical regime, the power
spectrum displays a different level of frequency-dependent output
noise �ground level� indicated by the horizontal dashed lines for
fm=87 kHz. Note the difference in the intensity scale in �c�.
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ery other periodic orbit via a transient on a chaotic saddle—
i.e., the probability of the trajectory visiting each one of the
coexisting periodic states. Figure 4�b� shows this probability
Pi as a function of the external noise amplitude. In hopping
dynamics, the probability of visiting the P3 orbit, P3, decays
exponentially as Nin is increased �bold line in Fig. 4�b��. The
best fit yields the value −0.36 for this characteristic expo-
nent. In the contrary, the probability of visiting P1, P1,
grows as Nin is larger and becomes equal to P3 at Nin
=0.75 V. It is exactly at this noise value that the output noise
curve in Fig. 4�a� changes its slope.

Using the same approach as Poon and Grebogi �6�, we
qualify order and randomness by encoding dynamics into
symbolic sequences of n elements in which the trajectory
visits the different attracting sets by crossing the chaotic sets
in the boundaries. We assign a symbol si for every periodic
orbit i that appears in the hopping dynamics. In our case, we
need up to four symbols in the alphabet, si=1,2 ,3 ,4. The
complexity of the symbolic string among the attracting sets
can be estimated using the Shannon entropy, in analogy to
the Kolmogorov-Sinai entropy �21�:

h = lim
n→�

Hn

n
= lim

n→�

1

n�− �
�S�=n

p�S�ln p�S�	 , �1�

where S=s1 ,s2 , . . . ,sn denotes a finite symbol sequence, p�S�
is the probability of S, and Hn is the block entropy of block
length n. Figure 4�c� shows the entropy versus input noise
estimated from the experimental data using Eq. �1�. Every
periodic sequence yields a value of 0. The entropy increases
rapidly at the bifurcation point when a new regime appears
in hopping dynamics, and then it is almost constant. The
nontrivial time-scaling appearance in the noisy laser is the
consequence of the complex interplay between the coherent
and random structures. The horizontal plateau in Fig. 4�c�
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FIG. 4. �a� Average output noise versus input
noise for three coexisting attractors and intermit-
tency regimes. The dotted lines show the bound-
aries between different regimes and the solid
lines are linear fits of the slopes. The three attrac-
tors coexistence is observed only for relatively
low external noise �Nin�0.2 V�. The noise satu-
ration effect is clearly seen in the middle part of
the figure. �b� Probability of visiting different at-
tracting sets calculated by summing the duration
of periodic windows in ten time series for every
noise value. The bold line is the exponential de-
cay fit for the period-3 orbit. �c� The Shannon
entropy of the symbol sequence as a function of
noise. �d� Mean escape times 
Ti� for different
attracting sets as a function of the noise ampli-
tude excess over critical noise Ni at the onset of
intermittency for the period-i state. N1,4,5

=190, 800, 1150 mV. The inset in Fig. 4�d�
shows the scaling of the probability distribution
for period-1 windows inside the intermittent
P3-P1 regime showing the −3 /2 power law
�straight line� for Nin=200 mV.
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indicates the existence of a certain coherent structure in the
set of all possible symbol sequences.

The bifurcation responsible for the jumps between differ-
ent periodic states can be considered as a kind of crisis, and
hence the process can be characterized by scaling laws for
the characteristic lifetimes �22�. In the cases of noise-induced
crisis �23� or on-off intermittency �24� where only two at-
tracting sets participate in the intermittent dynamics and
hence there is only one critical parameter responsible for the
onset of intermittency, the noise intensity itself is usually
used for scaling with the noise level. Instead, in multistate
intermittency there exists different critical noise amplitude Ni
for every i-periodic orbit. The period-i orbit does not appear
in the hopping dynamics when Nin�Ni. Therefore, to be able
to compare the slopes for different orbits, we estimate from
the experimental data the mean escape time 
Ti� the trajec-
tory takes to leave the neighborhood of the period-i attracting
set as a function of the noise amplitude excess over its criti-
cal value, Nin−Ni. Figure 4�d� shows these dependences for
different attracting sets. For P1 the mean time 
T1� can be
well fitted by the exponential decay with noise �bold line�;
however, for other periods, the dynamics is very different—
for instance, 
T5� increases with noise and has a maximum at
Nin−N5�200 mV. Another interesting quantity of hopping
dynamics to investigate is the probability distribution P�	�
for the length 	 of the periodic windows sequence. For the
P1 windows in the two-state intermittency regime between
P3 and P1, we find that P�	� obeys the universal scaling law

for on-off �or two-state on-off� intermittency �24� to be
P�	1��	1

−3/2 �inset in Fig. 4�d��.
In conclusion, we have characterized experimentally

noise-induced hopping dynamics in a multistable diode-
pumped erbium-doped fiber laser with coexisting periodic
attractors. Under additive noise applied to the diode pump
current, the laser displays hopping dynamics. The hopping
between two periodic states is characterized by the −3 /2
power law for the probability distribution of laminar phase
versus laminar length near the onset of intermittency, typical
of a two-state on-off intermittency. When the noise ampli-
tude is increased, the number of periodic orbits involved in
the hopping dynamics goes up. The average lengths of lami-
nar phases during which the trajectory is in the neighborhood
of a particular periodic state varies irregularly depending on
the noise amplitude. The character of this dependence is de-
termined by a particular state. The laminar phase can either
decrease or increase as the noise amplitude increases, result-
ing in a surprising noise saturation effect, when the output
noise of the intermittent state is almost independent of the
input noise. Such robustness of the system against external
noise could be useful for some applications: for example, in
communications with multistable systems or for designing
noise-insensitive detectors.
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