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We introduce a minimal model description for the dynamics of transcriptional regulatory networks. It is
studied within a mean-field approximation, i.e., by deterministic ODE’s representing the reaction kinetics, and
by stochastic simulations employing the Gillespie algorithm. We elucidate the different results that both
approaches can deliver, depending on the network under study, and in particular depending on the level of
detail retained in the respective description. Two examples are addressed in detail: The repressilator, a tran-
scriptional clock based on a three-gene network realized experimentally in E. coli, and a bistable two-gene
circuit under external driving, a transcriptional network motif recently proposed to play a role in cellular

development.
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I. INTRODUCTION

Mathematical models for the dynamics of transcriptional
regulation are traditionally formulated either in terms of or-
dinary differential equations [1,2], or by purely stochastic
models, based on master equations [3] or by using the
Gillespie algorithm [4]. Both the deterministic and stochastic
descriptions average out spatial degrees of freedom and
hence are more similar to each other than is often acknowl-
edged. In recent years, a discussion has started on the effect
of stochasticity on gene regulatory processes; exemplary
studies are [5-9]. Indeed, already the fact that molecules in-
volved in regulatory processes often exist only in small copy
numbers can be significant for the dynamics of a given regu-
latory circuit, and stochastic effects like bursting may have
an important role for cellular function [9].

Models of regulatory dynamics suffer also from another
problem which is the lack of precise knowledge of reaction
rates. Building dynamic models for a large number of net-
work elements can induce further arbitrariness due to a lack
of detailed knowledge of the interaction mechanisms in-
volved. Approaches that aim to describe larger networks are
often deliberately reductionist to become computationally
tractable (see, e.g., [10], building on pioneering work by
Glass, Kauffman, and Thomas [11,12]), and the result of
such computations can then only be called “qualitative.” The
effect of these reduction schemes, which within a physics-
based notion could also be subsumed under the notion of
“coarse graining,” therefore often lacks clarity as to what
effect the approximations and/or simplifications have, since a
general systematics is not available (an exemplary discussion
of this issue can be found in [13]).

In this paper we address the question of what effect such
a reduction scheme has on the dynamics of a given regula-
tory network in a systematic way. For this we start from a
minimal model description for transcriptional regulatory net-
works which coarse grains as many regulatory layers as pos-
sible (although they could of course be added back in later).
We note that this modeling philosophy is in contrast to the
usual way models of transcriptional regulation are built in
which first all available biochemical detail is considered and
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then reduced by way of approximation (as, e.g., in [14,15],
and many other similar examples). We then formulate both a
deterministic (mean-field) version and a stochastic version of
the transcriptional dynamics. This approach allows us to
study the dynamics of basically all fundamental classes of
transcriptional networks relevant for prokaryotic organisms,
although we only look at few-gene networks in detail here.

The outline of the paper is as follows. We first develop the
kinetic reactions involved in transcriptional regulation. Sub-
sequently, we formulate the corresponding deterministic and
stochastic versions of the dynamics. A separate section of the
paper is devoted to the application of both schemes to com-
monly encountered regulatory motifs [16]. Two examples are
presented in more detail since they display richer structure:
The repressilator, a three-gene network of inhibiting gates
which acts as a genetic clock, previously realized experimen-
tally in E. coli [17], and a regulatory motif with multiple
inputs which was recently proposed to be relevant for regu-
latory processes in development [18]. For all of these sys-
tems, we compare the results of the deterministic calcula-
tions and their stochastic counterparts and evaluate the role
different regulatory mechanisms play for the observed out-
come.

II. GENE GATE MODEL

A. Transcriptional reactions

Our minimal model for transcriptional regulation consists
in the definition of a computational element for each regula-
tory element (i.e., transcribing gene), which we call a gene
gate. The basic possible types of gene gates are sketched in
Fig. 1. Each gene gate is defined via its reaction kinetics. The
“null gate” in part (1) of Fig. 1 is a gene in a state G which
produces a protein output B at a rate &, hence the kinetic
reaction is written as

G—,G+B. (1)

The protein output can be degraded according to the reaction
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FIG. 1. (Color online) The four basic types of gene gates: (1)
The null gate (a gate without control input); (2) the neg gate (re-
pression of transcription); (3) the pos gate, activation of expression;

(4) the posneg gate, a multi-input gate with one activating and one
repressing input.

B— 0. (2)

In an abbreviating notation we call this gate element
null(0;B) where inputs and outputs are separated by the
semicolon.

In the next step we add a regulatory input to the null gate.
Part (2) of Fig. 1 shows the resulting “neg gate” in which a
transcription factor A inhibits the production of protein B
upon binding. This is represented by the reaction

A+G—,G +A. (3)

This reaction corresponds to the formation of a transcription
factor-DNA complex with zero lifetime; such an intermedi-
ate with a finite lifetime can of course be introduced as well
but is not necessary for a minimal model of gene networks.

After this interaction, the gene in state G’ is blocked in
transcription and/or translation. In order to allow transcrip-
tion again the gate must relax from its blocked state to its
original transcribing state at a rate 7,

G'—,G (4)

to the state G in which transcription at a basal rate € can
occur. We call this gate the neg(A;B) gate. The relaxation
process from G’ to G models the fact that a gene generally is
not transcribed immediately after the break-up of a transcrip-
tion factor-DNA complex; also note that within our minimal
model of the gene gate, transcription and translation are
lumped together.

Likewise we can model the activation of a gene upon
binding of a transcription factor; part (3) of Fig. 1 shows the
“pos gate.” The binding reaction is identical, but the gene in
state G’ now behaves according to

G'—,G+B, (5)

where the rate 7> ¢, i.e., the transcription and/or translation
rate upon activation is larger than the basal rate. This is the
pos(A; B) gate.

Finally, part (4) of Fig. 1 shows a gate with multiple regu-
lations which is in fact a commonly encountered situation,
see, e.g., the E. coli network of transcriptional interactions
reconstructed in [19]. For the posneg(A,C;B) gate we must
consider three gene states, G, G', and G” with the reactions

PHYSICAL REVIEW E 78, 031909 (2008)

C+G—,G"+C, (6)
A+ GH,ZG” +A, (7)
and the corresponding relaxation reactions
G’—>,,1G, (8)
G"—, G+B. ©)

It is clear from this scheme that for each additional regula-
tory function, a binding transcription factor and a corre-
sponding gene state must be introduced.

Our minimal model obviously leaves out a number of
regulatory levels such as

(i) complexation of transcription factors;

(ii) formation of the DNA-transcription factor complex;

(iii) DNA transcription and RNA translation are lumped
together.

These regulatory mechanisms can, of course, be added to
the list of reactions given above, and we will come back to
this issue in the course of this paper.

B. Mean-field equations

Having listed the transcriptional reactions we now define
a continuum description based on ordinary differential equa-
tions for the concentration of genes and proteins. We assume
that the cell population can be considered as a “soup” con-
taining the proteins as well as N copies of the gene G. We
denote normalized concentrations by small letters g
=[G]/N, b=[B]/N with [G]=G/V (likewise for [B]) and
keep the previous symbols for the kinetic constants (i.e., we
include dependencies on cell volume V and gene copy num-
ber N where necessary; the difference to the kinetic reactions
should be evident from the context). The two reactions of the
null gate are then summarized by the ODE

b=eg—vb. (10)

For the regulated genes, an equation for g must be added.
Since the N-gene gates present in our cell model must be
either in state G or G’, one has the conservation law [G]
+[G']=N. From the normalization we have g+g'=1, and
hence the neg gate is described by the two ODEs, Eq. (10)
and

g=mng —rga=1-(1+wvag], (11)

where the conservation condition has been used, and v
=r/n.

The pos gate [part (3) of Fig. 1] is governed by the
ODE’s, Eq. (11), and

b=gg+ng' - yb=n-(n-e)g—b. (12)

Finally, we consider the case of multiple regulations of a
single gene, the simplest multi-input gate, the posneg-gate in
part (4) of Fig. 1 with the three gene states, G, G', and G”,
modifying the conservation condition to g+g’+g"=1. We
can build up the gate reaction kinetics as before and obtain
the system of ODE’s
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FIG. 2. (Color online) The two main classes of simple circuits:
Circular (1) and linear (2). Shown are only the repressive circuits;
activatory circuits and mixtures of both types can be built in a
similar fashion. Circuits shown in (1): The autoinhibitive circuit, a
bistable switch, the repressilator. Circuits shown in (2): A linear
array and a linear array with a head feedback, hence a mixture of a
circular and a linear circuit.

C 11|

b=gb+ 8"~ b, (13)
and

g'=—mg' +rgc, (14)

§'=-mg"+nrga, (15)

hence one has for g the equation g=—(g’+¢"”) which follows
from the conservation of gene states.

At this point we stress that we have only considered the
case of binding of a single protein A. In general, the binding
of proteins is rather by multiprotein complexes (dimers or
higher), which is one way to give rise to a Hill coefficient A
when the complexation reaction is considered an equilibrium
(“fast”) reaction [20]. We could take this into account in our
model by adding a corresponding complexation reaction in
the reaction scheme. To be practical we here directly modify
the ODE equation of the gene by replacing a by a" with h
>1 to cover this more general case; in what follows, we
consider & as a continuously variable parameter. It is well
known that a Hill exponent >1 is essential for the dynamic
behavior of simple gene circuits [21].

For the stochastic simulations we employ the Gillespie
algorithm which is equivalent to the chemical master equa-
tion [4]. We combine the Gillespie method with the stochas-
tic m-calculus, a process algebra originating in theoretical
computer science [22-27]. For a brief introduction into the
main ideas of the calculus, see the Appendix.

III. EXAMPLES
A. Basic circuits

We first discuss the elementary gene circuits that can be
built from the above constructs. All simple transcriptional
networks are either circular, linear or mixed circuits, see Fig.
2. The archetypal loops are the autoinhibitory and autoacti-
vatory loops. The autoinhibitory loop neg(a;a) is shown in
part (1) of Fig. 2. The ODE’s governing its dynamics are

a=¢gg—-vya (16)

and
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g=ng —rga=n[1-(1+va"g]. (17)

The natural first task is to look at nullclines and fixed points.
The nullcline of g is determined by

1

1+vd"

8 (18)

If we have ¢/ »=0 and v finite we can keep the circuit near
the nullcline of g. Inserting the nullcline condition into the
equation for a we find

&€

a= 1+vah_ya’ (19)

which is the common form of the Hill-type equation used in
nonlinear dynamics descriptions of gene networks. This turns
out to be a general feature of the gene gate approach: Near
the nullclines of the gene gate states, g~g’'=~---- =0, the
circuit dynamics reduces to that of the standard Hill equa-
tions. This feature has an immediate consequence for the
fixed points. The nuclline of a is given by

&

= ya, 20
1 + va" v (20)

where the result for g has been used, and we thus find the
standard fixed-point condition of the Hill equation for a.
Since the left-hand side is a hyperbolic function in a, and the
right-hand side is a linear function there is a unique fixed-
point of the circuit.

The argument can be repeated for the autoactivatory loop
pos(a;a) with the result

e+rd

“= 1+Vah_7a’ @D

which is the typical sigmoidal form of the activatory circuit.
Therefore, we again find that the fixed points are given by a
condition akin to the standard Hill-type equations, which for
h>1 gives rise to three fixed points.

The stability of the fixed points in the gene networks is
not affected by the presence of the genes. We illustrate this
for the bistable circuit composed of two neg gates,
neg(a;b)|neg(b;a), where the symbol “” denotes the com-
position of two gates, see part (1) of Fig. 2. The equations of
the circuit read as

a=¢geg,— ya (22)
and

o= 1= (1+vb")g,] (23)

and likewise for a< b. As is well known [21], the nonlinear-
ity due to the Hill coefficient is needed for the system in
order to display the fixed-point structure of the bistable
switch; for a value of 2=1 as in our basic version of the gene
gate model this is not the case. The stability of the fixed
points follows from the eigenvalues of the matrix
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FIG. 3. (Color online) Switching in the stochastic bistable cir-
cuit without cooperativity. Simulation parameters are r=1, e=0.4,
7=0.2, y=5X1073. The inset indicates output on the m-calculus
channels !a, !b, equivalent to protein numbers.

-y ¢ 0 0
0 -x -¢ 0
Iiﬁ7: (24)
0O 0 —-v O
-& 0 0 -x
with
h h-1
x=n(l+vd), &=""—. (25)
1+ va

Note that we are looking here at the stability of the symmet-
ric fixed point for which y;=x,, & =§,. For the bistable
switch, this is the unstable fixed point intervening between
the two stable fixed points, and its eigenvalues follow from
the characteristic polynomial to Iy,

(Y+ N N+ x)?*= (8% (26)

Taking the root of this equation, one finds four real eigenval-
ues, two of which are negative, and two positive. The picture
that emerges therefore is the usual instability in the space of
protein concentrations a;,a,, while the genes do not contrib-
ute.

We close this section by commenting on results from the
stochastic simulations. The basic loop and linear circuits
(negative, positive) show fixed-point behavior similar to
their deterministic counterparts [24]. For the bistable switch
there is a notable difference: As was recently shown based on
a master equation approach the stochastic dynamics of the
bistable switch without cooperativity (h=1) displays both
bistability and switching [28]. This behavior is easily repro-
duced with our Gillespie approach, see Fig. 3.

Before moving on to richer examples, we draw a brief
intermediate conclusion for the gene gate model:
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(i) If the deterministic gene circuit has a unique stable
fixed point, the genes are “irrelevant” variables in the sense
that they do not alter the location of the fixed point. They do,
however, affect the transient dynamics (see below).

(ii) The deterministic dynamics requires Hill-type nonlin-
earity in order to show bistability and switching; for the sto-
chastic dynamics, cooperativity is not needed.

B. Repressilator

Clearly, the dynamics of the genes does affect the systems
transients, and as such the genes can indeed have a profound
influence on the dynamics, as we now show. For this we look
at a gene circuit whose stationary behavior is not governed
by a simple fixed point, but by a limit cycle: The repressila-
tor. The repressilator is the three-gene negative-feedback
loop shown in part (1) of Fig. 2; this system has been real-
ized experimentally as a synthetic gene circuit in E. coli [17],
and it has recently been the topic of various modeling papers,
employing both deterministic and stochastic approaches,
e.g., [14,24,25,29].

The nonlinear dynamics of the repressilator in the
nullcline space of the gates is described by the ODE

) g
a= -
1+ vb"

va (27)

with the equations for b and c¢ to be obtained from the per-
mutations (a—b,b—c) and (a— c,b— a). Since all param-
eters are assumed equal, the system has a symmetric fixed
point, a=b=c=a. Testing the stability of this fixed point, the
stability matrix reads as

-y -k 0
MP={ 0 -y -« (28)
-k 0 -y

with k=ghva"'/(1+va")?. The characteristic polynomial to
this matrix is given by

(y+M*+ =0, (29)
so that the first eigenvalue is found to be
AN ==(y+kK). (30)

The two others are given by

A LN (31)
=—vy+ - Xi-\3.
2377 VT, =N

The condition for a Hopf bifurcation therefore is

K
—=7. 32
5= (32)
Making use of the fixed-point conditions one finds the rela-
tion
2
a= (1 - —) = (33)
h/y

and hence the condition on the Hill exponent & >2 for the
circuit in order to have a stable limit cycle.
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FIG. 4. Top: The repressilator dynamics without gene gates
(fixed at the nullclines of the gates) for the parameters r=1, y
=0.1, £=0.3, »=0.9, h=3. The limit cycle is absent, the fixed-point
is stable. Bottom: Plot of the repressilator dynamics for the full
system with identical parameters. The limit cycle persists in a wider
range of parameters.

The stability analysis of this fixed point can be carried out
analytically for the full gene gate circuit, i.e., keeping both
the transcription factors and the three genes as dynamic vari-
ables. By symmetry, in fact, the calculation works for a cir-
cular circuit of n genes. The calculation amounts to general-
ize Eq. (26) so that

(Y+N" N+ 0"+ (1) (8" =0 (34)

with n=3 for the repressilator. This fixed-point condition is
formally equivalent to that of the “leaky” repressilator dis-
cussed in [14], for which a condition A>4/3 was estab-
lished. Within the full gene gate dynamics, the condition on
h is thus weakened: The repressilator already oscillates for
Hill exponent values less than 2. Even for the case =3, e.g.,
when both the full and the restricted system show oscillatory
behavior, the presence of the gene dynamics enlarges the
oscillatory region in the space of protein concentrations (Fig.
4). The stability of the limit cycle in the space of parameters
(e, m) is summarized in Fig. 5.

By contrast, the stochastic repressilator without cooperat-
ivity displays a limit cycle behavior, as shown in Fig. 6 (top).
The limit cycle appears as a symmetric triangle in the space
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FIG. 5. Parameter regimes for the repressilator dynamics. I,
stable fixed point; 11, stable fixed point for the reduced system, limit
cycle for the full system; III, limit cycle. Parameters are the same as
in Fig. 4.

of transcription factor concentrations (a,b,c). The triangle is
somewhat “fuzzy,” reflecting the fluctuating nature of the
concentrations. This fuzziness can be reduced by increasing
the space of variables in the system. In a recent study, the
effect of an inclusion of transcription factor cooperativity
(dimerization and higher), or an inclusion of explicit RNA
transcription and protein translation was studied. It was
found that all of these mechanisms regularize the oscillatory
behavior [25] and render the limit cycle less “fuzzy.” Analo-
gous findings for circadian clocks were reported earlier
[30,31]. The corresponding limit cycle for the deterministic
dynamics of the reduced system is shown in the bottom
graph of Fig. 6. Here again a Hill coefficient 4=3 has been
assumed.

IV. MULTIINPUT GATES
A. Rewired repressilator

The stabilizing effect due to the presence of the gene
gates persists in the presence of multiple inputs, in fact, it
can even be reinforced. We observed this when considering a
rewired repressilator shown in Fig. 7, in which an additional
activatory loop has been added so that we have

neg(c;b)|posneg(c,b;a)|neg(a;c). (35)

In the case without genes, this means that one of the equa-
tions, say the one for a is replaced by

e+ rgch

= - ya. 36
“ 1+Vbh+VpCh v (36)
This “rewired” repressilator still has a unique fixed point
(a,b,c), as follows from an analysis of the fixed-point con-
ditions. The stability condition can be read off, as before,
from the stability matrix which now reads as
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(b)

FIG. 6. (Color online) Top: The limit cycle of the stochastic
repressilator. Simulation parameters are r=r,=1, £=0.1, 7=1072,
vy=1073. Bottom: The deterministic version for comparison (re-

duced system in region III of Fig. 5, parameters identical to the
stochastic version, with 2=3).

1l

(a)

80

60

FIG. 7. (Color online) Top: The rewired repressilator, a positive
loop is added (see arrow), so that one of the genes is doubly regu-
lated. Bottom: The limit cycle of the (reduced) rewired repressilator
circuit; the additional activation interaction breaks the symmetry, as
discernable in the difference in maximal concentrations. Simulation
parameters are r=1, r,=107%, =0.1, 7,=7,=10"%, y=107, h=3.
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-Y — Ko K
M= 0 -v -k (37)
-3 0 -
with

vhb" (e + r,c"
—%, (38)

Ko
(1+vb"+ Ve

hch_l[rp(l + by - €]

= 39

f (1+vb"+ 1/pch)2 (39)
vhe!

== 40

T ) (40
vhb"!

= 41

3 (1+ vb")? (“1)

Note that k; can be both positive and negative. The charac-
teristic polynomial reads as

(Y+ M)+ (y+ Nk k3 + Kokyk3 =0 (42)

which still has a pair of complex eigenvalues. The Hopf
condition is given by

8'y3+2'yK1K3—K0K2K3=0. (43)

The analysis of the full system, genes included, is clearly
more involved than for the repressilator due to the increased
number of variables. We have therefore studied the system
only numerically and compared the reduced and the full ver-
sion, as we did for the repressilator. Our calculations show
that the reduced version (three ODE’s for a,b,c) is less ro-
bust against rewiring than the gene gate version (seven
ODE’s): The stability limit of the limit cycle regime can
differ by parameter values up to one order of magnitude.
This finding is notable since in the presence of multiple regu-
lations the number of gene states increases linearly with the
number of inputs (neglecting still additional regulatory lay-
ers) and thus significantly enhances the complexity in mod-
eling circuits with such elements. We close this section with
Fig. 7 (bottom) which shows the limit cyle of the rewired
repressilator for the reduced deterministic system (2=3). It
illustrates that in general the presence of the additional posi-
tive loop breaks the (a—b—c) symmetry between concentra-
tions.

B. Multi-input circuit related to developmental regulation

In this final section we address a second example of a
multi-input gate. It consists of a bistable switch built from
two repressing gates which is placed under additional control
by an activating input. Such motifs occur both in transcrip-
tional regulation [19], but they have also been proposed re-
cently to play a role in morphogen concentration-dependent
cellular development [18]; our example is motivated by the
latter case. The circuit dynamics is governed by the follow-
ing ODE’s (neglecting the gene gate dynamics since we are
concerned with fixed-point dynamics only);
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FIG. 8. (Color online) Top: The bistable switch under external
control by a. Bottom: The system starts at zero concentrations of
both proteins and enters the state with higher stability, as given by
higher production rates. The signal ¢ dominates widely over a,b
which are indistinguishable from the baseline.

+ n
% — b, (44)

1+ vc"+v,ad"

g +ra" (45)
(=—"""F—""— -,
1+ vb +v,a" s

where m,n,[ are the different Hill exponents. If the activat-
ing variable a=0, the system is the standard bistable switch,
albeit asymmetric with respect to the parameters and nonlin-
earities, and it is this asymmetry which plays an important
role—in Ref. [18], the supposed Hill coefficients have values
of 3 and 6, respectively.

The effect of the variable a on the dynamics is easily
understood. To simplify matters, we neglect a in the first
equation and look at an asymmetric wiring. It actually does
not matter whether we allow a to control one or both tran-
scription factors b,c as long as a interacts with both in the
same way and not via a different nonlinearity: The main
symmetry-breaking effect is contained in the difference be-
tween the Hill coefficients controlling b and c.

Supposing further that we increase the concentration of a
to levels where it dominates the concentration b so that we
have for the fixed point in c,
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FIG. 9. (Color online) Top: A change of the activator transcrip-
tion rate by one order of magnitude makes both proteins compete;
note the concentration overshoots of the previously stable protein.
Bottom: A further increase of the activator transcription rate makes
the system switch between the two states. Simulation parameters
are (bottom): r=1, £,=1073, £,=0.1, £,=1073, 7,,=2X 1073, 7,
=2X1072, =2Xx 1071, 9,=5X 1073, y=2X 1074,

1 e +ra" Db
coz—ﬁe—”. (46)
Y1+ v,d"e1 y

Thus, the fixed-point concentration of the repressing variable
co 1s locked to that of a and approaches an asymptotically
constant value. Correspondingly, this brings the fixed-point
level of b down and under firm control of a: The system
ceases to be bistable, and locks into a stable state under
control of a. The possible relevance of this mechanism for a
transcriptional circuit in development is evident: Increasing a
can force the system to switch in a concentration dependent
way.

In the nonlinear dynamics case, this switch is therefore
brought about by the vanishing of a fixed point; again, this

031909-7



R. BLOSSEY AND C. V. GIURANIUC

situation is different in the stochastic setting. For compari-
son, Figs. 8 and 9 show our results of the stochastic simula-
tions for the circuit

null(a)|posneg(a,b;c)|posneg(a,c;b) (47)

without any cooperative nonlinearity, as for the repressilator.
The progression of dynamic behaviors in Fig. 8 (bottom) to
Fig. 9 (top and bottom) is controlled by the average concen-
tration level of a, which increases from one figure to the next
by one order of magnitude since the transcription rate is in-
creased by this factor. In Fig. 8 (bottom) the switch enters the
more stable of the two states; in Fig. 9 (top) the additional
input a makes the concentration levels b and ¢ compete with
each other. This behavior is observed within a large param-
eter range, in which bursts in concentration ¢ can occur at
random times within a wide time interval (see the concentra-
tion peak at around 55.000 a.u.), and are finally controlled by
a. In Fig. 9 (bottom) the system has switched to a dominant
concentration of b and the concentration of the previously
dominant transcription factor ¢ is now fully controlled by a.
Note the difference in concentration levels of all proteins in
the figures.

V. DISCUSSION AND OUTLOOK

In conclusion we have proposed a minimal model descrip-
tion for gene regulatory networks based on the notion of the
gene gate, first proposed in Ref. [24]. We studied the dynam-
ics of simple gene networks in both a mean-field and a sto-
chastic version, with characteristically different results.

(i) If the system dynamics is stable fixed point only, a
reduced deterministic description ignoring the degree of free-
dom of the gates is sufficient in the sense that the fixed point
is not altered by the presence of the genes. But if this is the
case, the latter are indeed “irrelevant.” In order to represent
faithfully the fixed-point structure of the network, a Hill-type
nonlinearity may be needed (like for the bistable switch cir-
cuit). However, within a stochastic description fluctuation
effects induced by the genes (promoters) might affect fixed-
point locations [32], or the stability of bistable switches
[33-36].

(i) If the system displays a limit cyle, the gene gates are
relevant, as is any other additional regulatory layer to deter-
mine the parameter range of oscillations. In general the limit
cycle regimes depends on the whole set of parameter values,
Hill coefficient included. In particular this means that in
multi-input regulations in which additional gene states must
be accounted for, the parameter space can extend signifi-
cantly.

(iii) If the system dynamics is fixed point, the stochastic
version obeys this without any need for cooperative effects.
The same holds true for limit cyle behavior. Additional regu-
latory layers also enlarge the phase space but in a trivial way.
By contrast, they affect oscillatory behavior by regularizing
the oscillations.

In our view these results have interesting consequences on
the philosophy of modeling gene regulatory networks in sug-
gesting a different coarse approach. Computational models
of large networks can be built by abstracting away all regu-
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latory layers to a level where the remaining network can still
faithfully represent the system characteristics. Network mo-
tifs that have a more sensitive dynamic behavior—Ilike limit
cycles, as shown here—are more sensitive to modeling as-
sumptions. Finally, we remark that in view of our results,
modeling attempts combining deterministic and stochastic
aspects should be considered with care [37].
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APPENDIX: SIMULATIONS IN STOCHASTIC
7-CALCULUS

The Gillespie algorithm can, of course, be implemented in
various different programming languages. What then are the
main ideas and advantages of the m-calculus?

The 7r-calculus is a formal system in which each compu-
tation is represented by a communication over input and out-
put channels. The communicating objects are called “pro-
cesses.” Computation by communication within m-calculus
can be understood as an alternative to, e.g., functional com-
putation as realized in the N-calculus. The m-calculus is Tur-
ing complete: It can therefore realize any possible computa-
tion [22].

For our application, the calculus allows us to represent
each gene gate by a computational process

gate(x;y) (A1)

with its corresponding input(s) x and output(s) y; e.g., the
repressing gate in part (2) of Fig. 1 is written as neg(a;b)
where the input channel a represents the repression of tran-
scription by transcription factor a, and b is the corresponding
output. All other reactions, e.g., the degradation process of b,
are bound to this process and contained in its definition.

The scheduling of inputs and outputs on a gate are calcu-
lated in the usual fashion by the standard Gillespie algo-
rithm, as adapted to the mr-calculus [24-26].

One main technical advantage of the calculus is, in fact,
that its syntax and semantics are perfectly adapted to a “com-
positional” build-up of the transcriptional networks. In our
context this permits us to express (and compute) a composed
circuit, such as the repressilator, by a parallel process

neg(c;b)|neg(b;a)|neg(a;c). (A2)

The second main advantage (although not exploited for
the small systems studied here) is that it can reduce the com-
putational complexity of a system of n kinetic reactions,
which is of order n2, to linear order. The interested reader is
referred to Refs. [24,25] for more details, written in a way
accessible to a physics-trained audience. The simulation re-
sults presented here were obtained with the public domain
software SPIM, downloadable with documentation and ex-
amples [27]. The details of the implementation of the
Gillespie algorithm in the dedicated software SPIM are dis-
cussed in the supplementary materials of [24,25].
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