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Density of states for a short overlapping-bead polymer: Clues to a mechanism
for helix formation?
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The densities of states are evaluated for very short chain molecules made up of overlapping monomers,
using a model which has previously been shown to produce helical structure. The results of numerical calcu-
lations are presented for tetramers and pentamers. We show that these models demonstrate behaviors relevant
to the behaviors seen in longer, helix-forming chains, particularly “magic numbers” of the overlap parameter,
where the derivatives of the densities of states change discontinuously, and a region of bimodal energy
probability distributions, reminiscent of a first-order phase transition in a bulk system.
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I. INTRODUCTION

Helices are a common structural motif in biological mol-
ecules, from the a-helix in proteins to the culturally iconic
double helix observed in double-stranded DNA. In a living
cell, the adoption of stable helical structures allows these
molecules to place functional groups in specific positions
and orientations, and holds the polymer backbone away from
the solvent, protecting it from chemical attack. The consen-
sus view of helix formation follows the work of Pauling
et al. [1]: biological helices are stabilized by orientationally
dependent hydrogen bonding, with their chirality arising
from the chirality of the polymer molecule.

Those same properties which make helical molecules so
useful in living cells also make them useful in the context of
nanotechnology. Unfortunately, while our understanding of
biological helices is good at explaining why polypeptides
and polynucleotides do form helices, it does not provide use-
ful prescriptions for developing alternative helix-forming
molecular architectures. To gain the understanding necessary
to develop such prescriptions, many workers have consid-
ered “reduced models” [2—7] for helix formation, which at-
tempt to capture the underlying physics of the phenomenon
in as simple a manner as possible.

Over recent years, simulation studies of such reduced
models have yielded surprising results. In particular, several
polymer models have been proposed which produce helical
structure while interacting via isotropic potentials [2-5]; that
is, helix formation without “designed-in” preferred interac-
tions, with spontaneous chiral symmetry breaking. Maritan
et al. [4,5] have shown that helices are “maximally compact”
structures for stringlike objects. This suggests that helix for-
mation arises from geometric symmetry breaking, akin to
crystallization. A better understanding of how this symmetry
breaking can arise should lead to better prescriptions for
helix-forming architectures.

In the study of a-helix formation in polypeptides, the
starting point is the observation that helices are quasi-one-
dimensional objects, which can be looked at as spin chains.

*J.magee @manchester.ac.uk

1539-3755/2008/78(3)/031803(10)

031803-1

PACS number(s): 61.41.+e¢, 33.15.Bh, 87.15.ad

The standard approach [8—11] is to attribute amino acid resi-
due conformations to spins, either H (“helix,” that is, capable
of forming a hydrogen bond compatible with a helical struc-
ture) or C (“coil,” otherwise). A spin chain representation is
then made up of these states; in the simplest form [9], resi-
dues that are neighbors along the peptide backbone interact
according only to their H or C attribution and amino acid
type. Modern versions of this approach [8] include many-
body “capping interactions,” which are nonpairwise, nonlo-
cal interactions between residues; the strength of these inter-
actions, however, still depends only upon the residue type
and H or C attribution. Such models have achieved consid-
erable success in helical structure prediction for polypep-
tides. For more general helix-forming systems, the proper
attribution of a backbone segment to H or C type is not clear.
However, the success of the spin chain approach to helix
formation in polypeptides suggests that a similar approach
may be fruitful.

For a linear polymer of spherically symmetric monomers,
single monomers are not the equivalent of amino acid resi-
dues for helix formation, as they have no internal degrees of
freedom. From symmetry arguments, the minimum possible
such building block must be a tetramer; helices break chiral
symmetry, and a tetramer is the shortest length chain which
may exhibit chirality. Similarly, the behavior of a pentamer
should contain information on how neighboring chiral cen-
ters interact, and so forth for longer chains.

In this paper, we seek complete enumeration of the parti-
tion function for tetramers and pentamers, using a simple
polymer model which has previously been shown to produce
helices [3]. This enumeration is performed using a method-
ology similar to that followed by Taylor [12] for short tan-
gent square-well chains. The intention is to identify the
building blocks necessary for helix formation in longer
chains, and the origins of the behaviors which allow helix
formation in longer chains. The methodology and results of
this enumeration are intended as a staging post for the con-
struction of generic spin chain models of helix formation

The remainder of the paper is structured as follows. In
Sec. II, the polymer model that is to be studied is described.
In Sec. III, the method by which the partition functions for
the model are calculated is given. The results calculated from
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FIG. 1. Schematic phase diagram from simulation for a helix-
forming 20mer, as described in the main text. Reproduced from
Ref. [3].

these partition functions are described in Sec. I'V. Finally, in
Sec. V, these results and their implications are discussed.

II. MODEL

The polymer model consists of a linear chain, bond length
[, of N hard spherical monomers with diameter o. The degree
of overlap between monomers is determined by the reduced
parameter o/l. For o/l=1, this is the familiar tangent sphere
polymer model. We consider chains with o//=1, that is,
with overlapping monomers. Interactions between non-
bonded monomers (separation r) are given by an isotropic
square-well potential

®, r=so,
u(ry=1—€, o<r=<N>\o, (1)
0, No<vr,

where \ is the well width (taken as 1.5 in this work), and the
well depth € sets the energy (and hence temperature) scale.
We follow the protein literature, by denoting interactions be-
tween particles where o<r<Ao as contacts, and interac-
tions where r<<o as overlaps. Interactions between mono-
mers separated by two bonds along the chain are referred to
as 1-3 interactions; interactions for monomers separated by
three bonds are referred to as 1-4 interactions, and so forth.

In previous simulation work, we have used a version of
this model where individual bond lengths were allowed to
vary by =10%. It has been suggested that such bond length
variation can enhance the ergodicity of a simulation com-
pared to rigid bonds [13]; further, this allows the configura-
tional and momentum parts of the partition function to be
factorized. With such bond length fluctuation, the system has
been shown to form helices for 20mers (polymers of length
N=20). The observed phase diagram is shown in Fig. 1; the
system is observed to form two distinct helical phases, “helix
1” (stable at higher temperatures, and with a smaller radius)
and “helix 2” (stable at lower temperatures, and with a larger
radius). The following work does not include such bond flex-
ibility, as the extra degree of freedom per bond would make
the problem very much less tractable.
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FIG. 2. A core-softened potential. If the shoulder height A
> kT, the effective core diameter will be o rather than [; hence a
chain of monomers interacting via such a potential with bond length
[ would act like the overlapping square-well monomer model pre-
sented here.

Physical relevance

With any such “reduced model,” however interesting the
behaviors, the question of physical relevance must be an-
swered. The idea of overlapping monomers is consistent with
the van der Waals radii of atoms in “realistic” potentials such
as CHARMM [14], where atomic radii are often larger than the
bond length to neighboring atoms. On a larger scale of ap-
proximation, if amino acid residues are approximated by in-
teracting spheres, the radii of gyration for amino acids can be
larger than their center of mass spacing along the peptide
chain.

Since protein molecules form intrachain hydrogen bonds,
an interesting parallel can be made to “core-softened poten-
tials” (see Fig. 2), which have been used to study the anoma-
lous behavior of water [15-17]. These isotropic potentials
have a shoulder (diameter o) around a repulsive core (diam-
eter [), representing close-packed but non-hydrogen-bonded
pairs, and an outer well (diameter Ao) which represents
hydrogen-bonding interactions. In a chain of such monomers
with bond length /, if the difference between the potential
energy of the shoulder and the potential energy in the mini-
mum is sufficiently larger than kT, the effective repulsive
core diameter will be the shoulder diameter; at low tempera-
tures, a chain of such monomers would behave like the over-
lapping square-well monomer model presented here, forming
a helical structure.

III. METHODS

We consider four- and five-length polymers of the type
described above, as shown in Fig. 3. The position of mono-

é
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FIG. 3. A cartoon of the model. Five monomers are shown, of
diameter o, bond length /, with bond angle 6;, and the two dihedral
angles ¢ and ¢, indicated.

031803-2



DENSITY OF STATES FOR A SHORT OVERLAPPING-...

mer i is denoted by R;. Bond vectors are defined as r;
=R;;;—R;. Separation between monomers i and j is denoted
r;;. The bond angle around monomer i is defined as the angle
between bond r;_; and r;, that is, cos 6;=r;_;-r;. The dihedral
(torsional) angle ¢; is defined as the angle between the
planes formed by the vector pairs (r,_;,r;) and (r;,r;,;), rela-
tive to the cis conformation (i.e., ¢=0 is cis, ¢p=17 is trans).
We take positive ¢ as a right-handed rotation. This is arbi-
trary, however, as the underlying model is achiral. We do not
consider translations and rotations of the entire molecule; as
such, we fix the position of the first monomer, as well as the
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plane made by the vectors r; and r,. The configurational
integral of such an n-mer is given by Z,, defined as

n=3 .. n=2 ~n
Z, = (]‘[ dd)i) (H 1% sin 0,-d9i) exp[- BE{R})].
=1 J -7 j=1vJ0
2

where E({R}}) is the total configurational energy for the sys-
tem [the sum of the pairwise interactions in Eq. (1)] and B
=1/kgT, the inverse temperature.

A. Tetramer

We initially consider a tetramer. The configurational integral is given by

Z4= l4j d¢1j sin 91d91j sin 6,d 6, exp{= Blu(riz) + u(ry) + u(riy)]}. (3)

- 0 0

Separations are given by

riz_l,iJrl =21%(1 +cos 6) = Px; (4)

and

rf_,m(ei, 0.1, ) = P[(1 + cos 6; + cos 6:,,)” + sin® 6; + sin® 6, — 2 sin 6; sin 6;,, cos ;]

= lz[(xi + X — 2)%4 + x4 =x;)/4 + X111 (4 = X;,1)/4 = cos ¢i\/xi(4 -x;) X \'/xi+1(4 —x;31)/2]

= lzyi(xi’xiﬂ’ &)

©)

Since we are working with variables of squared separation, for notational convenience we also define a=(o/[)%. Physical
bounds for x; are a<<x;=<4, since a separation of less than o represents an overlap. It is natural to switch variables in the

configurational integral to separations x;, giving

T 4 4
— — RS
Z,= (1/4)f dd’lf dxlf dx; exp(= Blu(lNxy) + u(lNx;y) + ul Ny, (xy, x5, 1) 11 - (6)
- 0 0
Since we are working in a square-well system with discretized energies, it is now convenient to switch to a density-of-states
representation:
3
Z,=(1/4) 2 w,(k) exp(Bek), (7)
k=0

where w,(k) is the density of states for the n-mer with k contacts. For the tetramer, we can write the appropriate integrals as

4 4
w4(0) =fd¢1f dxlf dx,0(y,(x,,%;, b)) — N2a), (8)
min(4,\2a) min(4,\2a)

77 4 min(4,\2a) , - 4 4
ay(1) =2] d¢1f dxlf dx,0(y;(x1,x5,¢1) — Na) +j d¢1f dxlf dx,
T min(4,)xza) a -7 min(4,)xza) min(4,)xza)

X[O(x1,X2, 1) — a) — O(y (x1,x2, ) — 7\26)], )

™ 4 min(4,\%q)
w4(2)=21 dd)lJ ) dxlf dx2[®(y1(xl’x2’¢l)_a)_®(y1(xl’x2,¢l)_)\2a)]
- min(4,\“a) a

™ min(4,\%q) min(4,\%a) )
+f d¢’1f dxlf dx,0(y(x1,x2, 1) —\a), (10)
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min(4, )\za) m1n(4,)\2a)
wy(3) = J d¢1f dxlf dxy[O(y,(x),x5, 1) —a) = O(y(x},x5, 1) — N?a)], (11)

where ©(x) is the Heaviside step function. The min terms exist to prevent unphysical limits of integration when N?a=4 (in
which case 1-3 contacts are always on). We note that wy(k) is a sum of integrals of the general form

™ X1h X2h
f4:2f d¢1f dxlf dxy0(y,(x1,x2¢) = h), (12)
0 Xy Xy

where we have used the symmetry of the system to simplify the ¢, integral. The integrand is nonzero for that region of
(xy,x5, ;) space for which y, >h. We can solve Eq. (5) to find the bound of this space with respect to x, (or, by symmetry,

x,) for given (¢,h), which we call x,:

x,(x, p,h) = 2x[#(4 = x) + (h — 1)] + sgn[cos()) ]N1(4 — x)x X \N[2x(2t + h — 1) — 122

where we use t=cos’ ¢, and sgn(x) returns the sign of x.
Similarly, we also solve for the value of ¢ at which y;=h for
given x; and x;,, which we denote ¢.:

T, b < -1,
& (x;,x;1,h) =1 arccos(P), |P| <1, (14)
0, d>1,

where the ratio @ is defined as

_ 2+ XiXiv1 — 2h
V(4 = x)x,0 (4 = xi4) '
We consider the shape of this boundary:

(15)

de. 2\x; (4 = x;41)
—| == 0201=h) = x[x; + (1 =h)]}.
0 Ly, sin x4 —x) "

(16)

The only part of this equation which can be negative is the
term enclosed in braces. Within the range a<x;<4, a<h
<N%, 1<a<4, and N?>1, it can be shown that
(9¢pc/ 9x))|,., is nmonpositive. By symmetry, (dx./dx)[, is
therefore also nonpositive. As such, we can write Eq. (12) as

™ X1h X2h
f4:2f d¢1f dxlf de. (17)
0 xyy min{x,,max[x,;.x.(xy,é,h) ]}

The max term picks the larger of the original lower limit
(x5) and the value of x, below which the Heaviside function
integrand in Eq. (12) becomes zero. The min prevents the
unphysical result of the lower limit becoming larger than the
upper limit.

We note that, by symmetry, if x;=x.(x,,,h), then x,
=x.(x;,¢,h). Hence, we can immediately see that the
solution to x,,=x.(x;,®;,h) with respect to x; is x
=x.(xo,},h). For x;<x.(xy,,¢,h), the upper and lower
limits on the innermost integral are equal, and hence the
contribution to the integral is zero. Thus,

—(h= 1 THxx+ (4 -2}, (13)

m X1p
fa=2 f d¢, f dx,
0 min{x;,max[x;.x.(x,,4,h) ]}

X2n

max[xs;,x.(x),é,h)]

Since x.(x, ¢, h) is a monotonically decreasing function of
x across the range of interest, we can now propagate the max
term in the middle integral out to the dihedral integral:

™ X1, X2,
f4 = Zf d¢1f dxlf dX2
(X px.h) Xy max[x;,x,(x1,¢.h)]

ey x0ph) X1,
+ 2f d¢1 J dxl
0 min[xy .. (Xop. $.h)]
X2,
xf . (19)

max[x;,,x.(x1,¢,h)]

The remaining max and min terms can then be propagated
out in a similar fashion, remembering that ¢.(x,x’,h) is a
monotonically decreasing function of x and x’ across the
range of interest:

™ X1 X2
f4=2f d¢1f dx1f dx;
bc(x17.x9) Xy X1

delxy 27 X1h X2h
+ 2[ d¢1f dxlf dX2
max[ b, (xyx2p), b (X jx2))] xc(xg)) x

21

be(x17.52) xe(xg) X2
+2 f de, j dx, f dx,
max[ ¢.(x1,%5p), e (x1 j27)] ¢

max[ . (x11.x2p), b (x152))] X1 Xop
j j dx, f dx,

Gelxyxop)
+ 2J d(ﬁlf dxlj dXz
min ¢ (x11.%5). Be(x1-%2)] xe(xy) x

21

(17X xe(0) X2,
+ Zf dd)lf dxlf d.X2
min[ ¢, (x11.534), Be(x1%21)] X

xc(XZh) c

+2

be(x17.527)
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FIG. 4. Graphical interpretation of the integrals in Eq. (20)
when  @.(x1),,%2) > p.(x1;,x2;). (a) shows the entire space in
X|,X,, ¢y; the total integral is the volume above the gray surface. (b)
breaks the volume corresponding to the total integral into the parts
listed in Eq. (20).

min[ e(x7.525), b (%1 02))] X1, X2,
+2f dd)lj dxlf d)C2.
x.(x2) X

bc(x1pxap) ¢

(20)

For notational convenience, superfluous arguments to the
functions ¢, and x. have been omitted; that is, 4 and vari-
ables of integration. There are min and max terms in the
dihedral integral since, without knowing more about the
original limits x; and x;, it is not possible to tell whether
b (x15,%21, 1) < b (x1;,X5,1). Figure 4 shows a graphical
representation of the integral presented in Eq. (20).

The first integral is trivial. The remaining integrals in-
clude a term [x.(x;, ¢;,h)d¢; this is analytically tractable,
resulting in terms involving elliptic integrals, but is simpler
to treat numerically. The final two terms include integrals of
the form [[x.(x;,¢,,h)dx,dp, which are not analytically
tractable, and are thus treated numerically.

Calculation of the f, integrals via Eq. (20) allows calcu-
lation of the density of states via Egs. (8)—(11), from which
the equation of state and energy probability distributions can
be determined. Structural information, in the form of the
dihedral angle probability distributions, is also easily acces-
sible. The dihedral density of states g,(¢;.k) is given by
integrals like Egs. (8)—(11) without the integral over the di-
hedral angle. For the tetramer, these give tractable though
lengthy analytic forms. The probability of observing a given
dihedral angle is then given by

4
P(¢y:T) = 2 g4(y, k)exp(Bek)/ 2. (21)
k=0

B. Pentamer

An equivalent procedure may be carried out for a
pentamer. We first introduce the 1-5 separation

2 2.
(X Xig 15 X4 B, ¢)i+])=r[—1,i+3/l .
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I
i =%+ Xy — VX (4 = xip)
/ /
X [cos dxjaVxi(4 = x;) €08 Py 1 XiVX10(4 = x140) /4
+ (Xip1 = 2)[xiXjp = cOS ¢h; COS iy
i . .
XNX(4 = x)xi40(4 = X;10) J/4 + sin @ sin iy

X X4 = x)xp0(4 = X149)/2, (22)

where the arguments to z; have been omitted. The partition
function for the pentamer is given by

6

Z5=(1/8) 2 ws(k)exp(Bek). (23)
k=0

Equivalent expressions to Egs. (8)—(11) are simple to con-
struct, using the equivalent form to Eq. (12):

™ & Ry X2 Y3,
fs= 2J d¢1f dd’zf dxlf dxzf dx;
0 - Xy X1 x31

XO(y; = 1)0O(y, = hy)O(zy = h3), (24)

where we have suppressed the arguments of yy, y,, and z; for
notational ease. This integral is constructed (without loss of
generality) such that ¢, is always right handed. Explicit
bounds of integration due to 1-4 interactions can be treated
in the same manner as for the tetramer case. Bounds for the
x; and x, integrals as a function of ¢, and for the x, and x3
integrals as a function of ¢,, are determined exactly as in Eq.
(20). This leads to single ranges of integration for x; and xs,
and two sets of ranges of integration for x,. The proper range
of integration over x, is then the overlap of these two ranges.
Explicitly treating the bounds of integration due to 1-5 inter-
actions is not trivial, and as such the resulting integral is
treated numerically. Dihedral probability distributions
P(¢,,¢,,T) can be calculated from dihedral densities of
states gs(¢;, @, ,k) in an analogous manner to the tetramer.

IV. RESULTS

Using the results presented in Sec. III, we have evaluated
the full partition functions for tetramers and pentamers.
Results for the tetramer have been calculated with the
MATHEMATICA symbolic algebra package, using Gauss-
Kronrod numerical integration. Results for the pentamer
have been calculated using ten-point Gauss-Legendre
quadrature [18]. Both methods of integration have been
checked by comparison against the tangent chain results pre-
sented by Taylor [12]. The pentamer results have been veri-
fied against short Monte Carlo simulations (data not shown).

A. Tetramer

To validate the method, we compare our calculated den-
sities of states for tetramer tangent square well chains (o/1
=1) to those presented by Taylor [12]. These results are
shown in Table I. It can be seen that the results are equivalent
to four significant figures aside from an unimportant multi-
plicative factor. The method of Taylor does not use explicit
limits of integration, instead numerically integrating the
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TABLE 1. Comparison of the densities of states for a square-
well tetramer chain with o//=1.0 and Ao=1.5 calculated in this
work [w,(k)/41*, with the factor 1/4 (as described in Sec. IIT)] and
by Taylor [12] [wfaylor)(k), or gf‘k) in the original terminology].
Suppression of the unimportant multiplicative factor of 8 in the
work of Taylor leads to the difference in the values; it can be seen
that with this factor included the values differ only in the fourth and
fifth significant figures.

k wy(k) /41 @100 (k) ws(k)/[32m ™) (k)]
0 4.78131 0.19029 0.999750
1 5.59121 0.22247 0.999987
2 2.42528 0.09650 0.999986
3 0.62013 0.02467 1.000170

Heaviside functions in Eq. (12); strictly, the method pre-
sented here should be more accurate, though these results
suggest the difference is not significant.

The calculated densities of states as a function of o// are
shown in Fig. 5. The densities of states for the k=0 and 1
states are zero for o//=4/3. For overlaps greater than this
“magic number,” 1-3 interactions become always on—that
is, 7y ;41 S Ao for all values of 6, with A=3/2. This also
gives rise to a kink (discontinuity in the derivative) of
w4(2,0/1). This is because at o/[=4/3, the first term in Eq.
(10) (which refers to the density of states for tetramers with
a single 1-3 contact and a 1-4 contact) becomes zero, as the
limits on the x; integral become equal.

As o/l— 2, the polymer becomes increasingly rigid, and
the available conformational space vanishes. The calculated
densities of states show the correct behavior at this limit.

Properties calculated from these densities of states are
shown in Figs. 6 (energy) and 7 (heat capacity). At o/l
=4/3, the slopes of the energy and heat capacity contours
show discontinuities in their derivatives. As such, the deriva-
tives (dU/do)y and (dCy/do)r have singularities at o/l
=4/3; however, these are not physically meaningful response
functions. In simulated systems [3], bond lengths are not
rigid, and bond length fluctuations will have the effect of
smoothing out the discontinuity.

Although the tetramer does not show any other disconti-
nuities, it does show a line of maxima in heat capacity with
respect to temperature. We follow Taylor [12] and Zhou er al.
[13] in ascribing these maxima to collapse of the tetramer
into compact conformations. The strength of these maxima

100
o ]
0
s o, 0,00
3 o, (1,6/1)
0.1¢ -, 2,0/1)
i -, (3,0/1)
0095 3314 16 = 18 2
o/l

FIG. 5. Densities of states for tetramers plotted against o//.
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0.1y 12 4314 16 18 2.0
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FIG. 6. Ensemble average energies (E)/ € for tetramers plotted
against o/[ and temperature 7. Solid lines show energy contours at
the labeled value. Note the discontinuities in the slope of the energy
contours at a/I=4/3 (shown by the dotted line).

can be seen to decrease with increase in o/ /. Further, the line
of maxima shows reentrance with respect to o/l, with the
temperature at which heat capacity is maximal itself having a
maximum with respect to o// at a point below o/l=4/3.
Representative results for the torsional behavior of the
tetramer are shown in Fig. 8, where we show the probability
P(¢,;T) for four values of a/1. At low values of the overlap
(0/1=1.48), we see maxima in P(¢,;T) for nonzero ¢, at
all temperatures, with the maxima becoming stronger and
moving closer to zero (cis conformation) as temperature de-
creases. For intermediate values of overlap [1.48=<a/l
<V(3++5)/2], weak maxima in P(¢,;T) are seen for non-
zero ¢, at high temperatures; however, the most probable
conformation becomes ¢;=0 (cis conformation) at low tem-
perature. For large values of overlap [o/1>\(3+5)/2],
P(¢;;T) has only a single maximum at ¢, =0 for all tem-
peratures. The points separating the two regimes
{max[P(¢,;T)]=0 and #0} can be calculated analytically, as
the points at which [dP(¢,;T)/ §¢1]|¢1=0=0. The calculated
line in overlap-temperature space is shown in Fig. 9(a). The
upper limit of this line is the value of o/l at which ¢.(x;
=x;,1=h=a)=0. For values of overlap equal to or larger than
this, it is not possible for the polymer to exhibit 1-4 overlaps,
and there is no steric hindrance to ¢, =0 states, which are the
points of closest 1-4 approach. The lower limit of this region
occurs at the point where the maximum of P(¢;;T=0) [see

10 T T T T T T
— CV/kB Cf)ntours
Cv maxima w.r.t. T

o/l

FIG. 7. Configurational heat capacity Cy for tetramers plotted
against o// and temperature. Solid lines show contours at the la-
beled value. The dashed line shows the line of maxima in Cy with
respect to temperature 7. Note the discontinuities in the slope of the
heat capacity contours at o//=4/3 (shown by the dotted line).

031803-6



DENSITY OF STATES FOR A SHORT OVERLAPPING-...

PHYSICAL REVIEW E 78, 031803 (2008)

10

kBT/e

kBT/e

2
Il
—_
)
L1111l

L)

L
3n/d -w/2 -m/d 0
(0

1
w4 w2 3m4 T

i .
B4 -w/2 -mi4 0 w4 w2 3m4 T
¢
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lines show maxima in P(¢;;7T).

Fig. 9(b)] becomes zero. The value of ¢/[ at this limit does
not admit a simple interpretation or expression.

B. Pentamer

A comparison between the densities of states calculated
here for pentamer tangent square-well chains with those pre-
sented by Taylor is provided in Table II. Results are equiva-
lent to four significant figures. The calculated densities of
states as a function of o/ are shown in Fig. 10. Once again,
we see the highest-energy densities of states going to zero at
o/1=4/3 as 1-3 interactions become always on, combined
with a kink in the density of states for the highest remaining
energy. All densities of states tend to zero as o/]— 2, where
the available conformational space becomes zero. There are

@ 10g T T T T T u T

s T, ¢ (a.a,2)=0

kBT/s
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FIG. 9. (a) Behavior of P(¢=0;T) with respect to o/l; to the
left of the solid line, P(¢=0) is a minimum, while to the right,
P(¢=0) is a maximum. Directly on the line, P(¢=0) is a point of
inflection. Dashed lines indicate the upper and lower bounds in o/l
of the line. (b) The behavior of the maximum of P(¢;;T=0) (that
is, in the ground state) with respect to o/l. There is a kink in the
line at o//=4/3, indicated by the dotted line.

two further behaviors, not seen in the tetramer. The most
obvious is that the density of the lowest-energy state ws(6)
becomes zero at o/l=v7/2. For values of overlap larger than
this, the pentamer has become so stiff that it cannot bend
back on itself far enough to make 1-5 contacts.

A further interesting behavior is observed at intermediate
values of o/l where the ground state ws(6) becomes of the
same order of magnitude as ws(5). Indeed, for 1.53<0/I
= 1.56, ws(6) > ws(5). This gives rise to a concavity in the
entropy S(k)=kg In w(k) of the system with respect to energy
at E=-5¢, which can be studied using the discrete analog to
the second derivative, S"(k)=[S(k+1)-2S(k)+S(k—1)]; the
function is concave if §”(k) is negative. The concavity results
in a bimodal probability distribution function P(E;T,o/l)
(illustrated in Fig. 11). In analogy to the study of phase tran-

TABLE II. Comparison of the densities of states for a square-
well tetramer chain with 0//=1.0 and No=1.5 calculated in this
work [ws(Ek)/41*, with the factor 1/4 as described in Sec. III] and
by Taylor [wgay"”)(k), or ggk) in the original terminology]. Suppres-
sion of an unimportant multiplicative factor of 167 in the work of
Taylor leads to the difference in the values; it can be seen that with
this factor included the differences in the values are negligible.

k ws(k) /41 {100 () w4(k)/[6472{T1°) (k)]
0 12.963393 0.08206 1.000386
1 21.368822 0.13531 1.000071
2 14300928 0.09057 0.999908
3 7.300283 0.04626 0.999342
4 2.284838 0.01447 0.999924
5 0.0633290 0.004012 0.999590
6 0.035383 0.0002222 1.008395
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FIG. 10. Densities of states for pentamers plotted against
al/l.

sitions, we find the line of temperatures at which the two
peaks of these bimodal probability distributions have equal
weight—a line of “state coexistence.” This line is plotted
alongside the data in Figs. 12 (energy) and 13 (heat capac-
ity), and runs from o/l=1.14 to o/l=1.72. These end
points are at nonzero temperature, and occur where the cur-
vature of the free energy at E=—5¢€ becomes zero. The end
points are not associated with heat capacity divergences.

The thermodynamic data show the expected discontinui-
ties in the slope of energy and heat capacity contour at the
magic numbers o/I=4/3 and \7/2. The lower magic num-
ber corresponds to the loss of high-energy states, as for the
tetramer. The larger magic number, corresponding to the loss
of the k=6 state, gives a discontinuity in the energy at zero
temperature (from E=—6€ to E=-5€). As for the tetramer,
bond length fluctuations in real systems would act to smooth
out these discontinuities.

The pentamer also shows a line of heat capacity maxima,
which lies at lower temperature than the state coexistence
line. Both these lines show a discontinuity in slope at o//
=4/3. Both lines are doubly reentrant, showing one maxi-
mum below o/[=4/3, and another above o//=4/3. The line
of heat capacity maxima connects with the discontinuity in
energy at o/[=\7/2.

The dihedral behavior of the pentamer at zero temperature
(ground state) is shown in Fig. 14, in four representative
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FIG. 11. Concavity in the entropy and bimodal energy probabil-
ity distribution for ¢/I=1.55. (a) The density of states ws(k). (b)
The entropy as a function of k; note the concavity at k=5. (c) The
probability distribution function P(k,T) at the state coexistence
temperature. The function is bimodal, and the total weights of the
two “states” [k<<5 (diagonal shading) and k>35 (horizontal shad-
ing)] are equal. Dashed lines serve as a guide to the eye.
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FIG. 12. Ensemble average energies (E)/ € for pentamers plotted
against o// and temperature 7. Solid lines show energy contours at
the labeled value. The dashed line shows the state coexistence line.
Note the dlscontmultles in the slope of the energy contours at o/!/
=4/3 and \7/2 (shown by dotted lines).

plots of the ground state dihedral densities of states
gs5(d1,,,6) and gs5(d;, ¢,,5). These are equivalent to un-
normalized dihedral probability distributions for the system
at 7=0. We see that, for the three lowest values of o/, the
probabilities are peaked at points on the ¢, = ¢, diagonal; the
dihedrals prefer to take the same sign. This continues to the
magic number o/l=v(3++5)/2, where, as for the tetramer,
1-4 overlaps can no longer occur, and steric effects no longer
prevent cis conformations. As the degree of overlap tends
to this number, and the amount of steric interference de-
creases, the maxima move closer to ¢;=¢,=0. For o/!/
= \(3+15)/2, the probability distributions become unimodal
at ¢, = ¢$,=0. This should be compared with the behavior for
the tetramer (see Fig. 9), where ¢,,,(T=0) is zero for o/l
= 1.48; this effect is due to the additional steric interference
from 1-5 overlaps.

V. DISCUSSION AND CONCLUSIONS

In the previous section, it has been shown that the tet-
ramer and pentamer show a rich and surprising range of be-
haviors. Specifically, these are magic numbers of the overlap

10¢ ‘
F — Cy/k, contours
- 'State coexistence" line
C maxima w.r.t. T

@
F

m
i

0.1

L 1 n n 1 A
4/3 1.4 G/] 1.6 1.8(7/2)1/2 2
FIG. 13. Configurational heat capacity Cy for pentamers plotted
against o// and temperature. Solid lines show contours at the la-
beled value. The dashed line shows the line of maxima in Cy with
respect to temperature 7. The dot-dashed line shows the state coex-
istence line—the position of the end points of this line near a con-
tour line is purely coincidental. Note the discontinuities in the slope
of the heat capacity contours at o//=4/3 and \7/2 (shown by
dotted lines).
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FIG. 14. Ground-state dihedral densities of states gs(¢;, ¢,,6)
for o/l=(a) 1.0, (b) 1.3, and (c) 1.6, and (d) g5(¢;,¢,,5) for o/l
=1.9; the ground state is —5€ for o//=1.9. Lines show contours as
denoted in figure legends.

o/l where the derivatives of the densities of states change
discontinuously, maxima in specific heat with respect to tem-
perature, and a region of bimodal energy probability distri-
butions, reminiscent of a first-order transition in bulk sys-
tems. In general, the behavior of long polymer chains cannot
be directly inferred from the behavior of very short chains
such as those studied in this work. If, however, interactions
between monomers widely spaced along a chain can be ne-
glected, the behavior of very short chains can be used as a
basis for a spin chain model. Such interactions may be ne-
glected when chains become very stiff (for, e.g., large values
of o/, or after helix formation). In this case, the behavior of
the very short chains may be considered the “building block”
for the behavior of longer chains.

The magic numbers that are observed correspond to dis-
continuous changes in the derivatives of the densities of
states. At o/l=4/3, 1-3 contacts become always on and
high-energy densities of states become zero. At o/l
=(3+5)/2, the chain becomes so stiff that it cannot bend
back upon itself far enough for 1-4 overlaps to occur. Simi-
larly, at o//=17/2, the chain becomes so stiff that 1-5 con-
tacts can no longer occur, and the ground state for the pen-
tamer is lost. These discontinuities in the densities of states
are associated with discontinuities in the energy and com-
pressibility with respect to the parameter o. The magic num-
bers are similar in principle to the cutoff N values noted by
Taylor [12] for tangent chains—this work has not examined
the effects of changing the well width parameter A, but it is
obvious that the values of these magic numbers will depend
upon that parameter, and that cutoff values of N will also
exist for this model. As has been noted above, the disconti-
nuities across lines of constant o// in this system will be
smoothed in simulations with variable bond length; however,
the effects should still be visible. We particularly note the
sudden loss of stability of the helix 1 phase at o//=1.675 in
previous simulation work [3] (see Fig. 1). Given the 10%
bond length fluctuation allowed in those simulations, this
loss of stability may coincide with the magic number at
o/1=\(3+5)/2=~1.618, suggesting that the more tightly
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wound helix 1 phase is stabilized by steric interference of 1-4
contacts. This supposition is supported by the observed loss
of double-peaked dihedral angle probability distributions for
overlaps above this magic number, suggesting that the more
loosely wound helix 2 phase is stabilized by steric interfer-
ence between monomers spaced further along the chain.

The low-temperature maxima in the specific heat for these
short polymers appear to be a continuation of the specific
heat maxima observed for short tangent chains [12,13]. We
follow these previous works in interpreting these maxima as
signatures of collapse to close-packed, low-energy confor-
mations. This interpretation appears confirmed by the pres-
ence of bimodal energy probability distributions for the pen-
tamer, with a line of state coexistence which roughly
parallels the line of maxima.

For the tetramer, the line of specific heat maxima shows
reentrance below o//=4/3, having a maximum with respect
to temperature. For the pentamer, both the lines of specific
heat maxima and of state coexistence are doubly reentrant,
showing maxima below and above o/l=4/3. The reentrance
of the state coexistence line can be easily explained by ref-
erence to the densities of states shown in Fig. 10. Consider
the system for o/[=4/3. For overlaps just above this point,
the ground state density of states (the entropy of the low-
energy state) is increasing while all other densities of states
are decreasing with increasing overlap. Hence, the low-
energy state becomes more stable, and coexistence moves to
higher temperature. The ground state density of states soon
begins to decrease, but as long as it is decreasing more
slowly than the higher-energy densities of states, its stability
coanues to increase. However, on closer approach to o/l
=\7/2, the ground state density of states decreases faster
than the higher-energy densities of states, and stability de-
creases. The same argument holds for the line when o/l
<4/3. If we interpret the maximum in heat capacity as a
result of structural competition between the ground state and
higher-energy states (following Stanley er al. [19]), we can
make the same argument for the reentrance in the lines of
maxima for both the tetramer and pentamer. Physically, in-
creasing the overlap of the chain makes configurations with
lower energy (more contacts) more likely at first (as mono-
mers are drawn into each other’s square wells), but then
begins to cut into these low-energy states as the chain be-
comes too stiff to bend back upon itself and make contacts.
We attribute the reentrance of the stability of the helix 1
phase in previous work to this same competition between
effects.

Although it seems reasonable to attribute the behavior of
the phase boundary between the helix 1 and globule phases
to effects seen in the pentamer, it should be noted that the
state coexistence seen in the pentamer represents collapse of
the pentamer, rather than helix formation. Although the dihe-
dral probability distributions shown in Fig. 14 do show
double peaks at nonzero dihedral angles, this is not a suffi-
cient criterion for helicity. The cross-correlation coefficient
of these distributions is not significantly above zero; the total
statistical weight associated with dihedrals away from the
peaks is still large enough to outweigh the correlated peaks.
However, the clear double-peaked structure does suggest that
the physics necessary for helix formation is contained in
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these simple, small systems, particularly in the steric inter-
ference due to 1-4 overlaps.

While these results appear to clarify certain behaviors ob-
served in simulations, they do raise further questions. Under
the interpretation we have offered here, the nature of the
helix-2 phase is unclear; this phase is observed to be stable
up to o/1=1.9 in simulation [3], where the chain is too stiff
for 1-5 overlaps to be the root of the observed chirality.
Further, the question of how the helix transition connects (or
does not connect) to the crystallizationlike transition ob-
served in simulations for the tangent chain system remains

PHYSICAL REVIEW E 78, 031803 (2008)

unresolved. Follow-up work, developing a spin chain model
for helix formation using the results presented here, is under
way; it is hoped that this approach will shed light upon these
questions.
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