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Kinetic Monte Carlo study on the decay of two-dimensional nanostructures: Influence
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Surface diffusion-mediated decay of two-dimensional nanostructures is studied by means of a kinetic Monte
Carlo model. We consider several possible choices for the activation energies associated with possible diffusion
paths, including simple phenomenological models, as well as results provided by the embedded atom model.
Numerical results show that kinetic aspects of the evolution are quite sensitive to the activation energy model
chosen. In contrast, morphological aspects of the evolution exhibit a similar qualitative behavior, irrespective
of the activation energy model considered. It is shown that this common behavior closely agrees with predic-
tions from the continuous theory of surface diffusion-driven interface decay.
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I. INTRODUCTION

The study of the dynamic and the morphological stability
of nanostructures evolving by surface diffusion currents has
attracted great interest in recent years, both from the theoret-
ical and the experimental points of view [1-16]. In fact, such
study is closely related to topics of great relevance in emerg-
ing nanotechnology, such as the design of new methods in
nanofabrication [17,18] or the problem of nanostructure sta-
bility [19]. Surface diffusion currents can be useful to change
shapes in the nanoworld, e.g., by using a thermal treatment
capable of improving a given nanostructure [20]. That would
certainly be a “desirable” consequence of surface diffusion
currents. Nevertheless, surface diffusion currents can bring
“undesirable” effects, as e.g., if a given built nanostructure
becomes thermally unstable and decays in macroscopically
short times. Within this context, broad knowledge of the dy-
namic and morphological properties of nanostructure evolu-
tion driven by surface diffusion currents becomes necessary
in order to develop strategies capable of enhancing the “posi-
tive aspects” of surface diffusion, or, in more specific words,
controlling these physical processes for a given nanotechno-
logical application.

Continuous theory of interface evolution mediated by sur-
face diffusion is a well-established topic since the pioneering
work by Mullins [21,22] and Herring [23,24]. In fact, nowa-
days it is widely accepted that this theory provides a physi-
cally correct description of surface diffusion-driven interface
evolution above the roughening temperature T [25]. One of
the most important contributions from those early studies is
the understanding of the relationship between surface diffu-
sion currents and a geometrical property of the surface: the
local curvature. In fact, from a mesoscopic point of view, the
surface diffusion flux is proportional to the gradient of the
local curvature. Of course, in the derivation of such depen-
dence, there is not only an implicit assumption of smooth-
ness for the surface, as is required by a proper definition of
curvature, but also an underlying local equilibrium hypoth-
esis to have well-defined thermodynamic coefficients, such
as the surface tension.

Most attention in the literature has been payed to the case
of interfaces under the so-called small-slope approximation,
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which corresponds to the study of patterns exhibiting a small
amplitude to wavelength ratio. In particular, during past de-
cades there have been many papers dealing with a Langevin
equation, directly obtained by applying Mullins’s ideas to the
small-slope case [26-28], which reads

h(x,t a'h

%=—K%+ﬂ()€,t), (1)
where £ is a single-valued function that describes the inter-
face, K is a constant proportional to the diffusion coefficient,
and 7 is a Gaussian white noise introduced to capture, to
some extent, the stochastic nature of the diffusion process.
By performing a simple substitution in the linear equation (1)
in the absence of noise, i.e., for =0, one can see that at
time ¢ a Fourier mode of the initial interface A sin(kx)
evolves into

h(x,1) = A exp(— Kk*)sin(kx). (2)

Equation (2) is quite interesting because it shows that every
Fourier mode performs an exponential decay whose lifetime
depends on temperature through the constant K and on the
wavelength )\=27W. Moreover, Eq. (2) shows that the decay
constant is proportional to N\™*, i.e., under the small-slope
approximation, the linear theory predicts a fast filtering of
high-frequency features of a given interface.

The continuous theory of surface diffusion-driven inter-
face evolution has been considered in the literature mainly
under such small-slope approximation, i.e., under the linear
regime. This was mostly due to the resultant simplicity of the
equations rather than to physical motivations. Nevertheless,
recent theoretical and simulational work [29,30], where a
vectorial, stochastic difference equation for the evolution of
two-dimensional interfaces has been considered, has shown
that for interfaces that depart from the small-slope approxi-
mation, strong deviations from linear theory expectations can
be observed. On the one hand, there are differences from a
kinetic point of view since at the initial stage a nonexponen-
tial decay of interface corrugation was found. On the other
hand, there is a transient stage that exhibits a new morpho-
logical behavior, because an initially sinelike interface devel-
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FIG. 1. Schematic view of the decay of sine waves driven by
(curvature-dependent) surface diffusion currents in dimension 1+1.
In (a) the initial profile, a sine wave far from the small-slope ap-
proximation, is shown. (b) represents the transient regime in which
the interface develops overhangs spontaneously (as is stressed in
the dashed box) and departs from the sinelike shape. Finally, in the
late evolution stage, the interface recovers the sinelike shape with a
smaller amplitude, as is shown in (c).

ops overhangs spontaneously, and subsequently it recovers
the sinelike shape at the final stage of the dynamic evolution.
The different stages in the surface diffusion-mediated decay-
ing of high-amplitude sinelike patterns are outlined in Fig. 1.
Moreover, as has been pointed out in a recent paper [31], the
actual evolution of an initially sinelike pattern far from the
small-slope approximation can very closely be approximated
by the following vectorial parametric equation:

p.1) = (p - B(t)sin(%),A(t)sin(%)), 3)

where 7 is a vectorial function whose value, at a fixed time ¢,
depends only on the parameter p, while A(7) and B(t) are
coefficients to be fitted from the numerical data.

Within this scenario, in this paper we present a kinetic
Monte Carlo (KMC) model for the study of kinetic and mor-
phological properties of the decay of initially far-from-
equilibrium periodic patterns in two dimensions. In particu-
lar, we explore several different models for activation
energies of diffusion events, comparing the obtained results
among the different models, as well as with expectations
from the continuous theory.

The rest of the paper is organized as follows: in Sec. II we
describe the kinetic Monte Carlo model, its implementation
issues, and we introduce the different models for activation
barriers that will be considered throughout this work. In Sec.
IIT we present and discuss numerical results concerning ki-
netic aspects of small aspect-ratio wave decay. Morphologi-
cal aspects in the case of high aspect-ratio interface evolution
are presented in Sec. IV. Finally, in Sec. V we present a
summary and the concluding remarks.

II. DESCRIPTION OF THE MODELS

Let us consider a two-dimensional triangular lattice of
sides L, X L, on which particles (atoms or molecules) can
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diffuse. Each site of the lattice can be in one of two possible
states: occupied (by a particle) or empty. We shall introduce
the occupation number n;; that takes the value 1 if the site
(i,j) is occupied and O if the site (i,j) is empty. A periodic
boundary condition is imposed on the lattice along the x
direction, while a free boundary condition is imposed along
the y direction by introducing two extra rows in the lattice,
corresponding to j=0 and j=L,+1, which we shall call the
bottom and the fop of the system, respectively. Such extra
rows cannot be occupied by particles, and sites on these rows
will be called “forbidden sites.” We shall assume that every
particle on the lattice interacts with its neighbors through the
following Hamiltonian:

L

H=Eb 2 n[jnlm+2Eb2 n;y, (4)
(i,j,l,m) i=1

where () denotes a nearest neighbor restricted summation
and E, is the bond energy between two nearest neighbor
particles. In this way, the first summation corresponds to
bulk interactions among particles, while the second one ac-
counts for the interaction between particles and the bottom
wall.

In a single diffusion event a particle in the (i,) position
(I=<i<L,, 1<j<L,) of such lattice can jump into one of its
six neighboring sites, provided that such site is empty, and,
since surface diffusion is the only process considered by the
model, the dynamics of the system is conservative and the
total number of particles Ny is constant during the whole
evolution.

Diffusion processes have been implemented under the
KMC approach, with transition rates evaluated according to
the harmonic transition state theory, i.e., the transition rate
for a transition from configuration c;,; to configuration cy, is
given by

W(Cini — Cfin) = v eXpl= E“(ciuinCfin) kT, (5)

where v is the effective vibration frequency, E““/(c;,,cpy) is
the activation energy for a transition between c;,; and c,, kg
is the Boltzmann constant, and 7 the absolute temperature.
Throughout this work we take v,=5X10'> Hz. As was
pointed out by Weinberg and co-workers [32-34], the kind of
dynamics that induces the transition rate given by Eq. (5)
satisfies the detailed balance condition for a Boltzmannian
equilibrium state as the standard dynamic rules, such as
Kawasaki, Glauber, or Metropolis dynamics do [35-38].
Also, W(c;,;— cy,) represents a physical quantity since it is
proportional to the probability of success for thermally acti-
vated barrier crossing.

A single main loop in the kinetic Monte Carlo model can
be summarized as follows:

(1) All possible transitions in the system, involving diffu-
sion events from an occupied site into any unoccupied next
neighbor site, are identified and their corresponding transi-
tion rates are computed.

(2) A diffusion event is determined by randomly choosing
from all the possible jumps weighted by their relative rate of
occurrence given by Eq. (5).

(3) The transition is performed and the system is updated.
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The Monte Carlo steps (MCS) time unit is defined such
that Ny iterations of the preceding loop correspond to one
MCS. In the kinetic Monte Carlo approach the connection
between “real time” and MCS time is established in the fol-
lowing way: Let u be a label for all possible transition events
in the system. The transition rate P,=1, exp(—g";) has the
dimension of a frequency, and its reciprocal can be consid-
ered as the residence time for the particle involved in the
transition. As transition probabilities for all possible events
are independent, the overall probability per unit time for the
system to perform a transition is obtained by adding all pos-
sible transition rates, namely, P=X uP Therefore, % is the
mean residence time for the system in a specific state and,
consequently, it represents the mean time associated with one
iteration.

In this work we considered five different models for acti-
vation energies. The common feature in all these models is
that the activation energy for a transition from the state c;,; to
the state cy;, only depends on the energies of those states. We
label these different activation energy models with the acro-
nyms MARM, EINI, EINI-C, EAM-Ni, and EAM-Cu, and
these models are described as follows:

(1) MARM: In this model, a harmonic dependence of the
energy as a function of the reaction degree is assumed. This
model has been considered previously in KMC studies ap-
plied to surface diffusion of clusters [32,33], and also in the
same context as in the present paper [31]. The activation
barriers are obtained simply by considering the crossing of
two of such harmonic potentials displaced a lattice-constant
unit. A more detailed description of this harmonic model can
be found in Refs. [31-33]. Here we shall restrict ourselves to
give the final expression for the activation energy, namely,

2
‘?C,’_f :E<—f—E i"_Ei"i+l> , (6)
mi m 2 € 2

where Ej,; and Ej;, are the energies of the initial and final
states, respectively. Also, we called e=ka?, where k is the
force constant of the harmonic wells and a is the lattice
constant. Throughout this work, we have taken a=0.3 nm,
E,=-0.1 eV, and e=1 eV. By performing a simple replace-
ment in the Hamiltonian (4), the energy difference Ej,
—E,,; can be expressed in terms of the variation of the num-
ber of occupied neighbors (An) caused by a diffusing par-
ticle, i.e., Ey,—E;,;=E,An.

(2) EINI: Here activation energies only depend on the
energy of the initial state E““’=—F,;, irrespective of the final
state. In spite of its simplicity, this model has frequently been
considered in the literature, in contexts similar to that of the
present paper [39-41].

(3) EINI-C: This model is a slight variation of the EINI
model, since it has only an additional constraint. In fact,
activation energies in the EINI-C model are obtained in the
same way as in the EINI model, except for the case in which
the particle trying to perform the movement attempts to
make a transition from a state with a nonzero coordination
number (z#0) to a state with z=0. Here, these kinds of
transitions are forbidden. Thus, while particles can eventu-
ally detach from a given cluster in a single diffusion event in
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the EINI model, this can no longer occur in the EINI-C
model. Nevertheless, it is important to notice that, even in
the EINI-C model, a given particle with coordination number
z=1 can become uncoordinated (z=0) if its unique nearest
neighbor moves away from it, in a licit diffusion event.

(4) EAM-Ni and EAM-Cu: With these acronyms we refer
to models in which the activation energies for all possible
transitions (to first-neighbor paths) in two-dimensional trian-
gular lattices are obtained by means of the embedded atom
model (EAM) [42—-45]. Activation energies for nickel (EAM-
Ni) and copper (EAM-Cu) employed in this paper corre-
spond to results that have previously been reported [46].

It is worth mentioning that even by starting from a single-
cluster configuration, one has a rich scenario of possible ki-
netic evolution. In fact, particles can evaporate from the clus-
ter, voids can appear, and new clusters, unconnected to the
original one, can also grow during the dynamic evolution
process, etc. In this way, certain programming effort is nec-
essary in order to distinguish between the main cluster (con-
nected to the bottom of the system by a path of nearest
neighbors) and other clusters in the system. Let 4; be the
position of the highest occupied site at the ith column on the
main cluster. We characterize the fluctuations of the interface
by means of a standard estimator, such as the interface
roughness [W(L,,1)], given by

LX
WL, = \| 2 [0~ HOT, ™)
x i=1

where h(f)=1 /LinLglhi(t).

In the following sections we present numerical results ob-
tained by means of simulations of the KMC model and for
two different kinds of initial conditions, namely, sinelike pat-
terns and rectangular patterns, respectively. It is worth notic-
ing that some results are presented by using nanometers (nm)
as length unit, while in other cases the use of lattice units is
more convenient. In any case, it is a trivial task to switch
between units: for lengths along the x axis one has to multi-
ply the length in lattice units times the distance among clos-
est neighbors in the triangular lattice a, which was taken as
a=0.3 nm for models MARM, ENI, and EINI-C, while the
value of a for models EAM-Ni and EAM-Cu was obtained
from the lattice units of their corresponding fcc structures.
For distances along the y axis an additional factor % appears
due to the geometry of the triangular lattice.

III. KINETIC PROPERTIES IN THE DECAY OF SMALL-
AMPLITUDE SINUSOIDAL PATTERNS

While according to Eq. (2) the linear continuous theory of
surface diffusion predicts a vanishing asymptotic interface
roughness, discrete models such as the KMC models studied
in this paper often have a nonvanishing asymptotic interface
roughness W,, at nonzero temperatures, as a consequence of
the internal noise that is always present in discrete systems
[47]. Thus, we propose a direct generalization of the linear
continuous theory’s result, in order to take into account the
discrete nature of matter, regarding the prediction for the
interface roughness evolution of a small-amplitude Fourier
mode A sin(kx), given by

031601-3



MARCOS F. CASTEZ AND EZEQUIEL V. ALBANO

PHYSICAL REVIEW E 78, 031601 (2008)

3 ‘ ‘ ‘ T ! T T LI
,s[  (a) MARM T=300 K 1.5x10° [ \ i
o P 1]
43x10° —+

FIG. 2. (Color online) Decay
of W? as a function of time for
models MARM (above) and EINI
(below). Data obtained for T
=300 K and two different values
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of N given in lattice units. The

dashed lines correspond to the

3.0x10° best fits of the data obtained by

using the displaced-exponential

family of functions given by Eq.
(8). In the insets, the decay con-
b stants are plotted as functions of
\, showing a clear power-law de-
pendence, with an exponent 4 in

the case of the model MARM
(above) and an exponent 3 for the
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A2
WA(\,1) = 5 exp(— 2Kk*) + W2[1 — exp(- 2Kk*1)]. (8)

Figure 2 shows the temporal evolution of W? for the mod-
els MARM (above) and EINI (below) for different values of
N at T=300 K. It is found that all the curves can be fitted
very well with displaced-exponential functions. Neverthe-
less, the insets in Fig. 2 show that although the MARM
model exhibits a power-law dependence of the decay con-
stant k~\"*, in complete agreement with Eq. (8), the expo-
nent becomes 3 in the case of the EINI model. Of course, it
is also possible to perform a rescaling of the axes in Fig. 2 in
order to obtain data collapse of the curves corresponding to
different values of \. Nevertheless, due to the different ex-
ponents governing the power-law decay of x with A\, by res-
caling a single axis one cannot achieve data collapse for both
MARM and EINI models simultaneously. So, that rescaling
must be done independently. However, by rewriting Eq. (8)
as

W2(N, 1) = W2(0)exp(— 2KK't) + W2[ 1 — exp(— 2KK'1)],
)

for an arbitrary exponent n, it becomes evident that we will
be able to get data collapse after rearranging Eq. (9) as fol-
lows:

WA(\, 1) - W2

W20) W2 =exp(— 2KK"t). (10)

By applying this procedure we obtained a quite good data
collapse for the EINI model at 300 K, as shown in Fig. 3.
Although the generalization of the linear theory of surface
diffusion provided by Eq. (8) shows good agreement with
KMC data for both the MARM and EINI models, this is not
the case for the models EINI-C, EAM-Ni, and EAM-Cu. For
these models, a qualitatively different temporal evolution of
the roughness was found: an initial linear decay of W? is
followed, after a narrow crossover region, by an exponential
decay. A typical curve for this kind of “anomalous” rough-

5 EINI model (below).
4.0x10

ness evolution is shown in Fig. 4. The plotted data corre-
spond to a KMC simulation for the EAM-Ni model, and the
best-fit curves for the initial (linear) and final (exponential)
stages are also plotted. It is clear from Fig. 4 that this tran-
sition from a linear to an exponential decaying regime takes
place in a very narrow crossover region, where both curves
and numerical data merge smoothly together (see the double
arrow in Fig. 4).

We also studied the dependence of the lifetime 7, of the
linear regime [48] for the models EINI, EAM-Ni, and
EAM-Cu corresponding to the decay of initially sinusoidal
profiles with wavelengths ranging between 50 and 150 lattice
units and a fixed aspect ratio equal to 0.1. In all cases, life-
time dependence on the wavelength for these models follows
a power-law behavior 7,,<\%, as shown in Fig. 5. Neverthe-
less, the corresponding value of « varies from case to case.
In fact, one has a~4 for the EAM-Cu model, while «

EINI - A=60
1.2+ - A=80 -
3 : %:100
< A=120 B
E - A=140
8 —
2
o8
= 0. i
z ]

0.0 1.0x10”
3
t/A

FIG. 3. (Color online) Data collapse found for results corre-
sponding to the model EINI when the squared roughness and the
time axis are rescaled as is indicated in Eq. (10). Different A values
are indicated in lattice units and the simulation temperature was
300 K.
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FIG. 4. (Color online) Typical behavior found for the decay of
W? as a function of time, in the case of the EAM-Ni model (actu-
ally, the same kind of behavior is also found for models EAM-Cu
and EINI-C). A transition from a linear dependence to an exponen-
tial decay is clearly observed, and the transition takes place at a
narrow crossover region. The parameters corresponding to this
simulation are A=50 (in lattice units), 7=800 K, and simulation
data are averaged over 50 independent runs.

~4.5 for the EAM-Ni model. Moreover, in the case of the
EINI-C model we found that « varies with temperature,
since the computed values are «~ 3 at 1000 K and o~ 3.4 at
300 K [49].

It should be noticed that the differences between the val-
ues of a found for the EINI-C model at 300 and 1000 K are
not surprising, since the actual evolution of the patterns is
very different in both cases. In fact, Fig. 6 shows snapshots
corresponding to the evolution of the system at these tem-
peratures obtained, in both cases, by starting from the same
initial sinusoidal profile. From the nanostructural point of
view, the system evolves quite differently when temperature
varies: while at low temperatures the pattern maintains a
compact shape, at high temperatures a large number of va-

1x10°f 3
=
E E o
Ix10°F ___ — EINI-C T=300 K 3
- «— EINI-C T=1000 K
slope 4 ~— EAM-Ni T=800 K
— EAM-Cu T=800 K
-si E
1x10 /Slopii«—'_’//_ -
S |
1x10 s

FIG. 5. (Color online) Log-log plot of the lifetime 7,, as a func-
tion of the wavelength N\ (in lattice units) for models EAM-Ni,
EAM-Cu, and EINI-C. In all cases this dependence is well de-
scribed by a power law 7,,=\¢, although the corresponding value of
a varies from case to case: It is «~4 for the EAM-Cu model at
T=800 K, a~3 for the ENI-C at 7=1000 K, while the exponents
are «~4.5 and a~ 3.4 for models EAM-Ni at 800 K and ENI-C at
300 K, respectively.
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initial condition

- "

EINI-C T=300K 10000 MCS EINI-C T=1000 K 1000 MCS

FIG. 6. (Color online) EINI-C model evolving at two different
temperatures starting from the same initial condition (shown at the
top). For T=1000 K (at the bottom on the right-hand side) one
observes an important generation of vacancies and holes when com-
pared to the evolution measured at 7=300 K (at the bottom on the
left-hand side), where neither vacancies nor holes are observed.
Monte Carlo steps (MCS) corresponding to each snapshot are
indicated.

cancies and holes appear, which modifies the corresponding
kinetic properties of the decaying process.

IV. MORPHOLOGICAL PROPERTIES IN THE
EVOLUTION OF HIGH ASPECT-RATIO
NANOSTRUCTURES

So far, we have shown results of simulations focused on
the decaying of sinusoidal interfaces under the small-slope
approximation. In this section we present results associated
with a broader class of interfaces such as rectangular patterns
and high-amplitude sinusoidal interfaces. We shall discuss
the morphological properties of these interfaces during their
dynamic evolution and, in particular, how they are related to
the dynamic evolution predicted by the continuous approach
[30,31]. Geometrical parameters of the considered rectangu-
lar patterns are established in the following way: let B, and
B; be the upper and lower bases of the pattern, and H the
rectangle height (the spatial period of the pattern then is B,
+B;). Here we are specifically interested in the relaxation
behavior of patterns in the large-slope case (i.e., for H=B,,
B)).

Figure 7 shows snapshots of the evolution of the different
models obtained by starting, in all cases, from the same ini-
tial high-amplitude sinusoidal profile [Fig. 7(a)]. The corre-
sponding number of MCS elapsed in each case is indicated
inside the snapshots, while the temperatures are indicated in
the caption of Fig. 7. A remarkable result that follows after
inspection of these snapshots is the fact that, irrespective of
the considered model, all are very similar and their shapes
closely resemble the predictions of the continuous theory of
surface diffusion in the (nonlinear) case of high amplitudes.
As was discussed in Sec. I, these kinds of shapes [sketched
in Fig. 1(b)] are well described by the ansatz of Eq. (3).

Focusing our attention on the evolution of initial rectan-
gular profiles with B;=B,, we also found that the morpho-
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100 MCS

(a) initial condition (b)

(©) 1000 MCS (d) 1000 MCS

(e) 4000 MCS ) 5000 MCS

4

FIG. 7. (Color online) Evolution of the different models starting
from the same initial sinelike profile (a) after a number of MCS
indicated in each snapshot. (b) Model MARM at T=300 K. (c)
Model EINT at 7=300 K. (d) Model EINI-C at T=300 K. (¢) Model
EAM-Ni at T=800 K. (f) Model EAM-Cu at T=800 K. The initial
profile has a wavelength A=20 and an amplitude A=20 (both in
lattice units), which implies an initial aspect ratio far from the
small-slope approximation.

logical structures formed are very similar, independently of
the activation energy model considered. Furthermore, as is
shown in Fig. 8, for all the models we also found that an
initially rectangular profile develops patterns that are very
similar to those shown in Figs. 7(b)-7(e). This finding means
that in all cases a fast filtering of high-frequency modes op-
erates, so that “memory” effects on the initial rectangular
profile are lost and the systems evolve in the same way as if
they were started from a sinusoidal (lowest frequency Fou-
rier mode) profile. As was pointed out in Ref. [31], it is
interesting to notice that such high-frequency filtering takes
place under a clearly nonlinear regime, in which
superposition-principle ideas are a priori no longer appli-
cable. Of course, the snapshots of Fig. 8 were taken at dif-
ferent MCS, which is understable since, as we have dis-
cussed in the preceding section, kinetic properties strongly
depend not only on temperature but also on the model con-
sidered for activation energies.

When B,<B;,<H, i.e., in the case of very narrow slabs,
the morphological evolution departs considerably from the
case depicted in Fig. 8. In fact, Fig. 9 shows that in this case
the slabs break down into several nanoislands, constituted by
small isolated clusters of particles. Of course, the snapshots
are taken during a metastable transient state, and after a cer-
tain time the system will evolve into a single structure by

PHYSICAL REVIEW E 78, 031601 (2008)

(a) initial condition (b) 200 MCS

(c) 600 MCS (d) 1500 MCS
L4211 22412

(e) 2000 MCS (f) 6000 MCS

FIG. 8. (Color online) System evolution for each model consid-
ered starting from the same initial rectangular profile shown in (a),
after the number of MCS indicated in each snapshot. (b) Model
MARM at 7=300 K. (¢) Model EINI at 7=300 K. (d) Model
EINI-C at T=300 K. (e) Model EAM-Ni at 7=800 K. (f) Model
EAM-Cu at T7=800 K. The geometrical parameters of the initial

rectangular pattern are B;=15, B;=15, and H=30, all of them mea-
sured in lattice units.

lowering its energy. Here again, Fig. 9 shows that this meta-
stable state is observed in all cases, independently of the
particular activation energy model. Although the number and
size of nanoislands depend, of course, on kinetic properties
(then they are also dependent on the specific model), from
the morphological point of view the obtained results are
qualitatively similar for all considered cases.

V. SUMMARY AND CONCLUDING REMARKS

We performed kinetic Monte Carlo simulations of two-
dimensional models for the study of nanostructure decay.
Different alternatives for the activation energies associated
with diffusion paths, including a harmonic model (MARM),
models only sensitive to the energy of the initial state of the
diffusing particle (EINI and EINI-C), and also models where
activation energies were obtained by means of the embedded
atom model (EAM-Ni and EAM-Cu) have been considered.
We addressed the study of both kinetic properties of the de-
cay of sinusoidal profiles within the small-slope approxima-
tion, and morphological properties related to the decay of
high aspect-ratio structures. The results are compared not
only among the different activation energy models used, but
also with the predictions from the continuous theory of sur-
face diffusion-driven interfaces.
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FIG. 9. (Color online) Evolution of the same initial rectangular
profile (a) in the case of very narrow slabs. (b) Model MARM at
T=300 K. (c) Model EINI at 7=300 K. (d) Model EINI-C at T
=300 K. (¢) Model EAM-Ni at 7=800 K. (¢) Model EAM-Cu at
T=800 K. For each model, the Monte Carlo time elapsed since the
initial condition is indicated. Geometrical parameters of the initial
rectangular pattern are B;=14, B;=4, and H=60, all of them mea-
sured in lattice units.

Concerning the kinetic properties of the decay of small-
amplitude sinelike profiles, we found that, in the case of the
MARM and EINI models, the interface roughness follows a
displaced-exponential dependence, which can be considered
as a natural generalization of the continuous theory. Never-
theless, we also found that for the remaining models consid-
ered (i.e., EINI-C, EAM-Ni, and EAM-Cu) the interface
roughness follows a qualitatively different time decay evolu-
tion, since it is linear during an initial stage and, after a short
crossover region, it becomes exponential. Although the
decay-lifetime dependence on the profile wavelength follows
power laws in all cases, the associated exponent is model
dependent.
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Concerning the morphological properties of high aspect-
ratio pattern decay, we found that shape evolution is qualita-
tively similar irrespective of the particular activation energy
model used and, even more remarkable, this evolution is
quite similar to that predicted by the continuous theory of
surface diffusion. In particular, sinusoidal profiles of high
initial amplitudes show the spontaneous development of
overhangs during a transient stage, and the interface shape
can approximately be described by the ansatz given by Eq.
(3). Moreover, for the decay of rectangular patterns of height
H, and upper and lower bases By, and B;, respectively, we
found that, for B;~ B;~ H, the evolution proceeds rapidly
filtering high-frequency spatial modes and then, after a short
transient, the interface profile is nearly the same as if the
initial profile were a sinelike one. In the case of very narrow
rectangular slabs (B,<B;<H), rectangles break down into
several nanoislands during a transient regime. Although the
number and size of such nanoislands depend on kinetic as-
pects, such as the particular activation energy model, from a
morphological point of view, we found that this transient
regime is observed in all cases and it looks qualitatively
similar irrespective of the activation energy model consid-
ered.

In short, from this work we conclude that kinetic proper-
ties of nanopattern decay strongly depend on the activation
energy model considered. In this sense, kinetic predictions
from the continuous theory of surface diffusion are expected
to be in agreement with the observation of the actual evolu-
tion of a discrete system, only in some particular cases. In
contrast, continuous theory predictions concerning morpho-
logical aspects show a wider applicability. In fact, that theory
describes, in a qualitatively correct way, the observed mor-
phologies in a wide range of situations and irrespective of
the activation energy model considered. In this way, we ex-
pect that this work will contribute to stimulate experimental
research in this field aimed to test, in real nanotechnological
systems, the predictions of the continuous surface diffusion
theory concerning morphological aspects. Thus, by identify-
ing the correct model capable of describing an actual physi-
cal system, computer simulations can become a powerful
tool aiding the nonexpensive design of nanodevices and
nanopatterns.

ACKNOWLEDGMENTS

This work has been performed as part of the projects
PICT 06-621 and PICT 06-36 of ANPCyT (Argentina). The
authors acknowledge of CONICET (Argentina National Re-
search Council) and UNLP.

[1] G. S. Bales, A. C. Redfield, and A. Zangwill, Phys. Rev. Lett.
62, 776 (1989).

[2] R. P. U. Karunasiri, R. Bruinsma, and J. Rudnick, Phys. Rev.
Lett. 62, 788 (1989).

[3] N. Israeli and D. Kandel, Phys. Rev. Lett. 80, 3300 (1998).

[4] H. Kallabis and D. E. Wolf, Phys. Rev. Lett. 79, 4854 (1997).

[5] E. S. Fu, M. D. Johnson, D. J. Liu, J. D. Weeks, and E. D.
Williams, Phys. Rev. Lett. 77, 1091 (1996).

[6] J. Erlebacher, M. J. Aziz, E. Chason, M. B. Sinclair, and J. A.
Floro, Phys. Rev. Lett. 84, 5800 (2000).

[7] M. A. Dubson and G. Jeffers, Phys. Rev. B 49, 8347 (1994).

[8] A. Maritan, F. Toigo, J. Koplik, and J. R. Banavar, Phys. Rev.

031601-7



MARCOS F. CASTEZ AND EZEQUIEL V. ALBANO

Lett. 69, 3193 (1992).
[9] C.-S. Son, T. Kim, X.-L. Wang, and M. Ogura, J. Cryst.
Growth 221, 201 (2000).

[10] M. V. Ramana Murty, Phys. Rev. B 62, 17004 (2000).

[11] N. Israeli and D. Kandel, Phys. Rev. Lett. 88, 116103 (2002).

[12] H. C. Kan, S. Shah, T. T. Tadyyon-Eslami, and R. J. Phaneuf,
Phys. Rev. Lett. 92, 146101 (2004).

[13] H. P. Bonzel and E. E. Latta, Surf. Sci. 76, 275 (1978).

[14] H. P. Bonzel and E. Preuss, Surf. Sci. 336, 209 (1995).

[15] M. Giesen-Seibert, R. Jentjens, M. Poensgen, and H. Ibach,
Phys. Rev. Lett. 71, 3521 (1993).

[16] M. Giesen-Seibert and H. Ibach, Surf. Sci. 316, 205 (1994).

[171 G. L. Timp, Nanotechnology (Springer-Verlag, New York,
1999).

[18] M. Kolb, R. Ullmann, and T. Will, Science 275, 1097 (1997).

[19] M. Rieth, Nano-Engineering in Science and Technology
(World Scientific, Singapore, 2003).

[20] G. Andreasen, P. L. Schilardi, O. Azzaroni, and R. C. Salva-
rezza, Langmuir 18, 10430 (2002).

[21] W. W. Mullins, J. Appl. Phys. 28, 333 (1957).

[22] W. W. Mullins, J. Appl. Phys. 30, 77 (1959).

[23] C. Herring, in Physics of Powder Metallurgy, edited by W. E.
Kingston (McGraw-Hill Book Company, Inc., New York,
1951).

[24] C. Herring, in Structure and Properties of Solid Surfaces, ed-
ited by R. Gomer and C. S. Smith (The University of Chicago
Press, Chicago, 1952).

[25]J. Lapujoulade, Surf. Sci. Rep. 20, 191 (1994).

[26] D. E. Wolf and J. Villain, Europhys. Lett. 13, 389 (1990).

[27] S. Das Sarma and P. Tamborenea, Phys. Rev. Lett. 66, 325
(1991).

[28] A. L. Barabasi and H. E. Stanley, Fractal Concepts in Surface
Growth (Cambridge University Press, Cambridge, 1995).

[29] M. F. Castez, M. H. Fonticelli, O. Azzaroni, R. C. Salvarezza,
and H. G. Solari, Appl. Phys. Lett. 87, 123104 (2005).

[30] M. F. Castez, R. C. Salvarezza, and H. G. Solari, Phys. Rev. E
73, 011607 (2006).

PHYSICAL REVIEW E 78, 031601 (2008)

[31] M. F. Castez and E. V. Albano, J. Phys. Chem. C 111, 4606
(2007).

[32] H. C. Kang and W. H. Weinberg, Phys. Rev. B 38, 11543
(1988).

[33] H. C. Kang and W. H. Weinberg, J. Chem. Phys. 90, 2824
(1989).

[34] K. A. Fichthorn and W. H. Weinberg, J. Chem. Phys. 95, 1090
(1991).

[35] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

[36] R. J. Glauber, J. Math. Phys. 4, 294 (1963).

[37] K. Kawasaki, in Phase Transitions and Critical Phenomena,
edited by C. Domb and M. S. Green (Academic, New York,
1972), Vol. 2.

[38] D. W. Heermann, Computer Simulation Methods (Springer-
Verlag, Heidelberg, 1989).

[39] N. Combe, P. Jensen, and A. Pimpinelli, Phys. Rev. Lett. 85,
110 (2000).

[40] N. Combe and H. Larralde, Phys. Rev. B 62, 16074 (2000).

[41] 7. L. Iguain and L. J. Lewis, Phys. Rev. B 68, 195407 (2003).

[42] M. S. Daw and M. 1. Baskes, Phys. Rev. Lett. 50, 1285 (1983).

[43] M. S. Daw and M. 1. Baskes, Phys. Rev. B 29, 6443 (1984).

[44] R. A. Johnson, Phys. Rev. B 37, 3924 (1988).

[45] Y. G. Yang, R. A. Johnson, and H. N. G. Wadley, Acta Mater.
45, 1455 (1997).

[46] Y. Yang, Ph.D. thesis, University of Virginia, 2000 (unpub-
lished).

[47] N. G. V. Kampen, Stochastic Processes in Physics and Chem-
istry (Elsevier Science B. V., Amsterdam, The Netherlands,
1992).

[48] The lifetime was computed as 7'm=—2%, where m is the slope
and B is the ordinate at the origin of the corresponding linear

equation.

[49] Reported values of « are very approximated, since they were
obtained with rather low statistics, particularly in the case of
large wavelengths.

031601-8



