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structural changes, and elasticity under isotropic loads
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The quasistatic behavior of a simple two-dimensional model of a cohesive powder under isotropic loads is
investigated by discrete element simulations. We ignore contact plasticity and focus on the effect of geometry
and collective rearrangements on the material behavior. The loose packing states, as assembled and character-
ized in a previous numerical study [Gilabert, Roux, and Castellanos, Phys. Rev. E 75, 011303 (2007)], are
observed, under growing confining pressure P, to undergo important structural changes, while solid fraction ®
irreversibly increases (typically, from 0.4-0.5 to 0.75-0.8). The system state goes through three stages, with
different forms of the plastic consolidation curve, i.e., ® as a function of the growing reduced pressure P*
=Pa/F, defined with adhesion force F;, and grain diameter a. In the low-confinement regime (I), the system
undergoes negligible plastic compaction, and its structure is influenced by the assembling process. In regime 11
the material state is independent of initial conditions, and the void ratio varies linearly with In P [i.e.,
A(1/®)=NA(In P*)], as described in the engineering literature. Plasticity index \ is reduced in the presence of
a small rolling resistance (RR). In the last stage of compaction (III), @ approaches an asymptotic, maximum
solid fraction @, as a power law ®_, —Doc(P*)~* with a=1, and properties of cohesionless granular
packs are gradually retrieved. Under consolidation, while the range £ of fractal density correlations decreases,
force patterns reorganize from self-balanced clusters to force chains, with correlative evolutions of force
distributions, and elastic moduli increase by a large amount. Plastic deformation events correspond to very
small changes in the network topology, while the denser regions tend to move like rigid bodies. Elastic
properties are dominated by the bending of thin junctions in loose systems. For growing RR those tend to form

particle chains, the folding of which, rather than tensile ruptures, controls plastic compaction.
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I. INTRODUCTION

Cohesive granular materials are present in many natural
or industrial processes, the understanding of which requires
studies of their rheology under small confining pressures,
when tensile intergranular forces play a major role. In such
cases cohesive materials exhibit specific features that do not
exist in cohesionless grain assemblies, such as the ability to
form stable structures at low density and the sensitivity to
stress intensity, as opposed to stress direction. Macroscopic
constitutive laws and phenomenological tools have been de-
veloped and used in several engineering fields: mechanics of
cohesive soils (clays and silts) [1-5], metallic powder pro-
cessing [6], modeling and treatment of ceramic powders
[7-10], and handling of xerographic toners [11]. One simple
material is the assembly of wet beads [12-14], in which
some microscopic observations are possible [13,14]. How-
ever, wet grain packs are only slightly less dense than dry
ones, and do not enable the study of loose structures obtained
with powders. In general, the behavior of materials under
proportional load (oedometric or isotropic compression) is
characterized by the consolidation curve, which describes the
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irreversible compaction under growing stress [1]. Density
can increase by factors of 3 or 4 under growing load.

Although numerical simulations have been widely used
for several decades [15] to investigate microscopic mecha-
nisms and classify mechanical properties of granular sys-
tems, studies of cohesive materials are still far less common,
and almost exclusively limited to dense materials. Thus, the
effects of capillary cohesion in wet sand or bead packs have
been simulated [16,17], as well as the compaction of ceramic
and metallic powders [18-24] to states of very high density,
or the behavior in shear tests of two-dimensional (2D) dense
cohesive packs with plastic deformation of contacts [25,26].
Loose structures formed by particles packed under gravity
and stabilized thanks to adhesion have been simulated [27].
Of particular relevance to the present study, among the very
scarce numerical studies of loose packings [28] stabilized by
cohesion and of their collapsing under growing loads, are the
works by Bartels, Kadau, Wolf er al. [29-32] on the oedo-
metric compression of granular assemblies with initial low
densities. This research group studied a dynamical compres-
sion regime, and observed a shock wave propagating through
the sample. Shear flows of cohesive granular materials have
also been simulated [33-36].

In a previous paper [37], hereafter referred to as paper I,
we studied by numerical simulation the assembling process,
the structure, and the force patterns of a model, 2D cohesive
granular material in loose equilibrium configurations. We
now investigate the mechanical behavior of the same model
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granular material in isotropic compression and pressure
cycles, as well as the evolution of various characteristics of
intermediate equilibrium states as plastic compaction pro-
ceeds.

As in paper I, we keep the external pressure as the main
control parameter. The adhesive strength F, in contacts sets a
force scale in the material behavior. Therefore (in 2D) the
reduced pressure, defined as

Pr=—, (1)

in which « is a typical grain diameter, is a crucial dimension-
less state parameter. The main objective of the present paper
is the study of the process by which, as pressure is increased,
cohesion-dominated loose structures, for which P*<<1, get
irreversibly compacted as P* increases until pressure domi-
nates (P*>1). Such a compaction was numerically observed
e.g., in Ref. [32]. However, our approach produces homoge-
neous, isotropic, equilibrium configurations under varying
load and is therefore apt to provide more detailed informa-
tion about the connections between macroscopic constitutive
laws and microstructural or micromechanical features.

The present paper is self-contained and can be understood
without reading paper I. A summarized description of the
material properties and of the initial configurations (studied
in paper I) is provided in Sec. II. The macroscopic material
response in isotropic compression, with the possible influ-
ence of the initial state properties, is studied in Sec. III.
Then, various microscopic aspects of the consolidation pro-
cess are investigated in the sequel: density correlations (with
their fractal behavior over some length scale [37]) are inves-
tigated in Sec. IV, force networks and force distributions are
dealt with in Sec. V, while Sec. VI focuses on elastic moduli.
Section VII discusses qualitatively some microscopic aspects
of the consolidation behavior. The final section, Sec. VIII,
summarizes the results and suggests directions for future
work. Secs. IV and V can be read independently from each
other. The same remark applies to Secs. VI and VII.

II. MODEL MATERIAL AND SIMULATION PROCEDURES
A. Definitions and basic equations

The material and the simulation method are identical to
those of paper I [37], which the reader might refer to for
additional technical details, and for a physical discussion of
some of the model ingredients. However, for the sake of
completeness, we provide a summarized description below.
The contact law is an elaboration of the often employed
spring-dashpot model with Coulomb friction, in which two
additional ingredients are introduced: an attractive force and,
possibly, some resistance to rolling at contacts. The model
material is a 2D assembly of disks with diameters uniformly
distributed between a/2 and a, enclosed in a rectangular cell
with periodic boundary conditions in both directions. Both
lengths L;, L, defining the cell size and shape are variable,
and satisfy equations of motion designed to impose given
values of diagonal stress components o= 0,=P. Stresses are
controlled by a variant of the Parrinello-Rahman method
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[38]. In equilibrium, both diagonal stress components o,
(a=1,2), with the convention that tensile stresses are nega-
tive, are given by the standard formula (A is the sample
surface area)

cu=y 3 FPD. e

A Isi<jsN

In Eq. (2), the right-hand side sum runs over all interacting
pairs i,j among the N disks of the system, F;; is the force
transmitted from grain i to its neighbor j, and vector r;;
points from the center of i to the center of j (with the suitable
nearest image convention to account for periodicity). The
implementation of stress-controlled simulations is such that
the cell length L, along direction « increases or decreases if
o, is larger (respectively, smaller) than its prescribed value.

As usual in molecular dynamics applied to granular ma-
terials (also known as the “discrete element method”), par-
ticles have rigid body kinematics and their motion is gov-
erned by Newton’s equations.

B. Interaction law

Grains interact with forces of elastic, adhesive, frictional,
and viscous origins. The static part of the normal component
FY, of the force transmitted by grain i to its neighbor j is a
functlon of h;;, the distance separating disk perimeters. A
negative /;; means that the grains overlap, in which case they
repel each other with a normal elastic force F§” =—Kyh;;.
This force vanishes whenever 4,;>0. (Overlap h <0 is, of
course, a numerical representatlon of the physwal contact
deflection). The repulsive elastic force is supplemented with
an attractive term F;‘vj, equal to —F, for contacting disks
(h;;<0). Fy ¥ has a finite range D, fixed to 104, and varies
hnearly between —Fy and zero as h;; grows from 0 to Dy. F,
is the maximum tensile force a contact might support without
breaking off. The normal contact law thus introduces a force
scale, and a dimensionless parameter, the stiffness param-
eter, k=aKy/F. k characterizes the amount of elastic de-
flection hy under contact force F, relative to grain size a
(ho/a=k7"). Kk is set to a large value, k=10, so that the
elastic deflections in contacts remain so small that they can
be neglected in comparison to all other length scales in the
problem (including interstices between neighbors [39]). The
packing geometry can be regarded as that of an assembly of
rigid grains (as formally dealt with in the “contact dynamics”
simulation method used in [32]).

To the static contributions Fy and FY, to the normal force
we add a viscous damping term opposing the relative normal
velocity of i and j when the disks touch (i;<<0), correspond-
ing to a constant, positive normal coefﬁment of restitution ey
in binary collisions if F| is set to zero. ey is set to a low
value, ey=0.015 in our simulations. In the presence of attrac-
tive forces the apparent restitution coefficient in a collision
will depend on the initial relative velocity. For small kinetic
energies the particles will eventually stick to each other. The
minimum receding velocity for two particles of unit mass
(the unit mass is chosen equal to the mass of a disk of diam-
eter a) to separate is V*y2, with

V¥ =\FyD,. (3)
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TABLE 1. Values of dimensionless model parameters used in
most simulations.

Kr Do Kr Kr
KN a

M en K
Kya? a

0.5 0.015 10° 1 1073 1074 0 or 0.005

The elastic tangential force in contact i,j, F?, is to be
evaluated incrementally. In case of no tangential sliding, it
varies linearly with the relative tangential displacement at
the contact point, involving a tangential stiffness constant,
K. In the case of sliding, which occurs when the elastic law
would cause F i to pass one of the Coulomb bounds * uF i
then Fj stays equal to =uF5". The relative tangential dis-
placement at the contact point involves displacements of disk
centers and rotations. The Coulomb condition introduces the
friction coefficient . It should be pointed out that it applies
to the elastic repulsive part of the normal force only. Thus, a
pair of contacting grains with h;; equal to Fy/Ky=h, (the
equilibrium distance) such that the sum of elastic and adhe-
sive terms vanishes, can transmit a tangential force F; such
that |F;|< uF,. (The importance of this feature of the con-
tact law for collective properties macroscopic behavior of
particle assemblies was stressed in paper I for isotropic,
static states, and in Ref. [35] for steady-state shear flows).
All simulations reported here were carried out with ©=0.5.

We studied the influence of rolling resistance (RR) at con-
tacts, which is modeled as in [40]. Two additional parameters
are necessary: a rolling spring constant K, with dimension
of a moment, expressing proportionality between relative ro-
tation and rolling moment (i.e., a torque concentrated at the
contact point), as long as the rolling friction threshold is not
reached; and a rolling friction coefficient g with the dimen-
sion of a length, setting the maximum absolute value of the
rolling moment I'y to ugFy, proportional to the elastic part
of the normal force. The implementation of this rolling law is
analogous to that of the tangential one, with the rolling mo-
ment and the relative rotation, respectively, replacing the tan-
gential force and the relative tangential displacement. A con-
tact for which the total normal force is equal to zero in
equilibrium, with Fy,=Kyhy=F,, may transmit a rolling mo-
ment Iy with |[g| < ugFY%. Since point contacts do not trans-
mit torques, the rolling resistance stems from the irregularity
of grain surface. Two contacting grains touch each other, in
general, by two points (in 2D), which are separated by some
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microscopic distance [ that is characteristic of the particle
shape. up should be proportional to /, and Ky proportional to
I>. We set ugr=mul and Kr=KyI>, in most calculations with
RR, with [=a/100.

Table I summarizes the values of parameters used in most
simulations, in dimensionless form. Some calculations were
also performed with larger RR (up to I[=a, up=0.5a).

C. Initial states

In paper I, two extreme cases were studied in the assem-
bling stage of cohesive packings under low P*. First, an
N-particle sample of hard-disk fluid is prepared at solid frac-
tion ®; in a fixed cell. Then, in type 1 systems, velocities are
set to zero and the external pressure control is started, until
an equilibrium is reached under P*=0.01. The other proce-
dure, by which type 2 samples are prepared, is meant to
represent the opposite situation, in which aggregation is
much faster than compression. Thus, while the cell size is
fixed and the solid fraction stays equal to ®,, grains are
attributed random (Maxwell-distributed) velocities and left
to interact and aggregate until all N of them join to form one
unique cluster. The system is then equilibrated at P*=0, and
compressed to P*=0.01. To limit the influence of dynamical
effects, the strain rate is requested not to exceed a maximum
value €., during compression. We express this condition
with the natural inertial time associated with the characteris-
tic force Fy (m is the mass of a disk of diameter a) as fol-

lows:
ma
To=\/—, 4
0=" Fy 4)

defining a dimensionless inertia parameter
I,= €, T0- (5)

1, is set to 0.05 in our simulations. The main set of samples
of types 1 and 2 (the latter coinciding with “series A” in
paper I), to which some noncohesive ones are added for
comparison, is listed in Table II, in which the number of
available configurations of different sizes is provided, along
with solid fraction under the lowest nonzero pressure. All
configurations are prepared both with (ug/a=0.005) and
without (ug/a=0) RR, with the parameters of Table I. The
initial solid fraction is ®;=0.36. Type 2 systems are also
available under P*=0, right at the end of the aggregation
stage [37], but we regard this intermediate stage as part of

TABLE II. Set of granular samples used as initial equilibrated configurations in simulations of isotropic

compression (with material parameters of Table I).

Sample type No cohesion Type 1 Type 2

N 1400 1400 1400 5600 10976
Number of samples 4 4 5 3 1
Lowest pressure P/Ky=1073 P*=0.01 P*=0.01

® (no RR) 0.811£0.001 0.723 +0.001 0.472+0.008
® (RR) 0.805*0.002 0.688 +0.001 0.524+0.008
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the initial packing process and focus our study on higher
pressures (as apparent in Table II, the compression from zero
pressure to P*=0.01 involves a large density increase, and
important changes of the microstructure are reported in paper
I). Distant interactions between grain pairs separated by a
gap smaller than D, are scarce, and “rattlers,” i.e., isolated,
free grains with no interactions, are absent in cohesive sys-
tems because of the initial aggregation process. Coordination
numbers under P*=0.01 are typically z=3.1 without RR,
and z=3.0 with RR, for both type 1 and type 2 cohesive
samples. Additional details about those equilibrium configu-
rations under low pressure can be found in paper 1.

The assembling stage of type 2 systems also depends on
the initial velocities given to the grains before they form
aggregates (the “granular temperature” of the original
“granular gas”). The relevant dimensionless parameter is the
ratio of the initial mean quadratic velocity V|, to the charac-
teristic velocity V* defined in Eq. (3). V/ V* is set to 9.5 for
the main sample series of Table II. The value of V,/ V* was
shown in paper I to have a strong influence on the initial
coordination number z at P*=0 in samples with RR: whereas
z is larger than 3 for V/V*=100, it approaches 2 for small
Vy, of order V*/10, in which case the loopless structures of
geometric ballistic aggregation models are retrieved. How-
ever, this effect is strongly reduced after the compression
step to P*=0.01.

In the following, unless otherwise specified, all results
will pertain to the systems of Table II, and measurements
will be averaged over all available samples, error bars on
graphs extending to one sample to sample standard deviation
on each side of the mean value.

D. Simulation procedures
1. Equilibrium conditions

One of the specificities of our simulations of cohesive
packings under varying pressure is the approach, computing
cost permitting, of the quasistatic material response, in which
all configurations remain close to mechanical equilibrium.
Equilibrium conditions have to be stringent enough to enable
an unambiguous identification of the force-carrying contact
network and a study of its elastic properties. Due to the fre-
quent occurrence of small contact force values, this requires
forces to balance with sufficient accuracy. We used similar
criteria as in paper I, which, in agreement with other studies
on cohesionless systems [39,41], were observed to provide
accurate force values adequately. The tolerance levels on
force and torque balance equations are expressed in terms of
a typical intergranular force value F,=max(F,,Pa). A con-
figuration is deemed equilibrated when (1) the net force on
each disk is lower than 107 F,; (2) the total moment on each
disk is lower than 107F,a; (3) the difference between im-
posed and measured stresses is less than 107F,/a; and (4)
the kinetic energy per grain is less than 5 X 1078F,a. Those
conditions being met, we could check that, in the absence of
external perturbations (and of thermal motion), no remaining
slow motion, creep, or aging phenomena were present in our
systems: on waiting longer, only a very slow decrease of the
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remaining kinetic energy is observed. Furthermore, the com-
putation of the stiffness (or “dynamical”’) matrix (see Sec.
II D 3) provides an additional stability check.

2. Compression

The sample series of Table II is subjected to a stepwise
compression cycle. In each compression step, external re-
duced pressure P* is multiplied by a constant factor 10'3
=1.334, and one waits until the new equilibrium configura-
tion is reached, with the criteria stated in Sec. II D 1. A con-
dition of maximum strain rate is enforced, in order to ap-
proach the quasistatic compression curve, as in the
preparation process, on setting [see Egs. (5) and (4)] I,
=0.05. On replacing F, by the force scale Pa (in 2D) corre-
sponding to the confining pressure, in the definition param-
eter /,,, this becomes analogous to inertia parameter / used to
assess dynamical effects in steady shear flow [35,36], or in
the compression of noncohesive granular packings [39,42].
The compression program is pursued until P* reaches the
maximum value 13.33, above which negligible plastic col-
lapse is observed. It should be noted that, thanks to the high
value of stiffness parameter « (see Sec. Il A), the typical
contact deflection aP/K) at this highest pressure level is still
very small. Then, the effect of decreasing P* back from its
highest value to 0.01 is also simulated. As no large structural
changes occur on decompressing the system, larger pressure
jumps can be imposed on unloading.

The simulations are computationally costly, as in some
pressure steps equilibration times of order 1007, are re-
quired, while the time step for the integration of the equa-
tions of motion is a small fraction of \Vm/Ky=T,/«. This
limits the size and the number of samples, and the use of
small strain rates. Some tests of statistical significance and
rate dependence of the results will be reported in Sec. III.

3. Computation of elastic moduli

We observe that once samples are equilibrated according
to the conditions of Sec. II D 1, then the Coulomb criterion
|F7| < uFs5, as well as the rolling friction condition |[|
< upFy, are satisfied as strict inequalities in all contacts. No
contact is ready to yield in sliding, and with RR no contact is
ready to yield in rolling either. This ensures that the response
to small enough external load increments about a well-
equilibrated state will be elastic and reversible. Elastic
moduli express elastic response, i.e., with no effect of tan-
gential or rotational sliding and no change in contact network
topology and geometry. To compute elastic moduli, we build
the stiffness matrix K of the contact structure (also taking
into account the distant interactions). K [37] is a square ma-
trix of order 3N+2 (the number of degrees of freedom in the
system), depending on stiffness coefficients Ky (replaced by
—Fy/ D, for the rare distant attractive bonds), Ky, K (with
RR), and on network geometry. K is symmetric, positive
definite (once the free translational motions of the whole
sample as one rigid body are eliminated)—and thus the sta-
bility of equilibrium states is checked. To compute elastic
moduli, one solves a linear system of equations as follows:
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FIG. 1. (Color online) ® versus P/Ky in pressure cycle with
1400 disk samples with and without RR. Blue dashed lines corre-
spond to elastic response evaluated with the bulk modulus from
initial and highest pressure states.

I=( . U — Fext (6)

for the unknown displacement vector U, containing all par-
ticle displacements and rotations, as well as strains (€,) 4= .
The right-hand side of Eq. (6) contains external forces and
torques applied to the grains, which are set to zero, and stress
increments (Ao,),-;, (the same procedure is followed in
[43] with 2D disk packings and in [44] with 3D sphere pack-
ings). On setting Ao;=1, Ao,=0, or vice versa, one thus
gets two separate measurements of the compliance matrix in
our (statistically) isotropic systems, from which moduli C,
and C;, are deduced, and hence the bulk modulus B=(Cy;
+C1,)/2 and the shear modulus G=(C;;—C),)/2.

II1. MATERIAL BEHAVIOR UNDER ISOTROPIC LOAD

A. Compression and pressure cycle
with noncohesive material

Noncohesive systems of Table II, initially obtained by iso-
tropic compression of a granular gas (like the 3D sphere
packings of, e.g., Refs. [39,45]), are subjected to a compres-
sion cycle, in which reduced pressure P/Kjy increases from
its initial value Py/Ky=107, up to P,/Ky=1.33X1073, and
decreases back to 107°.

Typical results for the density of systems with and without
RR are shown in Fig. 1. Changes of solid fraction are very
small (of order 1073, i.e., of order P/K for the largest pres-
sure), and nearly reversible (more than 90% of the density
increase is recovered on decompressing), as observed in Ref.
[42] with 3D sphere packings. The slight increase of bulk
modulus as a function of ® is due to the larger density of
contacts under higher pressures. One typical feature of fric-
tional, cohesionless grain packs assembled by direct com-
pression is the existence of a non-negligible population of
rattlers, i.e., particles that transmit no force (as observed,
e.g., in Ref. [39] in 3D, or Ref. [43] in 2D systems). The
fraction of rattlers x, thus exceeds 20% of the grains under
P, in systems with RR in the present case, and reaches 17%
without RR. x, is reduced to 14% under P/Ky=1073. The
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FIG. 2. (Color online) Equilibrium configuration of a sample of
1400 disks with RR in initial state, under P*=0.01, for which ®
=0.5132. Line thicknesses encode normal force intensities, red
strokes depict compressive forces while tensile ones are colored in
green, and forces equal to zero in blue.

backbone (force-carrying structure) is the set of nonrattler
grains, characterized by coordination number z*=z/(1-x,)
[39]. z* increases with P, as rattlers get captured by the
backbone and gaps separating neighboring grains close in
compression.

Changes of x, and z* are reversed on unloading (with
some moderate hysteresis effect). The increase of z* as a
function of P, above a minimum value z:;, which would cor-
respond to P=0, is sometimes described by a power law
[46]. With such a fit we can estimate zz , and we obtain val-
ues close to 3 with RR and about 3.12 without RR. z* varies
by about 10% in the studied pressure interval. As in other
simulations [39,47,48], the minimum coordination numbers
stay above the “critical” value for rigidity, which is equal to
3 without RR and to 2 with RR [37].

Cohesionless systems under isotropic pressure cycles thus
behave nearly elastically in an isotropic pressure cycle. As
the pressure increases by more than two orders of magnitude,
while remaining in the rigid limit of x> 1, only small and
nearly reversible changes in density and in other internal
state variables are observed. (See [42] for a more detailed
discussion.) A small level of RR has little effect on density
and material properties.

B. Compressing cohesive systems: General observations

Once subjected to a pressure cycle, as specified in Sec
II D 2, the material prepared in initially loose states (type 2
of Table II) behaves as shown in Figs. 2-4. As the pressure
increases, so does the density, and the large pores present
under low P* gradually disappear. The maximum packing
fraction, ®,,,,=0.774 £0.001 in that case, is quite reproduc-
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FIG. 3. (Color online) Sample of Fig. 2, with ®=0.6305, equili-
brated under P*=0.178 (different length and force units).

ible. @, is smaller than the solid fraction of cohesionless
systems (for which ®>0.805, see Fig. 1).

From the shape of ®(P*) curves at growing P*, three
regimes can be distinguished. At first, in a range of reduced
pressure P* of the order of the first nonzero value (1072,
thereafter called regime I, ® remain approximately constant:
the contact network supports the growing pressure without
rearranging. Then, in a second pressure interval, which we
shall refer to as regime II, a fast compression is observed.
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FIG. 5. Consolidation and decompression curves in three
samples (with RR) with different numbers of grains, as indicated.

Density variations slow down in regime III, for P* of order
unity, as a maximum solid fraction ®,,,, is approached. On
reducing the pressure, ® then remains very close to ®@,,.: the
compaction is irreversible.

The consolidation curve is similar to the ones obtained by
numerical simulations in Refs. [30,32], on imposing uniaxial
strains to loose packings prepared by an anisotropic ballistic
aggregation process. However, our study differs from these
works in several respects (see Sec. I). References [30,32]
focus on regime III, and on dynamical compaction processes,
with a shock wave propagating through the sample. The
variations of solid fraction ® versus P* are shown in Fig. 5,
for three samples of different sizes. Since all three curves are
close to one another, we conclude that the macroscopic be-
havior is correctly captured in our simulations. Our results
for ®(P*) also resemble experimental curves obtained on
different materials, such as metallic powders [6], or xero-
graphic toner [11,49], at least in regimes I and II. Poquillon
et al. [6], in particular, in an experimental study of a metallic
powder, explicitly distinguish three compaction regimes,
with the material elastically resisting compression in regime
I, and then some plastic compaction, first attributed to par-
ticle rearrangement, as we observe, and later to contact plas-
ticity. This latter effect, which is not included in our model,
is likely to explain the difference under high P* between
many experiments and our results: experimental curves do
not appear to approach an asymptotic density, but witness
ongoing compaction up to the highest investigated pressure
levels. In the case of metallic powders [6], quite high pres-
sures are applied (hundreds of MPa), and, as revealed by
direct microscopic observations, particles fusing or sintering
gradually form compact solids. For metal particles with d
=10 um diameter, one can estimate the pressure F,/d* cor-
responding to P*=1 to be in the 0.1 MPa range, so that the
very large P* values in the compaction experiment reveal a
different physical origin of density increase. The stiffness
parameter « is also significantly smaller in such experiments,
with the consequence that plastic phenomena cannot be ig-
nored (for a definition and discussion of « in Hertzian sphere
packings, see [42]). Contact plasticity dominates in the nu-
merical studies of Martin ef al. [19-22], which focus on very
high densities (beyond the random close packing value),
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when the material, due to sintering, turns into a porous com-
pact. Hence only the early stages of metal powder compac-
tion, in which densities are quite low [6] correspond to our
simulations. In the case of the xerographic toners studied in
[11,49,50], P*=1, as discussed in [37], rather correspond to
P~ 10 Pa. Nevertheless, the contact behavior, as investi-
gated by atomic force microscopy, is likely to involve plastic
effects [51-54].

C. Regime I: Role of the initial assembling process

As shown in [37] (paper 1), and briefly recalled in Sec.
II C, assembling conditions have a considerable influence on
packing density and microstructure under low P*. It should
be assessed to what extent those important differences in the
initial configurations affect the plastic consolidation curve,
and whether such a variability tends to disappear once the
material undergoes significant compaction. This issue is in-
vestigated in this section, in which the effects of various
features of the preparation process are observed. The role of
some micromechanical parameters is also discussed.

1. Compaction and aggregation in the assembling stage

The most important feature of the assembling process is
the competition between compression and aggregation,
which leads to the difference between systems of type 1 and
2, as defined in [37] and recalled in Sec. II C. Type 1 samples
reach a considerably higher density from the beginning, un-
der low P*. Figure 6 compares the subsequent consolidation
curves. As type 1 systems are initially considerably denser,
they are able to support larger pressures before rearranging,
hence a wider regime I plateau. However, the pressure in-
crease eventually reaches a high enough value to induce fur-
ther compaction, and the consolidation curve is then very
close to that of type 2 systems (the difference is actually
smaller than the sample to sample rms fluctuation). Within
the accuracy and statistical uncertainty of our simulations,
the difference between initial states of types 1 and 2, al-
though large, thus seems to disappear eventually upon plas-
tically compacting the material.

2. Effects of first compression step and strain rate

In paper I [37] important changes between P*=0 and
P*=0.01 in type 2 configurations were reported, as solid
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FIG. 6. Consolidation curve in type 1 and type 2 samples.
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FIG. 7. Consolidation curve with two different values of /,.

fraction ® increases from ®;=0.36 to about 0.5 (see Table
I1). One way to limit the effects of this first compression step
causing the most dramatic change is to reduce the strain rate,
setting parameter /, to a lower value. As shown in Fig. 7,
displaying the consolidation curve obtained in N=1400 sys-
tems with the usual value 7,=0.05 and with the smaller one
1,=0.01, lower inertial effects in the initial stage, while the
equilibrium configuration at P*=0.01 is prepared, result in a
lower density and tends to turn the initial plateau of the
®(P*) curve into a gentle ascending slope. Later on, as con-
solidation proceeds, very similar curves are obtained with
both values of maximum dimensionless strain rate I, (Fig. 7),
although the smaller error bars (representing sample to
sample rms fluctuations) witness smoother changes and bet-
ter reproducibility for the slower compression. It may thus be
concluded that the quasistatic consolidation curve is quite
reasonably approached with the standard compression proce-
dure detailed in Sec. II D 2, for which /,=0.05.

3. Effect of initial agitation and influence of RR

The initial agitation velocity (or “granular temperature”),
as expressed by ratio V,/ V* in the aggregation stage strongly
influences the coordination number. Figures 8 and 9 show
how this initial influence affects the beginning of consolida-

e}
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T
1

~
W
T

pr | 10

FIG. 8. Consolidation curve: effect of initial agitation level in
aggregation stage, and influence of RR parameter.
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FIG. 9. Same as Fig. 8, for coordination number z as a function
of P*.

tion curves and, once again, fades out later on. Consolidation
curves are shown in Fig. 8 for two different values of V,/ V*,
one tenfold as large as the standard value 9.5 used in the
sample series of Table II and the other one smaller by a
factor of 100. Figure 9 shows the effect of V|, on the coordi-
nation number. An increase of rolling resistance (with ug
=0.5 instead of 0.005), similarly to a decrease of V,, stabi-
lizes looser systems under low P*, with smaller coordination
numbers. However, such a change in material properties does
not only affect the initial, regime I part of the consolidation
curve; it also alters the macroscopic mechanical behavior at
larger densities: the slope of the consolidation curve is lower
for larger RR.

4. Conclusion on initial states and regime I

Fragile tenuous structures due to aggregation are easily
perturbed and sensitive to many factors in low consolidation
states. In general, all perturbations favor some kind of pre-
consolidation effect, inducing denser, better coordinated
structures. These effects are reduced in each one of the fol-
lowing situations: (1) if one waits until large aggregates form
before applying a confining pressure; (2) if the initial agita-
tion velocity V, is decreased; (3) for slower compression
processes, especially when the very first nonvanishing pres-
sure value is imposed; and (4) with larger RR levels. As the
material is further compressed in (nearly) quasistatic condi-
tions, the same macroscopic behavior is retrieved for given
microscopic force laws [i.e., in cases (1) to (3)], irrespective
of the initial perturbations affecting the beginning of the con-
solidation process. Though we did not vary the level of vis-
cous dissipation in normal collisions, lower values are ex-
pected to induce larger inertial effects, similar to a faster
compression. On the other hand, viscous forces slowing
down the motion of grains relative to a surrounding fluid
(often an important physical effect in fine powders) could
reduce the effects of the initial agitation.

Regime I, with no plastic strain, is also observed in some
experiments. For example, the response in uniaxial compres-
sion (i.e., 0,>0, o,=03=0) of loose aggregates of
micrometer-sized silica beads assembled by ballistic
deposition—in that case, an anisotropic process in which

PHYSICAL REVIEW E 78, 031305 (2008)

particles are thrown onto a substrate—was studied by Blum
and Schripler [55]. The deposit, with volume fraction &
=(.15, resists a stress of 500 Pa before plastic compaction is
observed, which corresponds to a “reduced stress,” defined,
in analogy with P*, as O'TEO'ICIZ/FO of order 1072, In the
simulations of Wolf et al. [32] some finite initial pressure
increment also has to be applied before plastic collapse is
observed.

D. Regimes II and III: Intrinsic consolidation behavior

Once the peculiarities of the sample preparation and first
compression stage are erased, we refer to the material evo-
lution as the intrinsic consolidation behavior. In order to
compare the shape of the consolidation curve to other obser-
vations more directly and quantitatively (and also for a more
fundamental reason to be stated further on) we subsequently
describe it with 1/®, instead of ®, as a function of In P*.
This conforms to its traditional presentation in the literature
[1,3,4,6,11], which often uses the void ratio, e=(1/®)-1.

Once the regime I ends, we obtain linear variations of e or
1/® with In P* as follows:

Lo P -
1wt
O D, Py

where P; and the corresponding solid fraction ®, are the
coordinates of the point where the system behavior joins the
intrinsic consolidation curve in the available samples. Pa-
rameter \, known as the plasticity index, is observed in our
case to decrease as uy increases from zero (Fig. 8). We have
also observed that the value of this index is not affected by
the friction coefficient: in that sense, w just displaces the
whole consolidation curve vertically [54].

As the maximum solid fraction ®,,,, is approached, Eq.
(7) is no longer valid, and the asymptotic regime is better
described with a power law, as in [32].

1 1 A
070, " P o

[OJN )

max
with a constant A and an exponent « (close to 1 in our
results). In order to describe the consolidation curve in re-

gimes II and III with a unique functional form, we use the
following relation:

1 1 N P>:<|:1 ( |:P’l":|a):|1/a .
o o HF:: —oxp\~| 5 . )

which introduces additional parameters P]y and «, and
crosses over from Eq. (7) for P*<PT, to Eq. (8) for P*
>PT. Constant A in Eq. (8) is set to \/(2a) on using Eq. (9)
for large P* values, and PT is directly related to @ .

*

P11

F;)F - (I)() q)max .

In

Figure 10 summarizes the definition and the role of all pa-
rameters of relation (9). A fit of our data to relation (9) is
shown in Fig. 11. It should be noted that even a small level
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FIG. 10. Schematic view of intrinsic consolidation curve with
regimes II and III, and the role of parameters introduced in Eq. (9).

of rolling resistance changes the plasticity index. Values of
parameters are listed in Table III, where we also included the
fit parameters for the sample with wgr/a=0.5 corresponding
to the data of Figs. 8 and 9.

As the consolidation curve in region II, defined by param-
eters A and P(*), is observed not to depend on initial condi-
tions, our simulations support the following interpretation:
sooner or later in the process of quasistatic isotropic com-
pression, the system joins, in the P*—® plane, a certain lo-
cus, corresponding to compressive plastic yielding. This lo-
cus, which acts as an attractor in isotropic compression, is a
straight line on using coordinates In P* and 1/®. The value
of P:; simply signals where the yield locus is reached, de-
pending on the preparation process. Table I gives the values
of the parameters defining the intrinsic curve, and of pressure
Pf;, where this is first reached in type 2 systems of Table II.

Consequently, in a system prepared at a lower density, it
should be possible to observe a wider interval of the intrinsic
consolidation line. We could explicitly check this property
(Fig. 12) in the case of one sample with N=5600, for which
the first nonzero equilibrium confining pressure in the load-
ing history is equal to 2 X 1073 instead of 1072, This sample
appears to have reached regime II sooner (around PZ =102,
or possibly below). The corresponding data points lie on the

2.0

1.8
~
—16

1.4

120w |7 R N 1
P*

FIG. 11. (Color online) Consolidation data and fit to Eq. (9), for
systems with and without (small) RR.
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TABLE III. Values of parameters N\, ®,,,, and « used to fit the
consolidation curve in systems of Table II, and in a sample with
larger RR, with Eq. (9). Correspondingly, PT values are
0.271+0.033 without RR, 0.900%0.064 for ug/a=0.005, and
2.6+0.4 for ugp/a=0.5.

/LR/LZ P; q)o A q)max o

0 0.0237 0469 0.349*0.019 0.7808 0.91=0.10
0.005 0.0316 0.515 0.194=0.004 0.7745 1.08=0.16
0.5 0.0178 0.382  0.25*0.01 0.724  0.86+0.24

intrinsic consolidation curve (or, at least, within a distance
smaller than error bars) identified on fitting the data of the
main sample series, which had a larger first compression step
(to P*=1072) and a larger value of P:; (about 3 X 1072). The
yield locus can thus be extrapolated to lower pressures and
densities, with the same plasticity index A. On assembling
cohesive aggregates with arbitrarily low densities, and on
stabilizing them under very low initial pressures, it is con-
ceivable to create equilibrium structures with smaller and
smaller densities and to explore an increasingly larger inter-
val of the intrinsic consolidation curve in the limit of P;
—0 (although this is increasingly difficult in numerical
simulation because of the computational cost, as well as in
experiments, because of the system sensitivity to perturba-
tions). The corresponding solid fraction ®;, would then also
tend to zero. This limit is compatible with the functional
form used in Eq. (7), while the use of the alternative form
[11,50]
*k
P-Py=vin
0

would lead to contradictions in the limit of P; —0.

E. Unloading behavior

The @ versus P* curves we have been showing so far
reveal that the unloading branch, down to P*=0.01, shows

35
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FIG. 12. Comparison of data obtained on the one low P:: sample
(open triangles), and Eq. (7) (continuous line) with the parameters
of Table III, as deduced from a fit of the data (black triangles) from
the more systematic simulation series with larger P; .
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FIG. 13. (Color online) Effect of different (isotropic) unloading
and reloading histories on solid fraction. The direct consolidation
curve with decompression from the highest pressure, as shown in
previous sections, is ABCDEE' (path 4). On unloading along lines
BB', CC', DD’, the system does not rearrange. Such paths are
reversible and do not alter the material state, since paths 4 (small
black dots) and 5 (large, open pink circles) superimpose in the
P*,® plane.

very little density change. This property is actually satisfied
on decreasing the pressure from other configurations in the
compression process. Thus Fig. 13 shows that, if P* is re-
duced to the initial level 0.01 from different states on the
consolidation curve, density changes are hardly noticeable,
and @ stays very close to the maximum value reached at the
largest imposed pressure Pj in the past. Furthermore, it is
checked (in the case of sequence 4, drawn with open circles
in Fig. 13) that the material might be reloaded, with no no-
table density change until pressure Pj is reached. Pj is
known in soil mechanics as the consolidation pressure, and a
material in a state such that P*<Pj is said to be overcon-
solidated. Upon increasing the pressure beyond the consoli-
dation value Pj, the density irreversibly increases, and this
compaction is described by the same curve as in the absence
of an intermediate pressure cycle: the recompression curve
from C’ retraces back the same evolution from D to E. Thus
the material behavior conforms to the plasticity of clays in
isotropic compression [1]. All decompressing paths in the
P*, ® plane, along which P*< P:f, are reversible. More pre-
cisely, they are similar to the pressure cycles applied to co-
hesionless systems (Fig. 1), and they do not depart much
from the linear elastic response, as shown in Fig. 14.

For the largest P* values, adhesion forces are dominated
by the confining stress and are nearly negligible: on setting
Fy to zero in equilibrated systems under P*> 10, we could
check that the granular assembly finds a new equilibrium
configuration with very small displacements and hardly any
change in the contact network.

IV. CONSOLIDATION AND DENSITY CORRELATIONS

The gradual collapse of the initially open structure of
loose systems, as visually apparent in Figs. 2—4 and wit-
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FIG. 14. (Color online) Analog of Fig. 1, for the unloading
behavior of a sample with RR from P*=13.3 to P*=0.01. Dotted
lines correspond to the elastic response of the highest pressure state
and the final state (P*=0.01).

nessed by the consolidation curve studied in Sec. III, can be
characterized by the density correlation indicators introduced
in paper 1.

The initial aggregation process was shown in paper I to
result in a fractal structure of the density field over interme-
diate scales, between the grain diameter and some character-
istic correlation length & In the presence of rolling resis-
tance, even with the small value 0.005a adopted for g, the
observed fractal dimension is compatible with the result of
the ballistic aggregation model, dr=1.55. The ballistic ag-
gregation model is purely geometric, and corresponds to the
irreversible bonding of particles or aggregates in each colli-
sion, with contacts that are rigid in translation and rotation.
This limit case, for which the coordination number is equal
to 2, is approached under low pressure [37] with large RR or
small V/ V*. Better coordinated systems obtained with small
RR and/or larger V,/V* have the same fractal dimension.
Systems with no RR, on the other hand, are closer to dense
objects with dp=1.9 [37].

The limitation of the fractal behavior by an upper length
scale ¢ is a well-known geometric necessity in a large system
with finite particle packing fraction ®, because (in 2D) a
fractal structure of dimension dr<<2 within a square cell of
edge length L exhibits an apparent density proportional to
L42_In physically relevant circumstances, systems with a
finite packing fraction ® and a fractal structure over some
distance range have a finite correlation length ¢ above which
the average value of ® is observed. One then has ® o &2 or

gor @71, (10)

the prefactor being specific to the particular system studied.
Systems with size L> ¢ can then be regarded as homoge-
neous packings of fractal “blobs” of (linear) size £ Such
ideas are quite generally used, and were applied to semidi-
lute polymer solutions [56], to silica [57] or polymeric [58]
gels, in computer simulations of aggregation models [59],
and to various complex, supramolecular objects such as fat
crystals [60] or asphaltene aggregates [61].
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FIG. 15. Scattering intensity per unit area versus wave vector k.
Results are averaged over the four largest samples (with RR) of
Table II.

One may expect that the density increase caused by the
collapse, under a growing load, of the tenuous structures
formed by cohesive packings corresponds to a decrease in
the fractal blob size & while dimension d still describes the
scaling of density correlation at a smaller scale. One should
then observe the scaling predicted in Eq. (10). This implicitly
assumes that the small scale structure of the packing is not
affected by the compaction process, which essentially breaks
long, thin junctions and fills the largest pores. A clue in favor
of such a scenario is provided by the results of Sec. III C,
which suggest that the same structure is obtained if the ma-
terial is directly prepared with some value of @, or if it is
assembled first in a looser state and then isotropically com-
pressed, up to a solid fraction ®.

To compute dy and & we measure the “scattering inten-
sity” I(k), i.e., the Fourier transform of the density autocor-
relation function, as we briefly recall now (see paper I for
more details). Density field x(r), taking values 1 within par-
ticles and O outside, is first discretized on a regular mesh,
then Fourier transformed, thereby obtaining y(k). We then
evaluate /(k)=|x(k)|>/A, A being the cell surface area. Tak-
ing isotropy into account, it is a function of k=|/k|| alone.
I(k) should then vary proportionally to k™9 for a<<2m/k
< ¢, and reach some plateau for k<<27/¢&.

This approach was used in paper I, and yielded the same
fractal dimension drp==1.52 in systems with RR, under P*
=0 (solid fraction ®,;,=0.36) and ®=0.01 (solid fraction P,
=0.524%0.008), while ¢ decreased from £=9.3+0.4 to &,
=5.1£0.2. It should be noted that these values are roughly
compatible with relation (10) [as (&/&)*>%=1.4%+0.1 is
close to @,/ P;=1.46+0.02].

Figure 15 shows the scattering function for similar con-
solidation states shown in Fig. 2 (P*=0.01), in Fig. 3 (P*
=0.178), and for P*=1. These results are averaged over the
four largest samples (with RR) of Table II. In spite of the
error bars, I(k) exhibits the expected form: It is approxi-
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FIG. 16. Average radius of gyration of pores & versus P*.

mately constant below some crossover wave vector 27/ &
which increases with ®, and then decreases, with slope —d
on a logarithmic plot. Pressure P*=0.178 is the largest one
for which this latter feature is clearly observed, and I(k) data
corresponding to smaller pressures are intermediate between
P*=0.01 and P*=0.178 curves. The arrows on the plot sig-
nal the identified values of wave vector 27/ &, which have
been estimated by means of the fit function for I(k) presented
in paper 1. The curve corresponding to P*=1—a flat, low
scattering signal—is typical of dense, homogeneous media
with no fractal range for density correlations.

In view of the small value of ¢ reached in the loosest
configurations (those with P*=0 studied in paper I), relation
(10) is difficult to test from density correlation data. Another
characteristic length scale for density inhomogeneities, used
in paper I, is the (mass) averaged radius of gyration of pores.
It may provide an alternative definition of a blob size &',
proportional to & We observed &' =¢ at P*=0.01, In fact,
this equality works well under very low consolidations.
However, under higher confining pressures we have ob-
served that the definition of & gives lower values than &.
Figure 16 is a plot of &' as a function of pressure.

Despite the restricted fractal range, our observations
therefore confirm the validity of the “fractal blob” model,
with a constant dr and a correlation length & decreasing as
consolidation proceeds, until a final, homogeneous structure
similar to that of cohesionless packings (albeit somewhat
looser) is obtained. Other values of dj are likely to be ob-
served with other assembling processes (such as, e.g.,
diffusion-limited cluster aggregation).

Values of ¢ and dj. do not, however, entirely determine the
mechanical properties of the system. The response of an ag-
gregate to some mechanical perturbation should depend on
its connectivity which, as explicitly shown in paper I, is in-
dependent of its fractal dimension (systems with different wu
and/or prepared with different values of V,/V* have the
same dp, but very different coordination numbers—see also
Sec. III C 3).
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Results concerning blob sizes in systems without RR, for
which dr=1.9 [37], are similar. Different stress states and
mechanical conditions might also produce other types of
loose structures. As an example, in the slow steady-state
shear flow of a very similar material simulated in [36] under
normal reduced pressure P*=1.25X 1072 and shear stress
01,=1.5P anisotropic structures with ®=0.6 were ob-
served.

V. PROPERTIES OF EQUILIBRIUM FORCE NETWORKS
A. Average normal force

Formula (2), as explained in Ref. [16] and in paper I,
leads to a simple relation between the average normal force
(Fy) in equilibrium, pressure P, solid fraction ® and coordi-
nation number z as follows:

mw{(d*)P _ TmaP
D) 9P

(Fy)= (11)
We observed formula (11) (involving the first and second
moments of the diameter distribution) to be accurate in all
simulated states despite some approximations involved [37].
However, as stressed in paper I, relation (11) fails to estimate
the typical contact forces in the network under low P*.
Those reach values of order F,, [17]. Normal forces of both
signs (as visible in Figs. 2 and 3) coexist and, to a large
extent, compensate under low P*.

B. Coordination numbers

In initial low-pressure states, the coordination number z,
as shown in Fig. 17, is nearly equally shared between the
contribution z, of compressive bonds and z_ of tensile bonds.
A small population (zo per grain) of contacts carry forces
equal to zero (within the numerical tolerance for force equi-
librium). Those contacts, in which the normal deflection &
takes the equilibrium value h, for isolated pairs [37], tend to
be more numerous in the absence of applied stress, if the
aggregation process avoids the building of hyperstatic (over-
braced) structures. Their number is quickly reduced once ag-
gregates made under P=0 are subjected to some external
stress and start rearranging.

The population of contacts loaded in compression in-
creases along the consolidation curve until it dominates at
large P*. Upon unloading, the initial proportion of tensile
forces is first retrieved, and z_ is eventually, under low P*,
larger than z,.

The total coordination number increases very little in the
pressure cycle. Our observations thus contradict some state-
ments in the literature [62,63] relating z to ® (even in cohe-
sionless systems, & and z can vary independently [39]). In
the course of plastic collapse of loose structures, as the solid
fraction increases by more than 50%, we observe the number
of contacts to increase by 5% in systems without RR, and by
12% with RR. Such a small variation of z in plastic compres-
sion contrasts with the comparatively very fast change of z in
the quasielastic compression of cohesionless packings, as ob-
served in Sec. III A, in which z increases by more than 10%
for minute density increases.
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FIG. 17. Coordination numbers versus P* in compression cycle
(a) without and (b) with RR. Both plots display, from top to bottom,
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branch of the pressure cycle.

As to the number of distant attractive interactions, i.e.,
pairs of neighboring grains separated by a gap smaller than
D, (contributing to z_), it is initially very low (typically 10 in
a sample of 5600 particles), and then increases with P* but
remains below 2% of the total number of interactions.

C. Distribution of forces

Normal force distributions are (roughly) symmetric about
zero in initial states under low P* [17], as shown in Fig. 18.
Under low P*, tangential forces of order F, are also fre-
quently observed [37], and the angle between the total con-
tact force F and the normal unit vector n is not constrained
by the Coulomb condition, which applies to F+Fyn rather
than to F. This explains the typical patterns of self-balanced
contact forces in small grain clusters, where compressive and
tensile forces of order F, compensate locally, as might be
observed in Fig. 2. The Coulomb condition applying to F, on
the other hand, favors alignments and “force chains.” Self-
stressed small clusters form spontaneously when the disks
aggregate, except for large RR and/or small V,/ V* [37].

As consolidation proceeds, under growing P*, normal
force distributions develop a wider positive (compressive)
side (Fig. 18), while the finite value for Fy=-F is charac-
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FIG. 18. (Color online) Probability distribution function P(Fy)
of static normal force in contacts, versus Fy/F, in systems with no
RR, for P*=0.01 (black), P*=0.178 (red), P*=1 (blue), and P*
=2.37 (green). Distribution widens as pressure increases as indi-
cated by the arrow. P(Fy) is also shown for P*=0.01 for the over-
consolidated state (OCS) at the end of the pressure cycle (pink
dashed line).

teristic of the failure of bonds in traction. Forces eventually
scale proportionally to P* at large P*, like in cohesionless
systems [42,43], as shown by Fig. 19. When P* reaches val-
ues of several unites, the force distribution is similar to that
of cohesionless packings, with an additional dwindling popu-
lation of tensile contacts (Fig. 17). Force distributions in sys-
tems with small RR are quite similar to those shown in Figs.
18 and 19.

D. Forces in dense, overconsolidated states

Upon decompressing to low pressure levels, some larger
compressive forces (Fy/F, reaching 2 or 3) survive and the
distribution is not symmetric (Fig. 18). Such effects of over-
consolidation on contact forces are considerably larger than
in cohesionless granular materials [42]. As in the case of
cohesionless systems [42], we observed that the decompres-
sion process tends to be affected by dynamical effects if it is
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FIG. 19. (Color online) Positive wing of probability distribution
function of rescaled normal forces, F/P*, in systems with no RR,
under P*=2.37 (black crosses), P*=5.62 (red square dots), and
P*=13.3 (blue triangles).
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FIG. 20. (Color online) Dense overconsolidated state of a
sample under P*=0.01 (with RR) at the end of the pressure cycle.
Color code as in Fig. 2, with distant attractive forces (for which 0
<h<Dy) in blue.

too fast, and the overconsolidation effects on force distribu-
tions tend to be erased if too many contacts open in transient
stages. The results pertaining to overconsolidated states
shown in Figs. 17, 18, and 20 were obtained by simply re-
versing the stepwise compression program with the param-
eters indicated in Sec. IID 2 (i.e., with as many steps in
decompression as in compression).

This final force distribution is similar to the one reported
by Richefeu ef al. [17] in simulations of packings of wet
spherical beads, in which cohesion is due to capillary forces.
After assembling the packing under a finite pressure and then
decompressing to P=0, these authors observe that the par-
ticles tend to form small domains with only compressive or
only tensile forces. Figure 20 reveals quite similar patterns in
overconsolidated states under P*=0.01, with some predomi-
nance of the regions under tension, while compressive forces
tend to organize more often in strong force chains. Tensile
contacts are more numerous than compressive ones after the
pressure cycle (Fig. 17).

To what extent overconsolidation effects on inner states
influence the mechanical properties of cohesive granular ma-
terials (e.g., their response to shear stress) is a topic that
deserves further investigation.

E. Effect of a large rolling resistance

As reported in the previous paragraphs, the small level of
rolling resistance used in most simulations reported here
(pp/a=0.005) has no large effect on force distributions or
force patterns. Yet, such a small RR significantly affects the
plasticity index \ (see Table III) and changes fractal dimen-
sion dy (Sec. 1IV).
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In order to understand the mechanisms by which RR af-
fects macroscopic behavior and geometry, we investigated
the effects of a large RR (ug/a=0.5) in a few 1400-disk
configurations. Rolling resistance favors force transmission
along thin strands of particles, each of them in contact with
two neighbors (such structures are shown in paper I [[37]
Fig. 20]). Single particle chains are easily disrupted if ug/a
is small, but are quite frequent for such RR levels, and they
become much more frequent for large rolling resistance.
Thus coordination numbers may approach 2 (see Fig. 9). The
density and the length of such particle chains are also wit-
nessed by the proportion x,, of the contacts that join two-
coordinated disks. Such contacts are impossible in an equi-
librium structure without RR. x,, reaches 12% in large RR
systems under low pressure (for ® in the 0.4-0.5 range),
down to 1-2 % in the main sample series of Table II with
small RR (ug/a=0.005). Thin, rigid strands of two coordi-
nated disks might, however, be decorated by a side arm act-
ing as a dead end for force transmission, and their mechani-
cal role is thus only partially captured on simply recording
fraction x,,. In the limit of z— 2, which is approached under
low pressure for large RR and/or low velocity V in the as-
sembling stage, the force network has a vanishing number of
loops and approaches isostaticity, as discussed in paper I
[37]. Consequently, as compared to the case of small or no
RR, systems with large RR under P*<<1 exhibit narrower
force distributions. For P* of order 1072, normal forces
above Fy/5 or below —F,/10 are extremely scarce [with
probability distribution function P(Fy) in the 1073 range].
Furthermore, with P*~ 1, while compressive normal forces
of order F,, are frequently observed, P(Fy) remains below
1072 for Fyy— —F,,. This contrasts with the results shown in
Fig. 18: the proportion of contacts on the verge of tensile
rupture is much smaller in systems with large rolling resis-
tance.

VI. ELASTIC MODULI

Elastic moduli are used in experiments [64] and computer
simulations [44,65] to express the response of granular ma-
terials to small load increments. Their measurement, or that
of wave velocities, is a nondestructive probe of the packing
structure. Thus, in the case of cohesionless bead packings,
the simulations of [44] showed that the moduli are sensitive
to coordination number, which can vary independently of the
solid fraction, and escapes direct observations [39]. In the
present case of possibly loose and poorly connected cohesive
systems, those moduli also approximately describe the parts
of the compression curves with no packing rearrangement
(Fig. 14), like in cohesionless systems (Fig. 1).

A. Elastic moduli of cohesionless packings

We first quickly describe the variations of elastic moduli
in the cohesionless systems of Table II and their relations to
microstructural or micromechanical parameters. Figure 21 is
a plot of bulk and shear moduli versus pressure. Values of
moduli are very similar in systems without and with RR, and
vary very slowly with up in the latter case. Unlike with
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FIG. 21. (Color online) Bulk and shear moduli of cohesionless
systems (with RR), versus pressure in a compression cycle. Voigt
and Reuss bounds are shown as (red) triangles and (blue) round
dots, respectively. Asterisks show values of B obtained on taking a
larger rolling stiffness, Kr=10"2Kya?, instead of Kz=10"*Kya>,
with the same contact network.

Hertzian contacts, local stiffness constants Ky, Ky do not de-
pend on forces. Consequently, the increase of moduli with
pressure is moderate. The results of Fig. 21 are typical of
cohesionless granular systems with a small coordination
number [43,44,48]. The evolution of bulk modulus is cor-
rectly described by the simple estimation formulas recalled
below in Sec. VI B, and it is explained by the increase of the
coordination number. Shear modulus G, on the other hand, is
somewhat anomalously low, witnessing the propensity of a
rather poorly connected contact network (z*=3.1 under
P/Ky= 1073, without RR) to rearrange under small stress in-
crements, if these are not proportional to the preexisting
stresses.

The evolution of elastic moduli in the unloading part of
the pressure cycle (not shown on the figures, for the sake of
clarity) very nearly reverses the effect of the first compres-
sion.

B. Simple estimation formulas

Bulk and shear moduli are traditionally estimated by the
Voigt or mean field formula [45,66], which gives upper
bounds [44] BY,G" in terms of contact stiffness constants
and coordination number z, based on the assumption that
particle centers move like points of a homogeneously
strained continuum. In the present case one has

v_ z®[(d*) +(d)*1Ky _ 55zPK)

B b
47(d?) 1127
Ky+ K
GV:MBV. (12)

On deriving Egs. (12), similar approximations are used as for
Eq. (11). The formulas are identical for systems with or with-
out RR, and since we chose K;=K) one has also G'=B".
For the bulk modulus, one may also write down a lower
bound BX: The Reuss estimate [44], based on the evaluation
of the elastic energy with trial forces in a load increment.
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The formula for B involves moments of the contact force
distribution, specifically the following ratio:

K K
<F§,+ AP 4 —NF2>
(Fn)
in which averages are taken over all contacts carrying static
normal force Fy, tangential force F, and rolling moment I"
(to be set to zero in the absence of RR). Using Eq. (11), one
has

_z®(dy’Ky 27z ®Ky
2w dDZ,  S6mZ,

BR (14)

This approximation of the bulk modulus becomes exact
when the force increments caused by an isotropic pressure
increase are proportional to the preexisting forces [44], and
hence it tends to be accurate in systems with small degrees of
force indeterminacy. The ratio of upper to lower bounds for

B given by Eqgs. 12 and 14 is 5522/54, and the bulk modulus
is therefore especially well predicted when the force distri-

bution is not too wide [44], and ratio Z, stays close to 1.
Thus bulk moduli are rather successfully estimated (see Fig.
21) by BR or BY in the cohesionless case of Sec. IIl A and
VI A. Force distributions have often been studied in cohe-
sionless systems, in which they are strongly constrained by

the no-tension condition, and Zz cannot reach large values
(Z,<1.5 in the present case).

C. Elastic moduli in cohesive packings

Elastic moduli as functions of P* during consolidation of
cohesive systems are plotted in Fig. 22. Note the logarithmic
scale used for elastic moduli (unlike in Fig. 21). Both bulk
and shear moduli are very low at small P*, which cannot be
simply explained by the factor z® appearing in estimates
(12) and (14) (z values, see Fig. 17, are similar to those of
cohesionless systems while ® is twice as small at most).
Those anomalously low moduli witness the propensity of the
system to rearrange under isotropic as well as under devia-
toric stress increments. Moduli in samples with RR [Fig.
22(b)] have very similar values as in the absence of RR,
although this may be partly coincidental, since they are quite
sensitive to the value of rolling stiffness K.

On decompressing, the moduli (not shown in Fig. 22) stay
close to the value reached at the highest pressure.

Mean field estimates BY and G" are both too large by
factors of 30 to 50 in loose states. From Eq. (11) the average
normal force (Fy) vanishes as P* tends to zero, while the
second moment is of order F’ (2). Moreover, as tangential forces
are not limited by condition |Fz|< uFy, but by |Fz|< u(Fy
+F), their contribution to the elastic energy is important
(and so is that of rolling moments in systems with RR).

Coefficients Zz thus reach values of order 10? or 10° under
low pressure, whence BY/B®> 1, which is impossible in co-
hesionless systems. The Reuss bound for B is first (in regime
I) too small by a large factor. Then, it seems to capture the
evolution of the bulk modulus in regimes II and III of the
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FIG. 22. (Color online) Bulk and shear moduli of cohesive sys-
tems (a) without and (b) with RR, versus (growing) pressure. Same
symbols and colors as in Fig. 21.

consolidation behavior. Ratio B/BX is reduced to about 2 for
P* of order 0.1, and slightly decreases as compression pro-
ceeds. It should be recalled, though, that the Reuss formula
essentially relates the bulk modulus to another unknown

quantity, Zz.

D. Elastic moduli and force indeterminacy

The low value of the shear modulus in poorly coordinated
cohesionless packings under isotropic stresses (see Fig. 21)
has been observed [44,48] and argued [67] to stem from
its tendency to vary proportionally to the degree of force
indeterminacy per unit area (or volume in 3D) when it is
small. As the latter (without RR) is proportional to (z*—3)
X®(1-x,), one should have

_ G
KN(I)(I —XO)

G* gt -3, (15)
Figure 23 shows our cohesionless packings to abide by this
law, as the linear variation of G* with z* would predict,
within uncertainties, its vanishing for z*=3. However, it is
also obvious from Fig. 23 that the anomalous behavior of
both moduli in loose, cohesive grain assemblies are not sim-
ply explained by their low coordination number, except per-
haps for the shear moduli of the densest configurations
(rightmost data points), which, after sufficient plastic com-
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FIG. 23. (Color online) Elastic moduli (no RR) divided by
Ky®(1-xp), versus z*, the coordination number without rattlers.
Data with error bars, fitted with the dashed straight line, correspond
to G in cohesionless systems. G and B in the cohesive material are,
respectively, shown as (red) crosses and asterisks.

paction, become similar to cohesionless packings. A coordi-
nation number z* just above 3 (without RR) characterizes a
“barely rigid” contact network, but such a global, average
quantity does not account for the specific heterogeneities of
loose cohesive packings.

E. Contact forces in a small pressure increment

At the microscopic level the elastic response to a small
pressure increment AP determines contact force increments
as visualized in Fig. 24. Very strong compressive force
chains appear, while large parts of the system carry very
small forces. On sorting the contacts by decreasing contribu-

X

g e,
i, 2
3R OIS
9‘0&@3@%’,@,
ol (3

SR
)
R XN
1§° @g.
SOOI
PO

%

FIG. 24. (Color online) Force increments associated with elastic
response in isotropic compression of the system of Fig. 2. Contacts
are ordered by decreasing contribution to elastic energy, and only
the first 46% contact forces corresponding to 95% of the energy are
drawn (colors as in Figs. 2—4).

PHYSICAL REVIEW E 78, 031305 (2008)

tion to the elastic energy of the force increments balancing
AP, less than half of them (46%) contribute 95% of the
energy. This proportion increases to about 65% in the densest
configurations, to be compared to 68—70% in cohesionless
systems. The configuration of Fig. 24, in a system with RR,
has quite a few dead ends, i.e., sets of grains that are con-
nected to the rest of the structure but do not belong to any
percolating loop for force (or current) transport through the
whole periodic cell. With RR, the force-carrying structure
coincides with the backbone in the sense of ordinary (scalar)
percolation theory. The force patterns of Fig. 24 differ from
those of Fig. 2, in which the equilibrium forces, prior to the
application of AP are shown: some regions, especially the
isolated, self-stressed clusters where compressions and ten-
sions of order F\, equilibrate, carry large forces but are by-
passed in the transmission of the pressure increment AP.
Dead ends contain “islands” of self-balanced forces resulting
from the aggregation process, as directly visible on Fig. 2,
but they do not participate in the transmission of stress in-
crements and they do not contribute to elastic moduli.

As consolidation proceeds, the repeated application of
pressure increments clearly favors force chains over local-
ized self-stressed clusters, and the force pattern adapts to the
external pressure. Hence a closer similarity between the spa-
tial distribution of equilibrium forces under pressure P and
that of force increments caused by a small compression step
AP, and a better performance of the Reuss estimate.

F. Scaling with fractal blob size

The inability of the approaches used in cohesionless sys-
tems to predict the elastic moduli of loose cohesive packings
can be attributed to their ignoring the peculiar network ge-
ometry, which is the origin of the strong force concentration
shown in Fig. 24.

In view of the results of Sec. IV, it is tempting to relate the
elastic moduli to the variations of blob size & In scaling
arguments about the density, the system can be regarded as a
densely packed assembly of somewhat fuzzy &-sized objects:
The blobs. To discuss elastic properties, the system is better
represented as a network of “superbonds” of length & or
effective beams (with which the elongated structures carry-
ing stress in Fig. 24 could be identified). In such a network,
the dominant deformation mode is beam bending. The trans-
verse deflection & in the bending of a beam of length &,
caused by a force F, is proportional to & F. Macroscopically,
strains are of order €=/ &, while F corresponds to stress o
by F«gé¢ in 2D. Consequently, the scaling of elastic moduli
o/ € with length & should involve a factor £3. (Some pos-
sible corrections to exponent 3 are possible, although the
appropriate value in, e.g., the case of percolation networks of
beams is very close to 3 [68,69]). As & varies by a factor of
3 or 4 within the scaling range (see Fig. 16), relation B
o &3 would predict an increase of moduli by a factor of a
few tens.

Although this can be regarded as a fair estimate (see Fig.
22), it should be admitted that the fractal range is very likely
too restricted for such scaling laws to apply without impor-
tant corrections. With sufficiently large rolling resistance, the
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“beams” can be reduced to single particle chains, which, as
we now show, enables simpler analyses of their bending
stiffness.

G. Case of a large rolling resistance

With large RR the prevalence of particle strands as force-
transmitting structures (Sec. V E) influences elastic proper-
ties. As noted above, linear structures tend to deform like
bending beams, with a compliance proportional to the third
power of their length. In the case of single linear strands,
connections with contact properties are easily made more
explicit. Consider, e.g., a straight, linear chain of n identical
disks of radius R, with n—1 contacts characterized by stift-
ness constants Ky, Ky, and K. Then, in the elastic regime,
all intermediate disks can be suppressed and the interaction
between the extreme ones, numbers 1 and n along the chain,
can be replaced by an effective interaction between two disks
of radius (n—1)R, and compliances 1/KY, 1/K™, and
1/ Kgl) for normal, tangential, and rolling relative motion,
with

1 _n-1
KW Ky
N N
1 n-1 (n-1)4n*-11n+6)R?
2 + ,
K" Ky 3Ky
1 n-1
PP (16)
KW K

For large n the tangential compliance is much larger than the
longitudinal and rolling ones, so that long chains behave as
beams, which essentially deform in bending. The local bend-
ing stiffness EI of the beam (i.e., the product of the material
Young modulus by the moment of inertia of the beam sec-
tion) corresponding to the chain of particles in the continu-
ous limit is EI=2RK}. (This coefficient expresses the propor-
tionality of bending moment to rotation angle gradient). For
n>1, the bending spring constant 3EI/[° (expressing the
transverse force to the transverse deflection relationship) is
correctly identified from K(T") given in Egs. (16), using the
length /=2(n—1)R of the straight n-particle strand.

Remarkably, the bending elasticity of small linear strands
of micrometer-sized colloidal particles bound by adhesive
forces has recently been measured by means of optical twee-
zers [70]. Colloidal gels of polymer particles [71-73] should
thus be modeled as cohesive particle assemblies with a rather
large RR level.

It is easy to check (consider, e.g., two such chains joining
at their ends at some angle) that for all strand shapes other
than straight lines, the extremities will be coupled by spring
constants of order K(T”) for both longitudinal (parallel to end-
to-end vector) and transverse relative displacements. Conse-
quently, the macroscopic elastic moduli should be propor-
tional to rolling stiffness constant K. Figure 25 shows that
this proportionality is approximately satisfied in the loosest
states of a system with rolling friction up/a=0.05, in which
three different values of Ky were used to evaluate the elastic
response.

PHYSICAL REVIEW E 78, 031305 (2008)

102 L
« 10 F i
X E 3
= i 1
5 L ]
o L 4

o)

2oL ]

0.1 Il L L TR |
0.01 0.1 1

P

FIG. 25. (Color online) Bulk (filled symbols) and shear (open
symbols) moduli, normalized by Ky, in low pressure states of a
sample for which ug/a=0.05 and Kz=10"2Kya® (black squares).
Results obtained on evaluating moduli with Kz=1073Kya® and with
Kr=10"*Kya® are, respectively, shown as red triangles and blue
circles.

Elastic moduli of denser states, however, depart from this
behavior. Therefore, the scaling of elastic moduli with typi-
cal strand length (as suggested in Sec. VI F) is limited to low
consolidation states. With small or vanishing RR, single par-
ticle strands are replaced by thicker junctions, which further
restricts the consolidation pressure range for which elasticity
is dominated by beam bending.

VII. PLASTIC CONSOLIDATION MECHANISM:
QUALITATIVE ASPECTS

Cohesionless granular assemblies, if subjected to stress
increments that are not proportional to initial stresses, essen-
tially deform because the contact network gets repeatedly
broken and repaired [41,74]. Macroscopic strains, once they
exceed the very small scales associated with the response of
given contact networks [41,44], thus result from a sequence
of rearrangement events or microscopic instabilities, during
which the granular packing loses its coherence and gains
some finite amount of kinetic energy, even for arbitrarily
slow applied stress changes. Collisions and the appearance of
new contacts stabilize the packing at the end of each micro-
scopic rearranging event. This process gradually changes the
topology of the contact network, and produces specific evo-
lution of its fabric (orientation anisotropy).

The mechanism of plastic collapse in isotropic compres-
sion of loose cohesive assemblies with small or vanishing
RR in contacts, as observed in the present study, is similar.
Just like in cohesionless systems under shear [41], we expect
the frequency of occurrence of rearrangements along the
loading path to increase, and the corresponding strain jumps
to decrease as the size of samples grows, and thus the con-
solidation curve should be smooth in the thermodynamic
limit. Due to the specific geometry of loose systems, in
which dense zones are weakly connected through thin arms,
better connected, solidlike regions tend to move like rigid
bodies, while fragile junctions break and rearrange, so that
initially large holes gradually fill up. Figure 26 illustrates this
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FIG. 26. Equilibrium particle positions in 1400-disk sample
with small RR under P*=0.032. Particle displacements to new con-
figuration equilibrated under P*=0.042 are shown as arrows (global
density change A®=0.05). Neighbor pairs for which contact opens
are filled in gray. All other contacts (thin solid lines) are maintained.
Dense regions moving approximately like rigid solids are circled
within dotted lines. Most lost contacts are situated near the bound-
aries of such solidlike particle lumps.

scenario. Displacements are depicted as arrows, pointing
from the current positions to the ones reached in the next
equilibrium configuration in the stepwise compression se-
quence. The more densely packed, nearly rigid regions
(marked with dotted lines) are easily identified by direct vi-
sual inspection. Figure 26 also shows that the contact net-
work undergoes relatively small topological changes, as
more than 90% of contacts are conserved. The rate of contact
change, and the evolution of a coordination number with
strain are significantly smaller than in cohesionless systems
undergoing, e.g., shear deformation. During the compaction
of loose samples the dense regions collide and slide past one
another, along thin sheared zones where most of the broken
contacts are found.

In the case of large RR, the peculiar microstructure in-
volving single particle chains might lead to a different defor-
mation mechanism. Unlike multiply connected junctions,
simple strands can yield in bending without breaking: they
fold at some contact, where the rolling friction threshold is
reached, thereby releasing bending elasticity. This mecha-
nism is observed in experiments on single chains of colloidal
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FIG. 27. (Color online) Evolution of the contact number as a
function of relative density increase. In a sample with ugp/a
=0.005 the proportions x, and x_ of gained and of lost contacts with
respect to the previous recorded list are, respectively, shown with
red square dots and triangles—the latter being connected with a
dashed line. A similar code is used for x, and x_ values in a sample
with large RR (ug/a=0.5), but with open dots, and in black.

particles [70,72]. One thus expects fewer contact losses in
plastic compression.

To follow more closely the rearrangement sequences in
the course of compaction, it is appropriate to monitor
changes in the list of contacts during the motion between two
equilibrium configurations. As an example, let us consider
the evolution between equilibrated states as P* increases
from 0.177 to 0.237, and compare two samples, one with
small (ug/a=0.005) and the other with large (ug/a=0.5)
RR. Table IV gives the changes in solid fraction and coordi-
nation number, and numbers of maintained, destroyed, and
created contacts in this compression step. Successive con-
figurations separated by a fixed time interval Ar=0.16T,, are
compared and Fig. 27 plots the number of destroyed and
created contacts as functions of time. For the same strain
increment, contact losses, as a function of global strain, are
significantly less frequent in the sample with large RR. This
fact is reflected both in the data of Table IV, where global
changes are recorded, between the initial and final states, and
in those of Fig. 27, where successive changes over time in-
tervals Ar are detailed. As a consequence, while the coordi-
nation number hardly changes during consolidation in sys-
tems with small or vanishing RR (see Fig. 17), it gradually
increases from an initial value close to 2 to nearly 3 in sys-
tems with large RR (Fig. 9). The lesser importance of tensile
contact rupture in the plastic compression of assemblies with
large RR is also witnessed by the normal force distribution
(Sec. VE): forces approaching —F, are quite scarce, as

TABLE IV. Relative changes of solid fraction, A®, and of coordination number (Az), and numbers of
maintained (N®)), destroyed (N), and created (N*) contacts in a 1400-disk sample, with small or large
RR, in the compression step between P*=0.177 and P*=0.237.

wrla AD (%) Az (%) N©® NO) N
0.005 3.2 0.14 2084 (94.9%) 112 (5.1%) 115 (5.2%)
0.5 3.1 1.2 1679 (98.5%) 26 (1.5%) 46 (2.7%)
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opposed to the situation in samples without RR (Fig. 18).
With small RR, some single particle chains are also present,
although shorter and less numerous. The sensitivity of plas-
ticity index A\ to the rolling friction is likely to be explained
by different rupture mechanisms, the importance of folding
rearrangements growing with the level of rolling resistance.

VIII. CONCLUSION

To summarize, we have used numerical simulations to
observe and characterize, at the macroscopic and microstruc-
tural levels, the consolidation behavior, in isotropic compres-
sion, of model cohesive powders. Macroscopic constitutive
laws for quasistatic loading, unloading, and elastic responses
were shown to be reasonably well approached. The material
behavior was investigated for a range of densities that is
wider than in most simulation studies of cohesive granular
materials. The consolidation process goes through three
stages. In a first regime, which is sensitive to the assembling
procedure, no plastic collapse occurs, as the agitation in the
assembling process has stabilized a strong enough micro-
structure to withstand a finite pressure increase. The normal
force distribution widens until a significant fraction of con-
tacts are on the verge of tensile rupture. The initial system
geometry, which changes very little in regime I, is that of a
dense assembly of fractal blobs, with dimension d taking
the universal value associated with the aggregation process
(here, ballistic) implemented in the sample preparation stage.
The blob size £ (at most, between 5 and 10 grain diameters in
the present case) can be identified on studying density corre-
lations. The subsequent consolidation behavior is remarkably
independent on initial conditions, which merely determine
where the intrinsic consolidation curve in the ®-P* plane is
first met. The same curve is then followed regardless of the
initial conditions as the material is further compressed. This
behavior corresponds, at the microscopic level, to a gradual
change of the blob size. The curve in regime II has the same
shape as reported in the soil mechanics literature, and the
consolidation pressure is a plastic threshold below which the
material response is approximately elastic (like the behavior
of a cohesionless granular material under isotropic load).
Elastic moduli increase rapidly with consolidation pressure
or density. The cases of small RR or without RR should be
distinguished from the situation of strong rolling resistance,
although, in both cases, the microstructure of loose packings
might be viewed as denser, better connected regions joined
by thin arms. In the first case, loose packings collapse when
the tensile strength of contacts is overcome by the externally
imposed forces, preferentially within the fragile junctions be-
tween adjacent denser blobs. Systems with strong RR, on the
other hand, contain single particle strands, which tend to fold
without breaking in plastic compaction. While small RR sys-
tems gain very few contacts in the consolidation process, the
coordination number might increase from nearly 2 to 3 with
large RR. Eventually, the material approaches a limiting,
maximum density (regime III), as the packing structure re-
sembles that of a cohesionless system, for P*>1 (albeit,
typically, somewhat looser). The absence of a similar upper
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limit of the density of cohesive packings in experiments for
large P* is due to plastic deformation of contacts.

The fractal blob size & depending on solid fraction @, is
a central microstructural feature, based on which some scal-
ing laws for elastic properties can be attempted. It is also
tempting, beyond the qualitative description of the micro-
structural changes associated with the consolidation process,
to try to predict the consolidation curve from such geometric
data. Yet scaling laws only apply to a restricted part of the
consolidation pressure interval.

Our results, in many respects, emphasize important quali-
tative differences between cohesive and cohesionless granu-
lar assemblies. The existence of stable loose structures and
the consolidation phenomenon are the most important differ-
ences brought about by cohesion in macroscopic behavior. At
the microstructural level, unlike in cohesionless packings,
the typical values of intergranular forces, or the force distri-
bution, are not as simply estimated in cohesive systems, in
which attractive and repulsive contact forces of the order of
tensile strength Fy tend to compensate under low pressure. In
particular, compression cycles stabilize self-balanced force
networks with large compression forces. Unlike in granular
packings devoid of cohesion, the coordination number does
not appear to be a significant state variable in cohesive sys-
tems with low RR, as it hardly changes along the consolida-
tion curve. However, with large rolling resistance, it wit-
nesses the formation of loops under compression. While
cohesionless assemblies with a low coordination number
usually contain many rattlers, all particles in cohesive pack-
ings are connected to the same contact structure, which is
rigid, but comprises lots of “dead ends” or ‘“side arms,”
which might bear self-balanced forces but do not participate
in the transmission of external stresses. Some of these new
features can be summed up on remarking that loose powders
are similar to gels as much as to granular packings with no
cohesion.

Our investigations should be pursued in several direc-
tions. On the theoretical side, the connections between mac-
roscopic properties and microstructure could be studied more
quantitatively. The behavior of loose cohesive packings un-
der general stress states should be investigated. Thus one
may determine whether such constitutive laws as the Cam-
clay model [1] apply to the simulated material. And finally,
more quantitative agreement with experiments and real ma-
terials should be sought. In spite of some obvious steps (e.g.,
one should simulate 3D systems), this latter objective looks
daunting. One major difficulty is the importance of hydrody-
namic effects at the assembling stage, when the microstruc-
ture and the fractal dimension of aggregates are determined.
While we have bypassed this problem on implementing bal-
listic aggregation, it is necessary to investigate the behavior
of other possible kinds of aggregates, by dealing with some
tractable model for hydrodynamic forces. It is hopefully pos-
sible to introduce some mechanics and intergranular interac-
tions within the models used with geometric aggregation
rules (such as, e.g., diffusion-limited cluster-cluster aggrega-
tion). Then, another difficulty is that many parameters asso-
ciated with the contact law (such as friction coefficient, roll-
ing friction, rolling stiffness constant) should be identified
for a real material to be investigated at the grain level. In
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this respect, the recent progress of experimental methods of
microscopic investigation seems quite promising, as for-
merly inaccessible parameters ruling interparticle contact
mechanics are now beginning to be measured, thanks to par-
ticle scale observation and micromanipulation techniques
[51,52,70,72,75].
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