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We investigate bond- and site-percolation models on several two-dimensional lattices numerically, by means
of transfer-matrix calculations and Monte Carlo simulations. The lattices include the square, triangular, hon-
eycomb kagome, and diced lattices with nearest-neighbor bonds, and the square lattice with nearest- and
next-nearest-neighbor bonds. Results are presented for the bond-percolation thresholds of the kagome and
diced lattices, and the site-percolation thresholds of the square, honeycomb, and diced lattices. We also include
the bond- and site-percolation thresholds for the square lattice with nearest- and next-nearest-neighbor bonds.
We find that corrections to scaling behave according to the second temperature dimension Xt2=4 predicted by
the Coulomb gas theory and the theory of conformal invariance. In several cases there is evidence for an
additional term with the same exponent, but modified by a logarithmic factor. Only for the site-percolation
problem on the triangular lattice does such a logarithmic term appear to be small or absent. The amplitude of
the power-law correction associated with Xt2=4 is found to be dependent on the orientation of the lattice with
respect to the cylindrical geometry of the finite systems.
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I. INTRODUCTION

The bond-percolation model can be described by means
of the partition sum

Zbond�p� = �
�ij�

�
bij=0

1

��1 − p��1 − bij� + pbij� = 1, �1�

where the bond variables bij are located on the edges of a
lattice, and labeled with the site numbers at both ends. The
“bonds,” i.e., the nonzero bond variables, form a network of
which one may study the percolation properties. Similarly,
the site-percolation problem is described by

Zsite�p� = �
�i�

�
si=0

1

��1 − p��1 − si� + psi� = 1. �2�

In this case, the percolation problem is formed by adding
bonds between all pairs �i , j� of neighboring sites that are
both occupied �si=sj =1�.

Equations �1� and �2� specify that the bonds or sites are
occupied with independent probabilities p. The values of
these partition sums are trivial, but the percolation properties
contained in these models are not. These properties, in par-
ticular for two-dimensional models, have been investigated
by a considerable number of different approaches �see �1–10�
and references therein�. According to the universality hy-
pothesis, some of these properties, such as the critical expo-
nents, are the same for different two-dimensional lattices.
Other properties, such as the percolation threshold, are natu-
rally dependent on the type of the lattice, as well as on the
number of neighbors to which a given site can form a bond.
If not mentioned explicitly, we consider models with bonds
between nearest-neighbor sites only.

The present work reports some findings, obtained by
means of Monte Carlo simulation and transfer-matrix meth-

ods. Monte Carlo simulation was used in the cases of site
percolation on the diced lattice, and of bond percolation on
the square lattice with nearest- and next-nearest-neighbor
bonds.

The outline of this paper is as follows. In Sec. II we
sketch our transfer-matrix and Monte Carlo methods. Section
III describes the analyses and lists our results. The conclu-
sions are summarized and discussed in Sec. IV.

II. NUMERICAL METHODS

Our numerical analyses employ both transfer-matrix and
Monte Carlo techniques. Both approaches have their advan-
tages. Transfer-matrix calculations yield finite-size results of
high precision, typically with error margins of the order of
10−12, which therefore allow the application of sensitive fit-
ting procedures. However, the transfer-matrix results are re-
stricted to rather small values of the finite-size parameter. In
contrast, the Monte Carlo results can be applied to much
larger finite sizes, but they are also subject to significant
statistical errors. Which of the two techniques was applied to
specific models depended on considerations of effectiveness
and complexity. The site-percolation problem on the diced
lattice was investigated by the Monte Carlo method, in view
of the expected amount of work involved in writing the vari-
ous sparse-matrix multiplication subprograms in a transfer-
matrix algorithm for the diced lattice, which has inequivalent
sites. While the transfer-matrix method usually yields rela-
tively accurate results, this appeared not to be the case for the
bond-percolation problem on the square lattice with crossing
bonds. For this reason we also investigated this problem us-
ing the Monte Carlo method.

A. The transfer matrix

The present transfer-matrix calculations apply to models
wrapped on an infinitely long cylinder, with a finite circum-

PHYSICAL REVIEW E 78, 031136 �2008�

1539-3755/2008/78�3�/031136�6� ©2008 The American Physical Society031136-1

http://dx.doi.org/10.1103/PhysRevE.78.031136


ference L. For the bond-percolation model, which can be
considered as the special case q=1 of the random-cluster
representation of the q-state Potts model �11�, we may con-
veniently use the numerical methods developed earlier for
the random-cluster model. Our basic approach �12� is close
in spirit to that of Derrida and Vannimenus �3� for the per-
colation model. Reference �13� describes in detail how the
state of connectivity of the sites on the end row of the cyl-
inder can be coded by means of an integer �1,2,3,…� that
serves as a transfer-matrix index. That work also describes
the sparse-matrix decomposition of the transfer matrix. How-
ever, the various lattice structures investigated here require
modifications of the sparse-matrix methods described there.
In addition, the model with nearest- and next-nearest-
neighbor bonds violates the condition of “well-nestedness”
described in Ref. �13�, so that new coding and decoding
algorithms had to be devised. The transfer matrices for the
site-percolation models require different modifications that,
again, depend on the lattice structure. It is, in general, nec-
essary to store the occupation number �0 or 1� of the sites on
the endmost row of the lattice, as well as the state of con-
nectivity of the occupied sites. This combined information
can also be coded as an integer that plays the role of a
transfer-matrix index, using the methods described in Ref.
�14�. However, the state of connectedness of the occupied
sites on the last row may, depending on the lattice geometry,
be subject to an additional condition. If the sites on this row
are nearest neighbors, such as for the square lattice with the
transfer direction along one set of lattice edges, then two
adjacent, occupied sites must belong to the same cluster. This
reduces the number of possible connectivities. To take ad-
vantage of this reduction, the coding-decoding algorithms for
the square-lattice model were modified. For the square-
lattice site-percolation model with transfer in the diagonal
direction, the situation is different, and the algorithms of Ref.
�14� had to be used. To save memory and computer time,
sparse-matrix decompositions were applied in all cases. A
full description of all these algorithms is beyond the scope of
this paper; we trust that it is sufficient to mention that all
further relevant details are contained in or follow from the
explanations given here and in Refs. �13–17�.

The connectivities used here include those of the “mag-
netic” type, i.e., they carry information about which of the
sites of the end row are connected by a percolating path to a
faraway site, say on the first row of the lattice.

Using a computer with 8 gigabytes of fast memory, our
algorithms can perform transfer-matrix calculations in con-
nectivity spaces of linear dimensions up to the order of 108.
Some details concerning the largest system sizes that could
thus be handled, and the corresponding transfer-matrix sizes,
appear in Table I.

The eigenvalue problem of the transfer matrix reduces in
effect to separate calculations in the magnetic and nonmag-
netic sectors. The calculation of the largest eigenvalue in the
nonmagnetic sector trivially yields �0=1. The transfer-
matrix construction enables the numerical calculation of the
magnetic eigenvalue �1 as described earlier �13�.

The analysis of these magnetic eigenvalues uses Cardy’s
mapping �18� which establishes an asymptotic relation be-
tween the magnetic eigenvalue and the exact magnetic scal-
ing dimension Xh. Furthermore, we employ knowledge of the
exact critical exponents from the Coulomb gas theory �6� and
the theory of conformal invariance �19�. These results estab-
lish that Xh=5 /48 for percolation models, and that the first
and second thermal dimensions are equal to Xt=5 /4 and
Xt2=4, respectively.

B. Monte Carlo calculations

We employed Monte Carlo simulations for the site-
percolation problem on the diced lattice, and for the bond-
percolation model on the square lattice with nearest- and
next-nearest-neighbor bonds. The finite systems were defined
in an L�L periodic geometry, in the case of the diced lattice
on the basis of a rhombus with an angle 2� /3 between the
main axes, as illustrated in Fig. 1. The system, including its
periodic structure, displays a hexagonal symmetry. Thus, for
the definition of the periodic box one has in fact the freedom
to choose any two out of three main axes separated by angles
2� /3. For the square lattice we employed a periodic box
with the usual square symmetry, with only two main axes. A
Metropolis-like procedure was applied: one visits the sites or

TABLE I. Some details about the transfer-matrix calculations on the various models. Transfer directions
are given with respect to a set of lattice edges. Included are the largest system sizes and the linear size of the
transfer matrix for that system, as well as the corresponding size of the largest sparse matrix. 8-nb square
refers to the square lattice with nearest- and next-nearest-neighbor bonds.

Lattice Type Direction Lmax Maximum size Sparse size

Kagome Bond Perpendicular 13 5943200 22732740

Square Bond Parallel 15 87253605 87253605

Square Bond Diagonal 14 22732740 87253605

Triangular Bond Perpendicular 14 22732740 87253605

8-nb square Bond Parallel 10 678570 27644437

Square Site Parallel 16 6903561 57225573

Square Site Diagonal 12 26423275 125481607

Honeycomb Site Parallel 12 26423275 125481607

Triangular Site Perpendicular 17 19848489 57225573
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bonds sequentially, and randomly decides with probability p
whether it is occupied; clusters are then constructed on the
basis of these occupied site or bond variables. We employed
a random generator based on binary shift registers. To avoid
errors resulting from the use of single short shift registers
�20�, we used the modulo-2 addition of two independent shift
registers with lengths chosen as the Mersenne exponents 127
and 9689. This type of random generator is well tested �21�.

For a sufficiently long series of percolation configurations
thus obtained, we sampled the wrapping probability P that a
configuration has at least one cluster that wraps across a
periodic boundary and connects to itself along any of the
aforementioned main axes. This is done for a range of values
p of the site or bond probabilities.

For the analysis of the data for the model on the diced
lattice, it is helpful that the value of the wrapping probability
Pc is exactly known for the periodic rhombus geometry of
the critical triangular bond-percolation model as Pc
=0.683 946 586. . . �22� �note that 1−�+ in the latter paper
represents our Pc�. It applies in the limit of large system size
L and is believed to be universal, i.e., it also applies to the
diced lattice, which also has a hexagonal symmetry. For the
periodic square geometry, the universal value Pc is exactly
known as Pc=0.690 473 725. . . �22,23�.

The simulations were performed for 15 system sizes in
the range 4�L�256; about 21�109 samples were taken for
each L for L�64, and 6�109 samples for L=128 and 256.

III. RESULTS

The analysis of the numerical finite-size data was done by
means of well-documented finite-size scaling methods �24�.
We describe the procedures followed for the transfer-matrix
and Monte Carlo data separately.

A. Percolation thresholds

1. Transfer-matrix results

The data analysis was performed on the basis of the
scaled gap

Xh�p,L� 	
�L ln��0/�1�

2�
, �3�

where � is the geometric factor defined as the ratio between
the lattice unit in which the finite size L is expressed, and the
thickness of the layer added to the lattice by a transfer-matrix
operation. According to finite-size scaling, the scaled gap

behaves, near the percolation threshold pc, as

Xh�p,L� = Xh + a�p − pc�L2−Xt + bL2−Xt2 + ¯ , �4�

where a and b are model-dependent parameters. It follows
from the definition of pc�L� as the solution of the equation

Xh„pc�L�,L… = Xh �5�

and from Eq. �4� that

pc�L� 
 pc + cLXt−Xt2 �6�

with c=−b /a. Since Xt−Xt2=−11 /4, the finite-size estimates
pc�L� should converge rapidly to pc. In fact, the numerical
data allow independent fitting of the exponent Xt−Xt2 and
thus provide an independent confirmation of its value −11 /4.
On this basis one can, for instance, rule out a leading correc-
tion with exponent −7 /4, such as would be generated by a
hypothetical integer dimension X=3. Assuming Xt2=4, im-
proved convergence of the Xh estimates is obtained by iter-
ated power-law fitting as described in Ref. �13�. After a first
fitting step with exponent −11 /4, the next iteration step
yielded, in most cases, an exponent with approximately the
same value, which suggests that Eq. �4� should be replaced
by

Xh�p,L� = Xh + a�p − pc�L2−Xt + �b + d ln L�L2−Xt2 + ¯ .

�7�

The appearance of such logarithmic terms is consistent with
renormalization theory for scaling relations involving integer
exponents �25�. Final estimates for the percolation threshold
were obtained from another power-law iteration step. These
results are shown in Table II, together with error estimates in
the last decimal place.

Error estimates of the extrapolated results require consid-
erable attention. While subsequent iteration steps eliminate
successive corrections, the remaining corrections are, in prin-
ciple, unknown. Fortunately, the apparent convergence of the
fits indicates that they decay rapidly, i.e., with rather large
and negative exponents of L. The error estimates can be
based on the differences between the results from the last
iteration step for a few of the largest available system sizes.
The rapid decrease of these differences with increasing L
suggests that the error of the extrapolated result is of the
same order as the differences for the largest L values. How-
ever, it is obvious that a single estimate of this type is not
very reliable, and one should search for additional evidence.
First, one can vary the fitting procedure; for instance, one
can fix the correction exponent at −11 /4 in the second or the
third iteration step, or treat it as a free parameter. Another
variation is to use, in the second iteration step, a fit of the
form given by Eq. �7�. These procedures yielded consistent
results, and also provide independent data on the accuracy of
the extrapolations. Furthermore, the amplitude of the correc-
tion term as evaluated in the last iteration step should behave
sufficiently regularly as a function of L. If not, the differ-
ences in the last iteration step are not a reliable basis for the
error estimation. When these conditions were satisfied, we
took the error estimate equal to a few times the typical dif-
ference between the results for the largest two systems. To

y

x

z

FIG. 1. Diced lattice �full lines� and its dual, the kagome lattice
�thin lines�. The three main axes are labeled x, y, and z.
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provide some actual information about the apparent conver-
gence of the percolation thresholds, we list the largest-L dif-
ferences of the finite-size estimates of the original data, and
of the first, second, and third iteration steps, for the case of
the site-percolation problem on the square lattice, with trans-
fer parallel to the edges. While these differences depend on
the fit procedure, they typically amount to 2�10−5, 10−6,
10−7, and less than 10−8 respectively. Furthermore, the am-
plitude of the last power-law step appears to tend smoothly
to a constant and gives no sign of, for instance, an extremum
as a function of L.

2. Monte Carlo results

The numerical results for the wrapping probability P de-
fined in Sec. II B were fitted, using the least-squares crite-
rion, by means of the finite-size scaling formula

P�p,L� = Pc + a1�p − pc�Lyt + a2�p − pc�2L2yt + b1Lyi

+ b2Lyi−1 + c�p − pc�Lyt+yi, �8�

where yt=2−Xt=3 /4 is the temperature exponent and yi=2
−Xt2=−2 is the irrelevant exponent �6� describing the correc-
tions to scaling.

We simulated the bond-percolation model on the triangu-
lar lattice right at the exactly known critical point for 15
values of L in the range 4�L�512. The number of samples
is about 1�1010 for system sizes L�256, and 2�109 for
L=512. The wrapping probability P was fitted by Eq. �8�,
excluding the p-dependent terms. We obtained Pc
=0.683 947�3�, in good agreement with the exact result
0.683 946 586… �22�.

For the diced lattice, the asymptotic critical wrapping
probability was fixed at the exact value. The P�p ,L� values
appear to be well described by Eq. �8� for system sizes not
smaller than the minimum size Lmin=16. Satisfactory fits �as
judged from the �2 criterion� could also be obtained for
smaller values of Lmin=16 when additional corrections
were included with exponents yi−2 and yi−3. These fits are
quite stable with respect to variation of Lmin, and yield
the site-percolation threshold of the diced lattice as
pc=0.585 046 27�6�.

Also for bond percolation on the square lattice with
nearest- and next-nearest-neighbor bonds we fitted the
P�p ,L� data by Eq. �8�, but with the wrapping probability
fixed at Pc=0.690 473 725. . . �22,23�. Satisfactory fits were
obtained for L�6, and yield the bond-percolation threshold
as pc=0.250 368 34�6�. The estimates for pc are included in
Table II.

The estimation of the uncertainty margin in pc is rela-
tively straightforward. The Monte Carlo runs are divided in
2000 subruns, and the error in the average of a run follows
from the standard deviation of the subrun averages. The mul-
tivariate analysis that determines pc thus also produces the
statistical error in this quantity. However, the actual error is
still subject to the effects of correction terms not included in
Eq. �8�.

Such additional correction terms decay rapidly with the
system size, so that the finite-size cutoff parameter Lmin is
reasonably well determined by the Lmin dependence of the
residual �2 of the fits. This finite-size cutoff parameter natu-
rally depends on the number of finite-size corrections in-
cluded. Thus many fits were made to determine each pc,

TABLE II. Summary of percolation thresholds of some two-dimensional lattices. The symbol z is the
coordination number; pc

bond and pc
site represent the critical bond- and site-occupation probabilities, respec-

tively. Errors in the last decimal place are given in parentheses. The value 0 is given in those cases where the
percolation threshold is exactly known �2�. The remaining entries were obtained from the literature as
indicated by the reference listed, or by the present numerical analyses, which use Monte Carlo simulations �as
indicated by MC in the source column� or transfer-matrix calculations �as indicated by TM�. The bond
percolation threshold for the diced lattice follows from a duality �d� transformation of the kagome lattice
model, and therefore did not require separate calculations. Similarly, the entry for the site-percolation thresh-
old for the eight-neighbor square lattice follows from that for the matching �m� lattice, i.e., the entry for the
four-neighbor model.

Lattice z pc
bond Source pc

site Source

Triangular 6 0.3472964…�0� Exact 0.5�0� Exact

Honeycomb 3 0.6527036…�0� Exact 0.6970402�1� TM

0.697043�3� �7�
0.69704024�4� �26�

Kagome 4 0.52440499�2� TM 0.6527036…�0� Exact

0.5244053�3� �7�
0.52440503�5� MC

Diced 3,6 0.47559501�2� TM,d 0.58504627�6� MC

Square 4 0.5�0� Exact 0.59274605�3� TM

0.59274603�9� �27�
0.59274606�5� MC

Square 8 0.250369�3� TM 0.40725395�3� TM,m

0.25036834�6� MC
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varying the number of correction terms in the fit formula,
and varying the minimum system size below which the
finite-size data were excluded. The errors quoted are such
that the margins include all one-standard-deviation lower and
upper bounds of several different fits, using different fit for-
mulas as well as a range of different acceptable values of
Lmin for each fit formula.

B. Corrections to scaling

The analysis of the finite-size data to determine the per-
colation thresholds in Sec. III A 1 indicated that there are
corrections described by an irrelevant scaling dimension Xt2
close to the value 4 predicted by the Coulomb gas analysis
�6� and the Kac formula �28–30�. However, the analysis also
suggested that corrections governed by this exponent contain
a logarithmic correction factor. The models for which the
percolation threshold is exactly known, such as the bond-
percolation model on the square lattice and the site-
percolation model on the triangular lattice, allow a study of
the finite-size dependence of the scaled gap X�pc ,L� at the
exact critical point. In that case the corrections are due only
to the irrelevant fields, and additional errors due to the un-
certainty of the percolation threshold are eliminated. Analy-
sis of the scaled gap will purportedly reveal the nature of the
corrections associated with the leading irrelevant exponent.
In order to focus more precisely on possible logarithmic
terms, we defined the model-dependent quantity C�L� as

C�L� 	 „Xh�pc,L� − Xh…L
2, �9�

which serves as an estimate of the amplitude of the finite-size
correction term in Xh�pc ,L� if a logarithmic term is absent.
For a few models with exactly known percolation thresholds,
we calculated finite-size data for C�L� and applied a fit of the
form

C�L� � C + A ln L + BL−r. �10�

First the parameters C and A were solved from two consecu-
tive values of C�L�, with the amplitude B set to zero. The
third term, which is treated as a perturbation, is then taken
into account in the second step by means of an iterated
power-law fit as described in Ref. �13�. This approach led to
a series of apparently well-convergent estimates of the con-
stant C and the amplitude A. These are shown in Table III.

This analysis was unable to yield good estimates of the
exponent r, which indicates that there exist further correction

terms, in addition to those listed in Eq. �10�. However, the
data were insufficient to obtain more quantitative informa-
tion. The difference between the two entries for the ampli-
tude A for the square lattice is, at least approximately, equal
to 2. This factor may be attributed to the difference of a
factor �2 in the length units of the finite size L for the two
cases �an edge or a diagonal of the square lattice�. This
would suggest that the amplitude A of the logarithmic term
is, unlike the amplitude C, independent of the orientation of
the finite direction of the square lattice in the cylindrical
geometry.

IV. CONCLUSION

We obtained numerical results for the percolation thresh-
olds of several two-dimensional models. The results are, as
far as they overlap with those in the literature, generally
consistent with existing results, and the error margins are
somewhat reduced. Although our result for the bond-
percolation threshold of the kagome lattice model lies re-
markably close to an approximate result given by Scullard
and Ziff �9�, the difference is quite significant, in agreement
with the conclusions of these authors �9�.

In our numerical analysis of the transfer-matrix data, we
made use of the universality hypothesis, i.e., in all cases we
assumed the validity of the exact results for the scaling di-
mensions of the percolation models in two dimensions �6�.
However, we are able to support this assumption consider-
ably. In addition to Eq. �4�, we may use “phenomenological
renormalization” �31� to determine the critical points, so that
we no longer make use of prior knowledge of Xh=5 /48. This
approach yields the same critical points, within error margins
that are a few times larger than those listed in Table II. The
estimates of the scaled gaps produced by the phenomeno-
logical renormalization approach match the value 5 /48 up to
several decimal places, and give no sign of deviations from
universality.

The analysis of the corrections to scaling is in agreement
with the irrelevant scaling dimension Xt2=4, but showed the
existence of a contribution with a logarithmic factor in the
transfer-matrix data for the scaled magnetic gap. The ampli-
tude of this contribution is strongly model dependent, and
possibly vanishes for the triangular site-percolation model.
This raises the question in what sense the latter model could
be special. It may be argued that it is the model with the
highest symmetry investigated here; it has a � /3 rotational

TABLE III. Results of the analysis of the corrections to scaling in the quantity Xh�L� for a few exactly
solved bond -or site-percolation models. Transfer directions are given with respect to a set of lattice edges
and specify the orientation of the lattice with respect to the axis of the cylinder on which the model is
wrapped. Results are shown for the amplitudes C and A of the L−2 and the L−2 ln L terms, respectively.

Lattice Type Direction C A

Square Bond Parallel 0.0306�1� −0.0054�1�
Square Bond Diagonal −0.0205�1� −0.0027�1�
Triangular Bond Perpendicular −0.0037�1� −0.0036�1�
Triangular Site Perpendicular 0.0195�1� 0.0000�1�
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symmetry as well as a form of self-dual symmetry because of
the matching-lattice argument �2�. A corresponding logarith-
mic term could possibly also be present in the quantity
P�p ,L�, but we were unable to confirm its existence from our
Monte Carlo data.

Furthermore, we recall that the bond-percolation model
with crossing bonds �eight neighbors� lives in an extended
space of connectivities because the condition of well-
nestedness �13� no longer applies. Accordingly, one may pos-
tulate that these non-well-nested connectivities introduce an-
other irrelevant field, and that additional corrections
described by a new scaling dimension would appear. How-
ever, we did not find any clear sign of such new corrections.

Finally we remark that the present logarithmic terms are
unrelated to those reported by Adler and Privman �32�,
which apply to some leading singularities. Logarithmic fac-

tors naturally appear in quantities involving the mean cluster
size. The free energy of the random cluster model also serves
as the generating function of percolation properties. The
mean cluster size can be obtained by differentiation of the
random-cluster partition sum or the free energy to the num-
ber of Potts states q. The q dependence of the critical expo-
nents then provides a mechanism that introduces such loga-
rithmic factors in some critical singularities.
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