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In this work, the dynamic behavior of the interfaces in both the standard and random driven lattice gas
models �DLG and RDLG, respectively� is investigated via numerical Monte Carlo simulations in two dimen-
sions. These models consider a lattice gas of density �=1 /2 with nearest-neighbor attractive interactions
between particles under the influence of an external driven field applied along one fixed direction in the case
of the DLG model, and a randomly varying direction in the case of the RDLG model. The systems are also in
contact with a reservoir at temperature T. Those systems undergo a second-order nonequilibrium phase tran-
sition between an ordered state characterized by high-density strips crossing the sample along the driving field,
and a quasilattice gas disordered state. For T�Tc, the average interface width of the strips �W� was measured
as a function of the lattice size and the anisotropic shape factor. It was found that the saturation value Wsat

2 only
depends on the lattice size parallel to the external field axis Ly and exhibits two distinct regimes: Wsat

2

� ln Ly for low temperatures, that crosses over to Wsat
2 �Ly

2�I near the critical zone, �I=1 /2 being the roughness
exponent of the interface. By using the relationship �I=1 / �1+�I�, the anisotropic exponent for the interface of
the DLG model was estimated, giving �I�1, in agreement with the computed value for anisotropic bulk
exponent �B in a recently proposed theoretical approach. At the crossover region between both regimes, we
observed indications of bulk criticality. The time evolution of W at Tc was also monitored and shows two
growing stages: first one observes that W� ln t for several decades, and in the following times one has W
� t�I, where �I is the dynamic exponent of the interface width. By using this value we estimated the dynamic
critical exponent of the correlation length in the perpendicular direction to the external field, giving z�

I �4,
which is consistent with the dynamic exponent of the bulk critical transition z�

B in both theoretical approaches
developed for the standard model. A similar scenario was also observed in the RDLG model, suggesting that
both models may belong to the same universality class.
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I. INTRODUCTION

The study of far-from-equilibrium systems has attracted
increasing interest in recent years �1–3�, mainly due to the
lack of theoretical frameworks, unlike their equilibrium
counterparts. However, useful approaches to the understand-
ing of these systems have been developed, such as, for ex-
ample, the analysis of simple models by means of different
techniques, such as field-theoretical methods, numerical
solving of mean-field equations, Monte Carlo simulations,
dynamic scaling, etc. By using these procedures it is ex-
pected that one will establish and build more general meth-
ods to deal with these complex systems. Among the simple
models studied, we shall focus our attention on the driven
lattice gas model �DLG� introduced by Katz, Lebowitz, and
Spohn �4�. The study of the DLG model has attracted grow-
ing attention due to its interesting far-from-equilibrium be-
havior. This interacting lattice gas, driven into nonequilib-
rium steady states �NESS� by an external field, exhibits
remarkable properties such as its non-Hamiltonian nature,
the violation of the fluctuation-dissipation theorem, the oc-
currence of anisotropic critical behavior �1�, the existence of
a unique relevant length in the anisotropic pattern formation
at low temperatures, and the consequent self-similarity in the
system at different evolution times �5�, etc.

The bidimensional DLG model is defined on the square
lattice assuming a rectangular geometry �Lx�Ly� and using
periodic boundary conditions. Lattice configurations are de-

fined by means of occupation numbers ni,j =1 or 0 for each
site of coordinates �i , j� depending on whether the site is
occupied or empty, respectively. By assuming nearest-
neighbor �NN� attractive interactions between particles of the
gas �J	0� and in the absence of any driven field, the Hamil-
tonian �H� corresponds to the Ising lattice gas

H = − 4J �
�ij,i�j�	

ni,jni�,j�, �1�

where the summation runs over NN sites only. By consider-
ing a driven field E, the coupling to a thermal bath at tem-
perature T is accounted for by a modified Metropolis rate,
given by

min�1,exp��H − 
E/kbT�� , �2�

where kb is the Boltzmann constant, �H is the change in H
after the attempted particle movement, and 
= �−1,0 ,1� for
a particle hopping �against, orthogonally, along� the field.

It is well known that for high enough temperatures the
DLG model exhibits a lattice-gas-like disordered state. How-
ever, at low temperatures anisotropic NESS emerge. This
ordered phase is characterized by the presence of strips of
high particle density crossing the lattice in the direction par-
allel to the external field. So, for half-density of particles and
at a well-defined critical bulk temperature Tc, the DLG
model undergoes a second-order phase transition �1�. Exten-
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sive Monte Carlo simulations have shown that Tc�1.41Tc
°,

where Tc
° =2.269J /kb is the Onsager critical temperature of

the Ising model �1�.
The issue of the universality class of the DLG model has

become the subject of a longstanding debate. On the one
hand, the first nonlinear Langevin equation for this model
was developed by Janssen et al., where it is argued that the
main nonlinearity is the current term generated by the exter-
nal field �6�. By working out this equation a set of critical
exponents was calculated and a new universality class was
found, which is different from the universality class of the
Ising model. The values of the critical exponents were earlier
confirmed by several numerical simulations �7�. Later on,
another Langevin equation was developed for a variant of the
DLG model, called random DLG model �RDLG�. In this
model, the driving field is still applied along one axis as in
the DLG model, but its direction changes randomly causing
the net particle current, which characterizes the DLG model,
to vanish. By analyzing this system it was found that its
critical behavior falls outside of both the Ising and the DLG
universality classes �8�. On the other hand, Garrido et al. �9�
have revisited the subject by using a different approach and
found a new Langevin equation for the DLG model, in which
the main nonequilibrium effect is due to the underlying an-
isotropy. This equation was already known because, in the
limit of infinite driving fields �the case that commonly is
studied�, it describes the behavior of the RDLG model. Ac-
cording to their results, Garrido et al. have concluded that
both DLG and RDLG models belong to the same universal-
ity class in the limit of an infinite driving field. These results
have stimulated interesting theoretical discussions �10,11�,
and recent numerical results �12,13� agree with the univer-
sality class of the Langevin equation derived from this last
approach. However, subsequent numerical simulations and
theoretical work may suggest that the DLG model belongs to
the class of the Langevin equation earlier developed by Jan-
ssen et al. �14� and that the RDLG model has a universality
class of its own �15�.

Besides the bulk phase transition, another interesting fea-
ture of the DLG model is the interfacial behavior and the
possible existence of a roughening transition. This basically
consists in the interface change from flat �or smooth� to
rough when the temperature increases �16�. Originally stud-
ied in crystal growth models, it has been theoretically char-
acterized by a Hamiltonian proportional to the interface sur-
face �the proportionality constant being the stiffness or
surface tension�, plus a periodic potential that represents the
discrete nature of the crystal surface height. It has been
found that the transition can be mapped to the Kosterlitz and
Thouless transition �17� at a nontrivial roughening critical
temperature, TR, where at low temperatures �T�TR�, the
saturated statistical width Wsat

2 �see Sec. II� is independent of
the linear system size �L� parallel to it. Furthermore, for T
�TR one has Wsat

2 � ln L. The existence of the roughening
transition has been confirmed in several simulations of solid-
on-solid �SOS� models, by measuring observables such as
the height-height correlation function, the difference of con-
centration in the interface layers, the fluctuations in the num-
ber of particles belonging to the interface �18�, etc., and in
experimental work concerning different metallic interfaces
�17�.

In the equilibrium Ising model, the existence of a rough-
ening transition at a nontrivial TR depends on the system
dimension. So, for d=2 one has TR=0 and for d=3 one has
TR�0.55Tc �Tc is the critical temperature of the bulk phase
transition� �19�. Furthermore, in the rough phase �T	TR�,
the structure factor G�q�� �i.e., the Fourier transform of the
height-height correlation function �h�x��h�0�	− �h	2, with h�x��
being the interface height given at the position x��, behaves as
G�q���1 /q�2 in the long-wavelength limit, q� being the d−1
dimensional wave vector of the capillary waves �20�. This
leads to a divergence in Wsat

2 for the spatial dimension d

3. In particular, for the bidimensional Ising model it has
been found that Wsat

2 
Lp, with p=1 �21�.
For the case of the DLG model in d=2, the investigations

have been directed to study the effects of the external drive
on this kind of transition. Regrettably, neither the theoretical
approaches �22,23� nor numerical simulations arrived at de-
finitive results. The simulations performed by Leung et al. on
the DLG model at low temperatures and several values of the
external drive E have shown that the value of the exponent p
is consistent with p→0 when E increases, indicating the
suppression of roughness, in contrast to the equilibrium Ising
model �23�. Measurements of the structure factor of the
height-height correlations are consistent with this picture, re-
vealing that the singular behavior of G�q�� is less severe than
in the Ising model, although these data are affected by finite-
size effects and it is no longer possible to give a more quan-
titative conclusion �23�. Subsequently, new measurements of
G�q�� performed by Leung et al. using larger square lattices
�the lattice size was up to 600 lattice units� showed that
G�q���1 /q�2−
, 
=1.33, for small q� and both E=2 and E
=50 �24� at T�2.05J /kb�Tc. If this behavior persists in the
q� →0 limit, it would be consistent with a severe roughness
suppression, due to an enhancement of the surface tension on
large length scales �24�. In the same work, Leung et al. also
analyzed the interface behavior of the RDLG model in lat-
tices of sizes up to 800 lattice units and at the same tempera-
ture. They found a less clear behavior than in the DLG
model. In spite of the large size used and the noisy data near
q� =0, Leung et al. have concluded that G�q�� crosses over
from G�q���1 /q to G�q���q−x with x�1 in the limit q� →0,
suggesting again the suppression of roughness �24�. From the
theoretical point of view, some progress has been made only
in the RDLG model, since this model has no current term in
the equation of motion. It has been found that Wsat

2 � ln L,
also consistent with p=0 �25�. However, this dependence is
not consistent with the simulation results for the short-
wavelength limit, because a logarithmic increase of the width
would correspond to a behavior of the type G�q���1 /q in the
q→0 limit.

In view of the outlined controversies and the lack of some
conclusive answers to existing open questions, the aim of
this paper is to provide an alternative evaluation of the dy-
namic critical exponents that describe the second-order phase
transition of the DLG model, complementary to the one per-
formed in Ref. �13�, and to investigate the possible existence
of a roughening transition. The attention will be focused on
the properties of the interface between the high particle den-
sity strips and the gas phase, monitoring the behavior of
observables such as the interface width, and the bulk and
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interface energies together with their fluctuations. Our study
is based on extensive numerical Monte Carlo simulations
and the interpretation of the obtained data is achieved by
using dynamic scaling theories. We also performed simula-
tions of the RDLG model in order to compare its behavior
with that of the DLG model.

This paper is organized as follows: in Sec. II the theoret-
ical background is summarized, in Sec. III we give a brief
description of the model, in Sec. IV we present and discuss
our results, and finally, in Sec. V our conclusions are stated.

II. DYNAMIC SCALING APPROACH FOR THE
INTERFACE ROUGHNESS OF THE STRIPS

In order to characterize the dynamic evolution of the in-
terfaces in the DLG model, we first measure the average
interface position �see Fig. 1�, given by

�h�t�	 =
1

NI
�
j=1

NI

h�j,t� , �3�

where h�j , t� is the distance measured from the center of the
strip up to the interface at the position of the jth column at
time t, and NI is the total number of particles at the interface.
Subsequently, the interface width or roughness is defined as
the rms of the mean interface position

W�Ly,t� = ��h�t�2	 − �h�t�	2. �4�

Notice that the summation in both quantities runs over all the
particles of the interface because in general we have NI
�Ly �i.e., the number of columns given by the lattice size�
and in consequence h�j , t� is not a single-valued function of
the j coordinate due to the presence of overhangs and/or
bubbles. In the simulations we will compute W as a function
of time, at different temperatures and using several lattice
sizes, in order to study the change of roughness due to the
evaporation or condensation of particles at the strip surfaces.

Due to the selected initial condition, a single strip at T=0,
the interface has zero width at t=0.

In the DLG model, the properties and even the existence
of interfaces depend on the temperature T. In fact, for T
�Tc, the system is in the disordered phase and there are no
interfaces at all. However, for T�Tc, interfaces are present
due to the striplike patterns characteristic of the ordered
phase �see Fig. 2�. If the initial configuration of the system
consists of a single strip placed at the center of the lattice
with no holes and two flat interfaces �see Sec. III� and it is
taken to evolve at a temperature T	0, the particles at the
interfaces may leave the strip diffusing into the gaslike
phase. The inverse process also takes place, and some par-
ticles of the gaslike phase may stick again at the interfaces.
Moreover, there are two diffusion processes at the interface:
one is driven by the external field, which sets a current along
the interface, while the other corresponds to the diffusion of
particles in the direction perpendicular to the driving field
toward the bulk of the strip. These processes change the
interface width W �Eq. �4��. These changes in W come from

FIG. 1. Sketch of a strip of the DLG model �white region�
showing the relevant quantities used for the calculations: the dis-
tance from the center of the strip �indicated by the dashed line� up
to the interface at the position of the jth column at time t given by
h�j , t�; the average position of the interface at time t, �h�t�	 �indi-
cated by the dot-dashed line� �Eq. �3��; and the average width of the
interface at time t, W�t�, given by Eq. �4�. The gray regions repre-
sent the gas phase, and the external field is applied along the verti-
cal axis.

(a) (b) (c)

(d) (e) (f)

FIG. 2. Snapshot configurations corresponding to the IDLG
model. �a� shows a single strip containing all particles, correspond-
ing to the ground state configuration �T=0� that is used as an initial
condition in all simulations reported in this work, i.e., at t=0. �b�–
�f� show the subsequent time evolution of the strip when the system
is at T=2.6�Tc. The lattice size is Lx=100, Ly =50 �the field is
applied along the horizontal axis�. Particles are shown in black and
empty sites are left in white. Empty squares are used to show the
interfaces of the strip. From left to right, the corresponding evolu-
tion times at which the snapshots were taken are the following: �a�
t=0, �b� t=100, �c� t=1024, �d� t=10 000, �e� t=100 489, and �f�
t=106, measured in Monte Carlo time steps �MCS�.
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both the intrinsic width of the interface, Win which is of the
order of the correlation width of the bulk correlation length,
and the thermal fluctuations of the local mean position of the
interface, i.e., of the capillary waves �23�. If the system is in
the rough phase and far from the critical point, T�Tc, the
intrinsic width is negligible and the interface evolution is
governed by the fluctuations of the capillary waves. On the
other hand, if T�Tc, the bulk correlation length becomes
relevant, the intrinsic width is no longer negligible, and W
�Win.

In order to describe the dynamic scaling properties of the
interfaces of the strips of the DLG model, we used the scal-
ing Ansatz earlier proposed by Family and Vicsek �16,26�.
So, it is assumed that the time evolution of roughness obeys
the following scaling law:

W�Ly,t� 
 Ly
�I f� t

Ly
z

I� , �5�

where f�u��u�I for u�1 and f�u�→constant for u�1, with
z


I=�I /�I. The limit u→1 sets the crossover time tx
Ly
z

I

between both regimes, u�1 and u�1, respectively. Further-
more, �I, �I, and z


I are defined as the roughness, growth, and
dynamic exponents, respectively. We used the subscript or
superscript “I” in order to distinguish these exponents from
those critical exponents of the second-order phase transition
of the DLG model. The dynamic exponent z


I describes the
time evolution of the interface correlation length along the

direction parallel to the interface according to �

I� t1/z


I
�16�.

Thus, for a finite sample of size Ly and t→� the correlation
length remains finite ��


I�Ly� and the interface width reaches
a saturation value that depends on the system size as
Wsat�Ly�
Ly

�I. Since we want to relate the interface behavior
with the critical behavior of the system, we expect that Eq.
�5� will hold for temperatures near the critical point �T
�Tc�.

In order to adapt the dynamic scaling of Family and Vic-
sek �Eq. �5�� to the DLG model, we have to recall that the
system is intrinsically anisotropic and, consequently, the ex-
ponents entering into Eq. �5� must be consistent with that
anisotropy. As we will see below, the width of the interface
saturates for T�Tc due to finite-size effects. So, in the limit
u�1, Eq. �5� becomes

Wsat�T� 
 Ly
�I, T � Tc, �6�

where �I�T� is the roughness exponent, and Ly is the lattice
size along the direction of the external field.

For T=Tc and in the Ly→� limit, the interface correlation
length in the perpendicular direction of the field axis ��

I al-
ways diverges with time as a power law with dynamic expo-
nent z�

I �16�. As we will see later, the dynamic evolution of
W at T=Tc in large systems �see the next section� shows two
different growing regimes �see Fig. 14�. In the first regime W
diverges logarithmically, i.e., W� ln t, while at later times W
diverges as a power law, W� t�I. So, according to the stan-
dard dynamic scaling theory �30�, we have

W 
 ��
I � t1/z�

I
, T � Tc. �7�

Since we are working with T�Tc, the major contribution to
W is due to the intrinsic width, so Win
��

B 
��
I , where ��

B is
the bulk correlation length in the perpendicular direction
�23�. Comparing Eqs. �5� and �7� for the limit u�1, it fol-
lows that �I=1 /z�

I .
In the range 0�T�Tc, the occurrence of a crossover time

tx �see Eq. �5�� is justified by the fact that the correlation
length in the parallel direction to the applied field ��


I�, cal-
culated from the height-height correlation function
�h�x��h�0�	− �h	2, grows, and since the system size is finite in
the Ly direction, the saturation effects are observed when �


I


Ly for t
 tx. Recalling that �

I� t1/z


I
we have that

�

I�tx� 
 Ly � tx

1/z

I

. �8�

Consequently, from the relation z

I=�I /�I that holds for the

Family-Viscek dynamic Ansatz �26�, we have

z

I =

�I

�I
= �Iz�

I . �9�

From the scaling theory developed for the DLG model �1�, it
is well known that the dynamic exponents governing the
bulk critical behavior, z


B and z�
B , are related through the an-

isotropic exponent �B as follows �1�:

z

B = z�

B /�1 + �B� . �10�

We will relate these last two equations by assuming that the
interface exhibits the same anisotropic behavior. So, the an-
isotropic exponent for the interface can be defined in the
following way:

�I =
1

1 + �I
. �11�

The above assumptions were based on previous studies of
equilibrium models where a conservation law is present
�model B�, and also in the DLG model. In fact, the bulk
modes are slow and couple to the interface modes affecting
its behavior �27,28�. In the DLG model, it has been found
that the bulk modes are also slow and decay slower than the
interface modes, suggesting that they take part in the inter-
facial behavior �22,29�. By virtue of these findings, it is ex-
pectable that the anisotropy effects induced by the driving
field will also be present on the interface, so that �B=�I. In
this way, by measuring both z�

I and �I it would be possible
to determine the critical dynamic exponent z


I by using Eq.
�9�. Furthermore, we can also compute the anisotropic expo-
nent �I by using the determined value of �I. It is worthwhile
remarking that �B�1 ��B=2� has been predicted theoreti-
cally by the alternative coarse-grained description of the
model developed by Garrido et al. �9�, �by the coarse-grained
field theoretical equation developed by Janssen et al. �6��.
Consequently, the measurement of the interface properties of
the DLG model close to criticality is expected to be helpful
in clarifying the issue of the universality class of the DLG
model.
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III. SIMULATION METHOD

The DLG and RDLG models are simulated in square lat-
tices of size Lx�Ly, where Lx�y� is the lattice length in the
perpendicular �parallel� direction to the applied drive. In or-
der to investigate the behavior of the interface at low tem-
peratures, simulations were performed by using lattices of
sizes within the ranges 62
Lx
284 and 20
Ly 
360 lat-
tice units �LU�, keeping the shape factor S=Ly

��/�
 /Lx

=0.0786 fixed. For setting this value we employed the criti-
cal exponents determined by Garrido et al. �9�, i.e., ��

�0.63 and �
 �1.22. Furthermore, we also performed a sec-
ond set of simulations keeping Ly =20 LU fixed but changing
Lx in the range 40
Lx
4000, in order to study the depen-
dence of the interface behavior on Lx. Notice that S is not
fixed at all for these lattices.

In the case of simulations at the critical temperature, we
employed a larger lattice with Lx=346 and Ly =524 LU in
order to avoid the early occurrence of finite-size effects. In
all cases the particle density is fixed at �0=1 /2, so that the
DLG model exhibits a second-order phase transition �1�. The
magnitude of the driving field is kept constant at E=50J for
all simulations. This value implies, for practical purposes,
that we are considering the E→� limit �see Eq. �2��. So, the
studied models become the infinite field DLG model �IDLG�
and the infinite random field �IRDLG� model. The Monte
Carlo time step �MCS� is defined such as all sites �Lx�Ly� of
the lattice are selected once �on the average� in order to
attempt the displacement of a particle to an empty neighbor
site. The temperature is measured in units of J /kb, kb being
the Boltzmann constant. Under these conditions, the bulk
critical temperatures of both models have been estimated in
previous work �1,12,13�, namely, Tc�IDLG��3.20 and
Tc�IRDLG��3.16. We monitored the time evolution of W�t�
�Eq. �4�� over many realizations of the experiment, typically
100–3000 realizations according to the temperature and lat-
tice sizes.

The initial condition used in order to start the simulations
was the ground state configuration �GSC�, which is the con-
figuration that the system has at T=0. It consists of a single
strip, free of defects and placed at the center of the lattice
�see Fig. 2�a��. Subsequently, the time evolution of the inter-
face is followed, measuring its position h with respect to the
center of the lattice �Eq. �3�� and its width W �Eq. �4�� by
identifying the particles belonging to the interface �this pro-
cess will be described below�. From the time evolution of W
we measure the saturation value Wsat by averaging over a
time interval long after the crossover time given by Eq. �8�.

The identification of the interface is performed by em-
ploying the algorithm developed in Ref. �31� for diffusion
fronts. Let us now briefly explain how the algorithm works.
By taking as an example the snapshot of the system exhib-
ited in Fig. 2, we divide the lattice in �horizontal� rows, and
suppose that we want to measure the position of the interface
that is between the �Lx /2+1�th and �Lx�th rows �recall that in
Fig. 2 Lx runs along the vertical axis�. Then, the interface
identification is performed through a process of three stages.
In the first stage, we impose that all sites in the �Lx /2+1�th

row are occupied with particles,1 and are labeled with an
integer number. Then, the lattice is swept sequentially from
the �Lx /2+1�th row to the �Lx�th row, and by applying the
standard Hoshen-Kopelman algorithm �HK� �30� to nearest-
neighbor occupied sites the largest cluster, which corre-
sponds to the strip running along the Ly direction can be
identified. In the second stage the HK algorithm is repeated
but in the opposite way, from the �Lx�th to the �Lx /2+1�th
rows. In this case, the largest cluster of empty sites, linked by
both nearest- and next-nearest-neighboring sites, is deter-
mined.

At this point, the portion of the lattice we have consid-
ered, of size Lx /2�Ly has two clusters, and the interface can
easily be defined as those sites of the largest cluster of occu-
pied sites having at least a neighbor belonging to the largest
cluster of empty sites. This is done in the third stage. Once
the overall identification process is finished, the interface
height, measured from Lx /2, and its width are calculated.
One important feature of this method is that it takes into
account the bubbles and overhangs �they can be observed in
the snapshots of Fig. 2� responsible for the intrinsic width of
the interface, while previous studies neglect them by apply-
ing a strong coarsening of the interface, smoothing it by
spreading the local density on neighboring sites �23,24�.

IV. RESULTS AND DISCUSSION

The protocol used to register the time evolution of the
interface width�s� is described first. All simulations were per-
formed in the following way: we started the simulations from
the GSC configuration and then we let the system evolve at a
temperature T�Tc for different lattice sizes Lx, Ly that are
specified to each case. Then we monitored the time evolution
of the roughness W of each interface, stopping the simula-
tions when either the strip no longer percolated along the
direction parallel to the driving field, and/or more than one
strip were detected. Then a new simulation was performed.

In order to test the algorithm used to determine the inter-
face position, we simulated the model at E=0, i.e., the Ising
model with conserved �i.e., Kawasaki� dynamics. We fixed
T=1 and used square lattices in the range 20
Lx=Ly =L

100. As was mentioned in the Introduction, theoretical ar-
guments performed by Ben Abraham et al. �21� and numeri-
cally confirmed by Leung �22� state that the saturation width
behaves as Wsat

2 
Lp, with p=1. Figure 3 shows a plot of the
saturation width Wsat

2 versus L. Our best least squares fit of
the obtained data gives p=1.07�5�, which is in good agree-
ment with the already mentioned expectation. This result al-
lows us to show that the algorithm is reliable for our pur-
poses, since the interface can be well characterized.

Now we focus our attention to the DLG model. In Figs.
2�a�–2�f� a typical time evolution of the system from the
GSC initial condition is shown. As we can observe in the
figures, the strip does not move appreciably with respect to
the center of the lattice, so cluster fluctuations due to the
transversal periodic boundary conditions are irrelevant. This

1If necessary, all empty sites on this row will become occupied.
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prevents miscalculations of the interface position. Conse-
quently, the interface width undergoes an initial increase and
eventually reaches a saturation value at long enough times.
As expected, the saturation value depends on the lattice size,
as shown in Fig. 4.

After determining the saturation value of the interface
width at different temperatures and using lattices of different
sizes, we fitted the data of Wsat

2 with the aid of the following
Ansatz:

Wsat
2 = A1 ln Ly + A2Ly

2�I, �12�

where the coefficients Ai�s are temperature dependent, and
the roughness exponent is taken as �I=1 /3 or �I=1 /2, ac-
cording to the values of �B determined by Janssen et al. or
by Garrido et al., respectively �see Eq. �11�, and the para-
graph below it�. The plots of the Wsat data and the corre-
sponding fits using Equation �12� are shown in Fig. 5�a� for
the case �I=1 /2. Figure 5�a� shows that the Ansatz �Eq.
�12�� fits the saturation values at all temperatures, although
the fit is clearly better for lower temperatures, e.g., T

2.96. This feature is also present if we take �I=1 /3 as a
roughness exponent. Furthermore, Fig. 5�b� shows that the
saturated width does not depend on either the perpendicular
lattice size Lx or the shape factor S, since the values of Wsat
obtained by keeping S fixed are also included in the plot, and
practically no difference is noticed from those corresponding

to the nonfixed S values. Therefore, we can conclude that our
results are not affected by any particular choice of the shape
factor. This plot also shows that the interaction between in-
terfaces is negligible since no noticeable changes in Wsat are
observed when the distance between both interfaces of the
single strip is increased due to the change of Lx by keeping
the density of particles �0=1 /2 constant.

The fitting coefficients of Eq. �12� will help us determine
which behavior �i.e., logarithmic or power law� becomes rel-
evant along the investigated temperature interval. Figure 6
shows plots of A1 and A2 as a function of T. By comparing
Figs. 6�a� and 6�b�, we can observe that in the interval
2.05
T�2.96, A1 increases monotonically assuming almost
the same value for both cases of �I. A2 is practically zero
within this regime for both cases, indicating that the logarith-
mic finite-size behavior of Wsat dominates over the power
law. On the other hand, near the bulk critical temperature
�T�3.0�, A1 still grows monotonically and then reaches a
saturation value around A1�1.75 for the case �I=1 /2, but
whereas it fluctuates with a decreasing trend if �I=1 /3 is
taken. However, A2 increases for both tested values of �,
revealing that the power-law behavior becomes relevant for
this temperature interval.

Since both regimes are clearly distinguishable, we inves-
tigated them separately. In this way, Fig. 7 shows plots of
Wsat

2 � ln Ly as obtained within the low T range.
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The obtained results show that the behavior W2
 ln Ly
holds for all temperatures reported, including T=2.05J /kb,
the working temperature used by Leung et al. in their simu-
lations �24�. This result had already been predicted theoreti-
cally by Zia et al. for the RDLG model �25�, and tested by
Leung et al. �24�. However, to the best of our knowledge,
there are neither theoretical predictions nor numerical tests
for the IDLG model that we can use for the sake of compari-
son. These results are consistent with a roughening tempera-
ture for the IDLG model such that TR�2.05.

Within the high-temperature interval, the logarithmic
growth crosses over to a power-law behavior �see the power-
law term of Eq. �12�� according to Eq. �6�. Consequently, an
effective roughness exponent �ef f can be determined for each
temperature. Figure 8 shows log-log plots of Wsat

2 versus Ly
obtained for temperatures close to Tc.

In this way, �ef f was measured for each T, and plotted as
a function of the distance to the critical temperature. Then,
we extrapolated the value of �I to Tc. Our results are dis-
played in Fig. 9. According to the trend observed in the plot,
it is expected that �ef f →1 /2 when T→Tc, since all the de-
termined values are over �I=1 /3 �lower dashed line in Fig.
9�, calculated by using �I=2 in Eq. �11�. A linear extrapola-
tion of the data gives �ef f�T=Tc�=0.4225�4�, which is close
to the value expected for �I if it is calculated by using �I

=1. However, the data �ef f can be improved if the logarith-
mic term in Eq. �12� is subtracted from Wsat

2 . By fitting the
corrected values of Wsat

2 with Eq. �6� �see the insets of Fig.
8�, we observe that all values are, again, well above �I
=1 /3 �indicated in the plot by the lower dashed line� calcu-
lated by using �I=2 �see Eq. �11��. The corrected values of
�ef f considering the coefficients A1 and A2 obtained by fitting
the data with the aid of Eq. �12� by taking �I=1 /3, are not
significantly improved with respect to the uncorrected val-
ues. In contrast, by using the coefficients obtained for �I

2.2 2.4 2.6 2.8 3.0 3.2

0.5

1.5

-0.5

A
1

αΙ=1/2
αΙ=1/3

2.2 2.4 2.6 2.8 3.0 3.2
T

0.0
0.2
0.4
0.6
0.8

A
2

(a)

(b)

FIG. 6. �a� and �b� show linear-linear plots of the coefficients A1

and A2 versus the temperature, for both cases �I=1 /3 and �I

=1 /2, as indicated in the legend. Data is obtained from the fits of
the data shown in Fig. 5 according to Eq. �12�.

32 64 128 256
L

y

1

2

3

4

5

6

7

w
sa

t2

T=2.05
T=2.30
T=2.60
T=2.80
T=2.90

FIG. 7. Linear-log plot of the saturation values of the roughness
Wsat

2 versus Ly, for very low temperatures, as indicated. The data are
fitted by the logarithmic term in Eq. �12�, indicated in the plot by
the full lines.

64 256
L

y

4

8

16

32

w
sa

t2

64 256

25

W
sa

t2 -A
1L

n
L

y

64 256

10

W
sa

t2 -A
1L

n
L

yαΙ=1/3

αΙ=1/2

FIG. 8. Log-log plots of the saturation width Wsat
2 versus Ly

corresponding to T=3.12 ���, T=3.13 ���, T=3.14 ���, and T
=3.15 ���, respectively. The insets show log-log plots of Wsat

2 cor-
rected by the logarithmic term in Eq. �12� versus Ly �the error bars
are excluded for the sake of clarity�. The upper inset shows the
corrections and power-law fits if �I=1 /3 is taken in Eq. �6�, while
the lower inset shows the same for the case �I=1 /2. In all plots the
lines are power-law fits of the data.

0.01 0.02 0.03 0.04
|T - T

c
|

0.3

0.4

0.5

α ef
f

α=1/2→∆=1

α=1/3→∆=2

0.4225(4)

FIG. 9. Plot of the effective exponent �ef f versus �T−Tc�, ob-
tained from the power-law fits of the data shown in the main plot of
Fig. 8 ���. The full line is a linear fit of the uncorrected data, whose
extrapolated ordinate is �ef f�T=Tc�=0.4225�4� as it is shown by the
arrow. The dashed lines indicate the predicted theoretical values for
�I: the upper line is the value obtained by taking �I=1, while the
lower line shows the value of �I obtained by taking �I=2. Also, the
values �ef f when Wsat

2 is corrected by the logarithmic term in Eq.
�12� are included �� stands for �I=1 /3, � stands for �I=1 /2,
respectively�.

DYNAMIC BEHAVIOR OF THE INTERFACE OF… PHYSICAL REVIEW E 78, 031132 �2008�

031132-7



=1 /2, the corrected values of �ef f are markedly improved
and lie close to �I=1 /2 �indicated in the plot by the upper
dashed line�. In view of these results, we can conclude that
�ef f approaches �I=1 /2 in the T→Tc limit. This is essential
for the clarification of the issue of the universality class of
the IDLG model. By using Eq. �11� it is possible to compute
the anisotropic exponent, which gives �I�1. Since we as-
sumed in Eq. �11� that the anisotropic relation found for the
bulk critical behavior holds also for the interfacial behavior,
we can conclude that this result is in agreement with the
value predicted by Garrido et al. on analyzing an alternative
mesoscopic equation �9�.

The behavior of Wsat
2 for T�3 can be further investigated

by studying the bulk and interface “energies,” given by Eq.
�1�, and their fluctuations, defined as

�B,I = �EB,I
2 	 − �EB,I	2, �13�

where EB,I is the bulk or interface energy �subscripts B or I,
respectively�. The obtained results are displayed in Figs.
10�a� and 10�b�, respectively.

As the temperature increases, the bulk energy �Fig. 10�a��
decreases due to the presence of holes in the bulk and exhib-
its a change in the convexity for 2.8�T�3.1, as indicated
by the arrows in the figure. This behavior is similar to that

observed in the equilibrium two-dimensional Ising model. In
contrast, the interface energy grows monotonically due to the
interface roughening.

On the other hand, Fig. 11�a� shows that for all system
sizes parallel to the interface �Ly� the fluctuations of the en-
ergy as a function of T, exhibit a peak. However, the inter-
face energy fluctuations still grow when both the system size
and temperature increase. These phenomena, together with
the �non-� convexity change in the �interface� bulk energy,
indicate that the change in the behavior of Wsat

2 with T is in
fact a crossover to the bulk critical behavior. These findings
also justify the assumption that the anisotropy of the inter-
face and bulk would be the same �Eqs. �9�–�11��.

We also performed test simulations of the IRDLG model.
In fact, Figs. 12�a� and 12�b� show plots of the saturation
width versus Ly obtained for three different temperatures and
use the same lattice sizes as in the case of the IDLG model.
These figures qualitatively show the same behavior already
observed for the IDLG model �see Fig. 5�, that is, the satu-
ration width grows logarithmically with Ly at low tempera-
tures, in agreement with the theoretical results of Zia et al.
�25� and the numerical simulations of Leung et al. �24�. Sub-
sequently, the interface width crosses over to a power-law
behavior for T�Tc.

From the fit of the data shown in Fig. 12�b�, the estimated
value of the roughness is �ef f =0.44�2�. This result is not
only in agreement with the fact that �I=1 /2 since one has
�I=1 in Eq. �11� for the IDLG model, but also validates our
scaling approach in Sec. III for the interface roughness for
the IRDLG model. However, we recognize that, in Fig.
12�b�, the data have been fitted within one decade only, be-
cause either the strip used as an initial condition no longer
percolates, or eventually it splits into more than one strip.

At this point, and before continuing with the description
of our results concerning the dynamic critical behavior of the
interface, we would like to stress that the above-summarized
results exhibit some discrepancies with those previously ob-
tained by using Monte Carlo simulations by Leung et al.
�24�. Our results showed that for both the IDLG and IRDLG
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models the roughness grows logarithmically with the longi-
tudinal size Ly at low temperatures T�Tc, W2
 ln Ly, while
near the critical point T�Tc it increases as a power law
W2�Ly

2�I. On the other hand, Leung et al. found that the
roughness is suppressed for both the DLG and RDLG mod-
els at low temperatures �T�Tc� and large lattices.2 Although
we cannot give a definitive answer to explain the origin of
these differences, we can state a few possible assumptions,
which may deserve further research in the future.

�1� The coarse grain method. In order to compute the
interface position h�j , t� �see Eq. �3��, Leung et al. consid-
ered a method of smoothing the interface by applying a
coarse graining process, which consists of the distribution of
the occupation number of each site �0 or 1� between its
neighbors, assigning 0 or 1 /5 to each neighbor and to the site
itself, respectively. When the algorithm is iterated, the result-
ing h�j , t� is a single-valued function of j that takes into
account only the fluctuations due to the capillary waves and
not the contribution of bubbles and overhangs. Perhaps, by
using Leung’s et al. procedure, the saturated interface width
becomes oversmoothed and simplified to observe a logarith-
mic increase. In fact, we still find a logarithmic increase of
Wsat

2 as a function of Ly in our simulations at the same tem-
perature and field magnitude they reported, namely, T
=2.05J /kb and E=50, respectively.

�2� The error in the computation of the exponent 


1.33 of the structure factor G�q�
q−2+
 �small r�� for the
DLG model was not reported. This issue is important, be-
cause if 
 has a large error, one can no longer give any
conclusion about the nature of the asymptotic behavior in the
q→0 limit, and consequently, to distinguish a logarithmic or
a power-law behavior of the interface width �25�.

�3� The temperature range. Regrettably, the results of Le-
ung et al. for both the DLG and the RDLG models were
obtained for a single temperature �T=2.05J /kb�, in contrast
to the wide range of T covered by our simulations. By using
different temperatures we are able to clearly observe the
logarithmic dependence of the interface width, namely,
Wsat

2 =A1 ln Ly �Fig. 6�. Since A1 is vanishing when T is de-
creased �2.05
T
2.96�, it would be very difficult to distin-
guish a logarithmic dependence just by measuring the inter-
face at a single and rather low T.

�4� The finite size. In their work, Leung et al. used lattices
of maximum longitudinal size Ly =600 lattice units. How-
ever, their results were not conclusive to explain the behavior
in the Ly→� limit since the data for the RDLG seem to
exhibit a gap in the q→0 limit. On the other hand, our larg-
est lattice size used was Ly =360 lattice units, which demands
a lot of computational time due to the algorithm that identi-
fies the interface, the long time required to reach the satura-
tion of the width, and the large number of realizations that
one needs to obtain good statistics.

It is also worth mentioning that our algorithm has suc-
cessfully been tested twice under different circumstances: �a�
for the characterization of the interface of diffusion fronts,
which have many bubbles and overhangs. In this case the

numerical results are fully consistent with the predictions of
the well accepted standard percolation theory �31�. �b� For
the characterization of the interface between magnetic do-
mains of the Ising model �see Fig. 3 of the present paper and
related discussion�.

In order to investigate the critical interfacial properties of
both the IDLG and the IRDLG models, we also measured the
time dependence of the interface width at Tc, as shown in
Fig. 13. It is worth mentioning that both models exhibit the
same behavior at criticality, as evidenced by the overlap of
the numerical data shown in Fig. 13.

Getting further inside the time evolution of the width, two
well-defined growth regimes can be distinguished. At early
times the growth is logarithmic W� ln�t�, and it lasts almost
three decades �10–104 MCS� for both models �see Figs.
14�a� and 15�a��. On the other hand, at later times, a cross-
over to a power-law growth regime is observed, W� t�I, as
expected from Eq. �7�.

Focusing on the power-law behavior, we can make a fit of
the data to compute the growth exponent of the interface,
which yields �I�IDLG�=0.245�2�, so that z�

I �IDLG�
=4.08�4� according to Eq. �7�. On the other hand, by fitting
the power-law divergence of the interface width for the
IRDLG model, the growth exponent �I�IRDLG�=0.247�2� is

2A brief but detailed summary of these results is included in the
Introduction.
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obtained. Therefore, z�
I �IRDLG�=4.05�3�. These values of

the exponents strongly suggest that z�
I =z�

B for both models.
Also, as expected, the determination of the dynamic expo-
nent z�

I is not helpful in assigning the universality class of
the studied models since, within error bars, theoretical calcu-
lations and numerical results are consistent with z�

B �4, for
both models and approaches. In any case, these results fur-
ther validate our scaling approach for the interface rough-
ness.

V. CONCLUSIONS

In this work we studied the dynamic and steady-state be-
havior of the strip-gas interfaces in both IDLG and IRDLG
models. We measured the average width and the roughness
exponent �I for a wide range of temperatures T
Tc, as a
function of the lattice sizes and the shape factor. Starting
with the IDLG model, the interface width W2 reaches a satu-
ration value Wsat

2 that depends on the lattice size parallel to
the external field direction, Ly �Fig. 5�a��, but it is indepen-
dent of both the transversal size and the shape �Fig. 5�b��. In
the low-temperature regime T�3.0, Wsat

2 exhibits a logarith-
mic dependence on Ly, as has been theoretically found by
Zia et al. �25� and tested numerically in a subsequent work
by Leung et al. �24� for the RDLG model. This behavior is
consistent with the presence of a roughening transition at
very low T, presumably at T=0 as in the RDLG model �25�.
Then, close to the critical zone, 3.00�T
Tc=3.20, Wsat

2

crosses over to a power law of the form Wsat
2 �Ly

2�ef f. The
value of �ef f is estimated to be �I=�ef f�T→Tc��1 /2 so
�I�1 using Eq. �11�. Since we assume that the bulk aniso-
tropic behavior holds also for the interfacial behavior, this
value is in accordance with that computed by Garrido et al.
for the bulk anisotropic exponent �B. Furthermore, the field-

theoretical predictions of Janssen et al. for this value ��B
=2� seems to be ruled out.

In order to investigate the change of behavior in Wsat
2

around T=3.00, we measured the bulk and interface ener-
gies, together with their respective fluctuations. The curves
of the bulk energy versus the temperature show a change in
convexity around the size-dependent critical temperature.
The energy fluctuations are peaked at the finite-size critical
temperature, and they shift to the Ly→� critical temperature
when Ly is increased. In contrast, the interface energy and its
fluctuations grow monotonically as the temperature and the
lattice size are increased. These facts allow us to conclude
that the change in the behavior of Wsat

2 around T=3.00 is in
fact a crossover to the bulk critical behavior, and apparently
it is not related to any interface phenomena such as a rough-
ening transition.

Later, the time evolution of the interface width at the criti-
cal point was measured. In this case W does not saturate and
exhibits two growing stages. In the first stage, W grows loga-
rithmically for several decades, W� ln t, and in the following
stage W grows obeying a power law W� t�I, with growth
exponent �I=1 /z�

I . The obtained value of the dynamic ex-
ponent was z�

I =4.08�4�, which is in good agreement with the
theoretically estimated values for the bulk critical behavior;
that is, z�

B �3.996 �9� and z�
B �4 �6�.

On the other hand, the same studies performed for the
IRDLG model gave practically the same results. At low tem-
peratures Wsat

2 � ln Ly, confirming the predictions of Zia et al.
�25� about the existence of a roughening transition at T=0.
Then, Wsat

2 crosses over to a power law for T�Tc, with an
effective roughness exponent that is similar to the one mea-
sured in the IDLG model at the same temperature. At the
critical point, the time evolution of W is the same as in the
IDLG model, exhibiting the same logarithmic and power-law
growth regimes. In this last stage the dynamic exponent of
the evolution was obtained giving z�

I =4.05�3�, in agreement
with the estimated value of z�

B for the IDLG model �1,9�.
In short, we think that our study is valuable because it

exploits the saturating character of the interface in the T
�Tc interval, extracting useful information about the inter-
face behavior relating it to the bulk critical behavior. Further-
more, our generalization of the dynamic scaling approach of
Family and Vicsek to the driven lattice gas allows for an
independent estimation of the anisotropic exponent, further
stimulating the discussion about the universality class of the
model.
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