
Pseudo-random-number generators and the square site percolation threshold

Michael J. Lee
Department of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand

�Received 3 July 2008; published 25 September 2008�

Selected pseudo-random-number generators are applied to a Monte Carlo study of the two-dimensional
square-lattice site percolation model. A generator suitable for high precision calculations is identified from an
application specific test of randomness. After extended computation and analysis, an ostensibly reliable value
of pc=0.592 745 98�4� is obtained for the percolation threshold.
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I. INTRODUCTION

The square lattice site percolation threshold, pc, is a
clearly and simply defined mathematical concept �1,2�. Per-
colation models have been well studied, and are known for
their numerous applications �3�. Yet to date, no analytical
expression has been found for the numerical value of pc. The
square site lattice lacks the symmetry that has allowed exact
solutions on other topologies �2,4–9�. So long as the problem
remains intractable, statistical estimates from Monte Carlo
studies can, at least, offer approximate values. Such calcula-
tions invariably make extensive use of some form of pseud-
orandom-number generator �PRNG�.

A PRNG is a deterministic algorithm that outputs a se-
quence of words with properties closely mimicking those of
a truly random sequence. Well analyzed generators include
the linear congruential, lagged Fibonacci, generalized feed-
back shift register, and derivatives thereof �10–24�. Because
these algorithms are simple, they do not produce output with
the complexity of a random sequence �25,26�. The autocor-
relation coefficients of a pseudorandom sequence are not
identically zero, and these departures from true randomness
introduce a sampling bias that leads to systematic error.

Twenty years ago, concern was being given to the
demands then made of PRNGs in calculations using 1012

pseudorandom numbers generated at MHz rates �27�. Re-
cently, high performance parallel computer systems with
thousands, rather than tens or hundreds, of processors have
become much more widely available. These enable calcula-
tions with 1015 pseudorandom numbers generated at GHz
rates, and are likely to play a central role in future research.
Very high precision can now be achieved through brute force
of sampling, but accuracy is another matter. For reliable
Monte Carlo estimates at these new higher precision levels,
the PRNG�s� chosen must be of sufficient quality. Hence
contemporary demands upon PRNGs are, and will continue
to become, much greater than in the past.

This study compares several established PRNGs within
the context of the square site percolation problem. Following
application specific testing, a seemingly reliable generator is
identified. This is subsequently used to locate the percolation
threshold with, in principle, both accuracy and precision.

II. GENERATORS

Throughout this study, the computational word length, w,
shall be fixed at 32. All arithmetical operations taking place

within any PRNG are performed in modulo 2w. All PRNG
arithmetical operands, and products thereof, are members of
�0:2w−1�, where �a :b� denotes the set of all integers not less
than a and not greater than b. Consequently the words of any
PRNG output sequence also belong to �0:2w−1�. The ith
word of an output sequence shall be denoted by xi. With one
noted exception, no output sequence is decimated in any
way. The first million words of each sequence are discarded
prior to beginning any Monte Carlo sampling procedure.

Some PRNGs make use of bitwise operations within their
internal algorithms. The notation adopted here is � for bit-
wise Boolean logical exclusive or, and �m for shift m bits to
the right �where m is a positive integer�. Whenever these
bitwise operations are performed, the operands are decom-
posed into their respective standard binary representations,
most-significant bit �leftmost� to least-significant bit �right-
most�. Arithmetic being constrained to a subset of the inte-
gers, any bits shifted to a position right of the decimal point
are lost. Hence, within this study, the operation of �m is
equivalent to integer division by 2m.

The specific PRNGs considered within this exercise are
defined as follows.

TT is the two-tap additive lagged Fibonacci generator xi
=xi−418+xi−1279. This generator has previously been used for
high-precision percolation threshold measurement by New-
man and Ziff �28,29�.

TTT combines the output from a pair of two-tap general-
ized feedback shift-register generators, ui=ui−471 � ui−9689
and vi=vi−30 � vi−127, to return a single word xi=ui � vi. This
is the generator most likely used for two- and three-
dimensional percolation by Deng and Blöte �30,31�.

SWB is a Marsaglia and Zaman subtract with borrow gen-
erator, xi=xi−222−xi−237−�i−1, where the borrow, �i, is equal
to 1 if xi−222�xi−237+�i−1, and is otherwise equal to zero
�16,20�.

QTA is the quad-tap generalized feedback shift-register
generator xi=xi−157 � xi−314 � xi−471 � xi−9689, as used by Ziff
and Stell �32,33� �see �17��.

QTB is the quad-tap generalized feedback shift-register
generator xi=xi−471 � xi−1586 � xi−6988 � xi−9689. This generator
has been used by Newman and Ziff, and has been found to
produce threshold estimates consistent with those of the TT
generator �28,29,34�.

XG is Brent’s xor4096 generalized Marsaglia xorshift
generator �21,23�. Specifically, the implementation xor4096i,
from Brent’s C language xorgens304 distribution, was that

PHYSICAL REVIEW E 78, 031131 �2008�

1539-3755/2008/78�3�/031131�11� ©2008 The American Physical Society031131-1

http://dx.doi.org/10.1103/PhysRevE.78.031131


used here. This generator has performed well in randomness
tests conducted by L’Ecuyer and Simard �24�.

MT is Matsumoto and Nishimura’s MT19937 Mersenne
twister generator �18�. Specifically, their MT19937ar C lan-
guage distribution was the implementation used here. The
MT19937 algorithm has been used for computing integrals
in semirigorous work by Balister, Bollobás, Walters, and Ri-
ordan �35,36�, and for Monte Carlo sampling by Lee �37�.

DMT is a pair of MT generators operated entirely inde-
pendently of one another. The output sequence from each of
these generators is decimated, with only every fourth word
used. Lattice sites are then selected by means of their Carte-
sian coordinates, using one number from each generator.
This scheme has previously been used by Lee �37�.

Let L be the number of sites lying on each edge of an
L�L square lattice. Every site on that lattice is typically
given a unique index or label, j� �0:L2−1�. In a microca-
nonical ensemble Monte Carlo calculation �28,29,34�, such
as those performed here, PRNG output words, xi, are used to
pseudorandomly select sites, sj, for occupation. Now, con-
sider a transformation T�x ,N��x��w−log2 N�, where N is a
positive-integer power of 2. This is a distribution preserving
many-to-one surjective map from the integers x� �0:2w−1�
to the integers T�x ,N�� �0:N−1�. Further consider a bijec-
tion H that maps the integers �0:N−1� onto site labels. With
the usual choice of site labels also being the integers �0:N
−1�, H is conventionally taken to be the identity map. In the
single generator systems defined above, PRNG output word
xi is associated with site sj�xi�

via j�xi�=H�T�xi ,L
2��. For the

DMT, a pair of PRNG output words, ui and vi �one from
each of the output decimated MT generators�, is mapped to
site sj�ui,vi�

via j�ui ,vi�=H�T�ui ,L�+LT�vi ,L��. This halves
the number of bits actually used from each output word �the
most significant bits being those retained�.

Each of these generators must be provided with an initial
finite sequence of words from which to begin calculating an
infinite pseudorandom sequence. In the case of the TT gen-
erator for instance, a list of some 1279 initial words is re-
quired. These initial lists were constructed by one of four
simpler generators, here denoted LCGa, LCGb, LCGm, and
WMx. LCGa is the linear congruential generator, xi
=69 069xi−1+1, suggested by Marsaglia �12�. LCGb is a
similar linear congruential generator, xi=69 069xi−1
+1 234 567, also due to Marsaglia �20�. LCGm is the modi-
fied linear congruential generator, xi=1 812 433 253�xi−1
� �xi−1�30��+ i, appearing in Matsumoto and Nishimura’s
MT19937ar distribution of their Mersenne twister algorithm.
WMx is the Weyl modified Marsaglia xorshift generator built
into the xor4096i algorithm appearing within Brent’s xor-
gens304 distribution �21,23�. These initialization generators
are themselves seeded from a single word, x0� �0:2w−1�.
The TTT and DMT generators both require two initialization
lists, each being derived from one of these four generators,
each starting with a distinct independent seed word. Single
word initialization does limit the number of different se-
quences that can be obtained from a given combination of
main generator and initialization generator to 2w. This is not
a problem here since the total number of sequences gener-
ated was five orders of magnitude less than this, and those
were divided between many different generator combina-
tions.

III. TEST PROCEDURE

The above listed generators were compared, in the context
of site percolation on the square lattice, by using each one to
make a Monte Carlo estimate of the crossing probability
function, RL,n, at L=2048, over the domain n
� �2 474 000:2 498 300�. RL,n is defined as the probability
that a single cluster connects two specified opposing bound-
ary sides of the N=L�L square lattice in the microcanonical
ensemble when precisely n random sites are occupied. The
value of R2048,n monotonically increases from around 0.05 at
n=2 474 000 to around 0.95 at n=2 498 300. Hence, the oc-
cupation domain studied encompasses the critical region of
the percolative phase transition. The numerous lattice con-
figurations required to accurately determine RL,n were con-
structed, from each PRNG output sequence, over the above
domain only, by the unbiased algorithm of Lee �37�. The
only exception was the XG generator from which samples
were obtained over the same domain by the unbiased algo-
rithm of Newman and Ziff �28,29�.

The Newman and Ziff binomial convolution

RL�p� = �
n
	N

n

pn�1 − p�N−nRL,n �1�

then gives the crossing probability, RL�p�, in the canonical
ensemble where each lattice site is independently randomly
occupied at probability p �28,29,34�. In principle the summa-
tion should run over all n� �0:N�, but as samples were taken
only over the restricted domain of n above, the summation
was truncated accordingly. The standard deviation of the bi-
nomial distribution in Eq. �1� is given by �L,p�L�p�1− p�.
The data analysis here is concerned with values of p such
that the distribution maximum, located at n=nint�pN�, lies
between 10 and 12�L,p from the nearest end of the sampling
region. Consequently, the truncation induced error in RL�p� is
not more than 10−15. This is completely negligible when
compared to statistical sampling uncertainties, which were
never less than 10−8.

The canonical crossing probability curve is used to iden-
tify a site occupation probability, pf�L�, defined such that

RL�pf�L�� = 1/2 + k/L , �2�

where k=0.320�1�, as determined by Ziff and Newman �34�
�their parameter b0�. For p� pc, to first order RL�p�
0.5
+k /L+O��p− pc�L1/�� �33�, and hence pf�L� provides a rea-
sonable estimate of the critical point pc. Ziff and Newman
have found that the second-order equation RL�pc��0.5
+kL−1−0.44L−2 is a better model of the data at small L �34�,
however the L−2 term is negligible for L�1024 at the levels
of precision considered here. Values for pf�2048� were thus
obtained from each of the PRNGs described above. These
were subsequently compared against each other and against
previous pc estimates made with the same generators. For
large L, RL�p� rises very steeply in the neighborhood of p
� pc. Consequently, pf�L� is relatively insensitive to the ex-
act value of k provided that k /L�1. The uncertainty in k
limits the maximum attainable precision in pf�2048� to �2
�10−9.
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Combinatorial terms of the binomial distribution in Eq.
�1� were calculated by the essentially exact method of New-
man and Ziff �29�. For p near pc, use of the Gaussian ap-
proximation to the binomial would have introduced an error
of order 10−8 in R2048�p�, this corresponding to an error of
order 10−10 in p itself. It is sometimes possible to dispense
with the convolution altogether and make a microcanonical
ensemble approximation of RL�p=n /N��RL,n. With L
=2048, and for p near pc, this introduces an error of around
4�10−6 in RL�p�, which corresponds to an error of around
2�10−8 in p. This approximation is acceptable at low
enough precision, has the advantage that only a much nar-
rower domain of sampling need be considered, and has been
employed in earlier work by Lee �37�. However, since the
induced error �measured as the difference between p and
n /N such that either RL�p�=RL,n=0.5 or RL�p�=RL,n=0.5
+k /L� was found to scale as only L−1.5�3�, when a set of
measurements are to be taken over a range of lattice sizes, to
precisions of order 1 /N, the error will become significant at
large L. The approximation was not adopted here.

Correlations inevitably found in the output sequence of
any deterministic pseudo-random-number generator will re-
sult in correlations within the spatial pattern of occupied sites
upon the lattice. As noted by Compagner �38�, this in turn
will bias the resulting Monte Carlo estimate of the crossing
probability function. Consequently, when estimates obtained
from two different generators are inconsistent, then at least
one of those generators likely suffers from significant corre-
lations in its output sequence, hence rendering it unsuitable
for use at the level of precision of the study. Because the true
values of RL,n, RL�p�, and pc are unknown, it will be unclear
as to which of the generators is deficient.

While there is merit in performing general tests on
PRNGs, it is often preferable to have an application specific
test such as the sensitive hull walk of Ziff �17�. Here a
scheme is used that changes the relation between numerical
PRNG output sequences and the spatial patterns of occupied
lattice sites, without altering the underlying problem or to-
pology in any way. The standard enumeration of the lattice,
as shown in Fig. 1, prescribes a specific relation between
patterns in PRNG output and in clusters of occupied sites. By
adopting some other �nonstandard� enumeration, as per the
example in Fig. 1, some different relation is obtained. An
ideal random-number generator will produce results indepen-
dent of the chosen enumeration. A pseudo-random-number
generator, with correlations in its output sequence, will pro-
duce results that do depend upon the enumeration. By com-
paring results from a common generator on two different
lattice enumerations, inadequate, outcome biasing, genera-
tors may be identified. This simple application specific test
does not require knowledge of the percolation threshold or
spanning probability curves.

The direct approach to implementing such an enumeration
is to allocate each site a set of pointers explicitly identifying

its geometrical neighbors. In the nonstandard enumeration of
Fig. 1, for example, s7 would have pointers to s2, s3, s11, and
s12. Sites are pseudorandomly selected as per normal and the
Monte Carlo sampling proceeds just as for the standard enu-
meration. In practice this results in a dramatic performance
decrease of the simulations �more than a factor of 2 was
found in this study�. The problem is believed to be the cache
prefetching of the high performance computer system used,
where if, in some linear array, sj is being accessed then the
hardware assumes that sj+1 �being the next contiguous data
element in memory� will be wanted next.

An alternative method is to change the mapping, H, be-
tween scaled PRNG output words, y=T�x ,N�, and site labels,
j. In the standard enumeration of Fig. 1, H�y�=y is the iden-
tity map. In the nonstandard enumeration, H�0�=0, H�11�
=1, H�6�=2, and so on, with the general relation being
H�y�=3y �mod 16�. This is analogous to the cluster-label la-
bels of Hoshen and Kopelman �39�. The nonstandard enu-
meration is that effectively in use, while the standard enu-
meration is preserved in computer memory, thus avoiding
performance problems.

When the hash function, H, is simple �that is, of similar
algebraic complexity to the PRNG�, it will not so much hide
correlations in the output sequence as manifest those patterns
in some other way, giving rise to a different estimate for
pf�L�. If, on the �systematic� standard enumeration, correla-
tions in PRNG output lead to spatial correlations of occupied
sites that in turn bias the estimate, then, on some other �sys-
tematic� nonstandard enumeration, those same PRNG corre-
lations will give rise to spatial correlations of a different
nature that bias the estimate in some other way. This pro-
vides a simple, application specific, test for PRNG biasing of
the Monte Carlo samples. If a given PRNG is correlation
free, then the estimates derived from it will be independent
of the lattice enumeration. If instead, the PRNG output does
suffer from correlations, then different enumerations may
lead to different results. The test can be tuned, with the hash
chosen so as to maximize the observed shift in the test quan-
tity. A simple hash related to the taps or period is bound to
highlight intrinsic PRNG shortcomings �38�. Alternatively, a
hash much more complex than the generator algorithm could
go some way toward hiding output sequence correlation in-
duced bias.

Hence define two further generators, TTH and MTH, as
�respectively� the exact same TT and MT generators defined
previously, but with a somewhat arbitrary nontrivial mapping
H�y�=947y �mod N� between integers y� �0:N−1� and site
labels j� �0:N−1�. On a lattice of L=2048, this hash is
equivalent to a systematic nonstandard enumeration where
the rightward and downward neighbors of site sj are �when
they exist� sj+3 171 195�mod N� and sj+1 824 768�mod N�, respec-
tively.

IV. TEST RESULTS

The various estimates of pf�2048� thus obtained are listed
in Table I. Results are separated according to the generator
and initialization scheme used. SWBb, for instance, indicates
the SWB generator with its initialization list derived from the

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

s0 s11 s6 s1

s12 s7 s2 s13

s8 s3 s14 s9

s4 s15 s10 s5

FIG. 1. Standard �left-hand side� and �example� nonstandard
�right-hand side� enumerations of the L=4 square lattice.
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LCGb output sequence. Similarly, XGx is the XG generator
initialized from the WMx output sequence. Results shown
are based on surveys of order 108 effectively independent
samples per occupation level n. Each of these sets involved
the generation of order 1013 to 1014 �approaching 1015 in the
XG case�, pseudorandom numbers.

TTa is the TT generator initialized from LCGa. The TTa
based pf�2048� estimate in Table I is consistent with the
results of Newman and Ziff that were also obtained �prima-
rily �40�� from the TT generator �see Table II�. TTHa is the
hashed TT generator, again initialized with LCGa. The TTa
and TTHa based estimates are sufficiently different to indi-
cate the probable existence of statistically significant corre-
lations within the TT generator output sequence. This gives
cause for concern about the use of the TT PRNG for this
application at this level of precision.

TTTab is the TTT generator with its initial u and v lists
constructed by LCGa and LCGb, respectively �the two ini-
tializing generators being given two different seeds�. The
TTT-based estimate in Table I is consistent with the Table II
results of Deng and Blöte most likely obtained from this
generator.

QTAa and QTAm are the QTA generators respectively,
initialized from LCGa and LCGm. Since the QTAa and
QTAm results are consistent, there is no evidence that esti-
mates from the QTA generator are especially sensitive to
initialization. The union of these two data sets gives an over-
all estimate of pf�2048�=0.592 745 95�12� from the QTA
generator. This value is consistent with earlier results, in
Table II, obtained by Ziff and Stell with this generator.

QTBa and QTBb are the QTB generator initialized from
LCGa and LCGb, respectively. Since the QTBa and QTBb
results are consistent, there is no evidence that estimates
from the QTB generator are especially sensitive to initializa-
tion. The union of these two data sets gives an overall esti-
mate of pf�2048�=0.592 746 16�12� from the QTB genera-
tor. This is consistent with the TTa value, and also with the

Newman and Ziff similar observation regarding these two
generators �28,29�. Referring to Table II, the value is also
consistent with the various threshold estimates obtained by
Newman and Ziff using �at least in part� this generator.

MTa is the MT generator initialized from LCGa. MTm is
the MT generator initialized from LCGm. Since the MTa and
MTm results are consistent, there is no evidence that esti-
mates from the Mersenne twister generator are sensitive to
initialization. The union of these two data sets gives an esti-
mate of pf�2048�=0.592 745 89�12�. This is consistent with
the MTHm result derived from the hashed generator in Table
I, and hence there is no evidence that correlations in the MT
output sequence influence the measurement at this level of
precision. Hence, the MT generator appears to be an ad-
equate choice for the current application. Further combining
the MTHm data into the union gives an overall estimate of
pf�2048�=0.592 745 93�8� from the MT generator. This MT
result is inconsistent with those of the TTT and �unhashed�
TT generators. The difference in results with respect to the
QTB generator is no more than could be expected by chance
in a data set of this size. The SWB, QTA and XG generator-
based estimates are consistent with that of the MT.

DMTmm is the DMT generator with its two initial lists
independently constructed, each from one of a pair of seed
words, by LCGm. The DMTmm result is consistent with the
combined MT result, thereby indicating that any possible
correlations between lower order bits in MT output words
are insignificant at this level of precision, or at least no worse
than correlations in the higher-order bits. This suggests that
the single MT generator will be adequate for the purposes of
this study. Combining all four Mersenne twister-based data
sets; MTa, MTm, MTHm, and DMTmm, produces an esti-
mate of pf�2048�=0.592 745 95�6�. This is consistent with
the result of Lee, in Table II, obtained with this same mixture
of generators but in the microcanonical approximation
RL�n /N��RL,n. The combined value does not alter any of the
above conclusions regarding the consistency or otherwise of
other generators with the Mersenne twister. Regarding the
previous estimate of Lee, it was observed here that n /N, such
that R2048,n=0.5+k /L �interpolating to noninteger n�, usually
exceeds pf�2048� by approximately 2�10−8. That being so,
a revised estimate of the presented result would be pc
=0.592 7460�1�. This adjustment is much smaller than statis-
tical uncertainties.

Although the procedure used here differs from those of
previous works, the results obtained are found to be consis-
tent when the same pseudo-random-number generators are
used. However, given the use of a consistent method, it has
been shown that the results thus obtained can differ with the
choice of generator. The level of PRNG sensitivity will be
method dependent. The spread in results seen here is not
extreme as only reasonable quality generators have been
used.

A great deal of theoretical work has gone into developing
these classes of generator, and extensive general tests have
been made of them elsewhere. Ziff has performed a sensitive
hull generating walk test upon several generalized feedback
shift register generators �17�. Two-tap generators performed
poorly in this test which concluded that they best be avoided
for critical applications. Certain quad-tap generators, particu-

TABLE I. Site percolation threshold estimates for the square
lattice �pf�2048�� obtained by various pseudo-random-number gen-
erators �PRNGs� as described in the text.

PRNG pf�2048�

TTa 0.592 746 27�11�
TTHa 0.592 745 88�11�
TTTab 0.592 746 28�12�
SWBb 0.592 746 17�17�
QTAa 0.592 745 88�17�
QTAm 0.592 746 03�17�
QTBa 0.592 746 10�17�
QTBb 0.592 746 21�17�
XGx 0.592 745 96�15�
MTa 0.592 745 93�17�
MTm 0.592 745 85�16�
MTHm 0.592 745 98�12�
DMTmm 0.592 745 97�08�

MICHAEL J. LEE PHYSICAL REVIEW E 78, 031131 �2008�

031131-4



larly QTB, performed very well. Analysis indicated that
QTB should outperform QTA in principle, although no obvi-
ous problems were observed in the latter. Problems with gen-
erators in the same class as TT, TTT, and QTA have also
been noted by Matsumoto and Kurita �48�. The MT genera-
tor has passed tuned collision tests conducted by Tsang, Hui,
Chow, Chong, and Tso �22�. The LCGa generator failed
those same tests. L’Ecuyer and Simard have recently per-
formed thorough randomness tests upon a large assembly of
PRNGs, including SWB, QTB, MT, XG, and LCGa �24�.
The XG generator passed all tests, the MT failed in a very
limited number of instances, QTB and SWB both failed a
small number of times, and LCGa failed badly. TT was not
specifically tested, although two-tap generators typically per-
formed poorly. Tezuka, L’Ecuyer, and Couture have shown
that generators of the SWB class are essentially equivalent to
large prime modulus linear congruential generators and so
can be unreliable �49�. New generators named WELL, with

improved output sequence properties over the MT generator,
have recently been devised by Panneton, L’Ecuyer, and Mat-
sumoto �50�.

As noted by Ferrenberg, Landau, and Wong, it is highly
desirable to have algorithm and application specific tests of
pseudo-random-number generators, regardless of any general
tests that the generator may have passed �51�. Within this
exercise, results from the Mersenne twister generator have
been consistent under different initialization methods and ef-
fective lattice enumerations �hash functions�. With the obser-
vation that results from the Mersenne twister differ from
those of the two-tap lagged Fibonacci generator, in the pres-
ence of evidence suggesting that the two-tap suffers from
significant output correlations, and in the absence of evi-
dence for any significant correlations in the Mersenne twister
output sequence, further Monte Carlo sampling within this
exercise shall be performed exclusively with the MT19937
algorithm. Note that results from the SWB, QTA, QTB, and

TABLE II. Estimates of the square site percolation threshold presented in the literature. The pseudo-random-number generator�s� used are
given where known. Generator T is a Tausworthe generator, while C is a congruential generator. TTT is the generator most likely used by
Deng and Blöte. References are provided for both the result and the generator whenever those come from different sources. Uncertainties are
quoted as one standard deviation statistical errors, except in the semirigorous results of Balister, Bollobás, and Walters �99.99% confidence
bound� and of Riordan and Walters �99.9999% confidence bound�. Only those results derived from currently accepted scaling relations are
shown from the greater collection in Hu, Chen, and Wu. This table is essentially a continuation of that appearing in Ziff and Sapoval �41�,
there going back to 1960.

Year Reference Author�s� Method Generator�s� Result

1986 �41� Ziff and Sapoval Hull gradient T 0.592 745�2�
1988 �17,32� Ziff and Stell Hull gradient QTA 0.592 746 0�5�
1989 �42� Yonezawa, Sakamoto, and Hori Planar crossing 0.593 0�1�
1992 �33� Ziff Hull crossing QTA 0.592 746 0�5�
1994 �43� Hu Histogram Monte Carlo 0.592�8�
1995 �44� Hu Histogram Monte Carlo 0.592 8�1�
1996 �45� Hu, Chen, and Wu Histogram Monte Carlo 0.592 78�2�
1996 �45� Hu, Chen, and Wu Histogram Monte Carlo 0.592 83�4�
1996 �45� Hu, Chen, and Wu Histogram Monte Carlo 0.592 67�6�
1996 �45� Hu, Chen, and Wu Histogram Monte Carlo 0.581 4�30�
1996 �45� Hu, Chen, and Wu Histogram Monte Carlo 0.604 1�30�
2000 �28,29� Newman and Ziff Toroidal wrapping TT, QTB 0.592 746 21�13�
2000 �28,29� Newman and Ziff Toroidal wrapping TT, QTB 0.592 746 36�14�
2000 �28,29� Newman and Ziff Toroidal wrapping TT, QTB 0.592 746 06�15�
2000 �28,29� Newman and Ziff Toroidal wrapping TT, QTB 0.592 746 29�20�
2000 �28,40� Ziff Hull gradient QTB 0.592 746 5�2�
2002 �34� Ziff and Newman Planar crossing QTB 0.592 746 4�5�
2003 �46,47� Martins and Plascak Toroidal wrapping C 0.592 7�1�
2003 �46,47� Martins and Plascak Toroidal wrapping C 0.592 9�3�
2005 �30,31� Deng and Blöte Cylindrical correlation TTT 0.592 746 5�4�
2005 �30,31� Deng and Blöte Cylindrical correlation TTT 0.592 746 6�6�
2005 �30,31� Deng and Blöte Cylindrical correlation TTT 0.592 746 6�8�
2005 �30,31� Deng and Blöte Cylindrical correlation TTT 0.592 746 8�10�
2005 �35� Balister, Bollobás and Walters Semirigorous MT 0.592 7�8�
2007 �36� Riordan and Walters Semirigorous MT 0.592 75�25�
2007 �37� Lee Planar crossing MT, DMT 0.592 746 03�9�
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XG generators are consistent with those of the MT. Also, it
might be interesting to conduct future work with the high
quality XG �23� or WELL �50� generators.

V. THRESHOLD DETERMINATION

Having identified the Mersenne twister as a suitable
PRNG for the problem, a more precise determination of the
square site percolation threshold can now be made. This will
be based upon Monte Carlo estimates of the microcanonical
RL,n curves for 128	L	4096 �a span of some three orders
of magnitude in N�.

Data for L	1024 was obtained exclusively from the MT
generator initialized by LCGm, and Monte Carlo sampling
was conducted with the algorithm of Lee �37�. Sampling
domains were n� �8900:10 500� on the L=128 lattice, n
� �37 300:40 400� on the L=256 lattice, n
� �152 300:158 500� on the L=512 lattice, and n
� �615 500:627 600� on the L=1024 lattice. The data at L
=2048 is the combined MTa, MTm, MTHm, and DMTmm
data from Table I. As noted, that data was obtained with the
same algorithm over the site occupation domain n
� �2 474 000:2 498 300�. Due to hardware constraints, the
L=4096 data was obtained with the more memory efficient
algorithm of Newman and Ziff �28,29�. For this algorithm,
the entire domain, n� �0:N�, is sampled, however observa-
tions were made only for n� �9 920 000:9 969 000�. Once
again, the LCGm initialized MT generator was used. Lattices
of L much more than 4096 could not be accommodated by
the computer system used without substantial decreases in
performance. Estimates at each L are based upon between
1�108 �at L=4096� and 4�109 �at L=128� independent
samples per occupation level, n. These required the genera-
tion of between 1013 �at L=128� and 1015 �at L=4096� pseu-
dorandom numbers.

As before, these microcanonical ensemble crossing prob-
ability curves, RL,n, were transformed into canonical en-
semble crossing probability functions, RL�p�, by the convo-
lution of Eq. �1�. Because the various microcanonical
sampling domains all encompass �12�L,p of the convolution
region about the critical point, the domain restriction induced
error in RL�p� is completely negligible for the values of p
considered here.

Several statistics were calculated from each RL�p� curve.
These were Ziff’s median-p critical point estimator �33�,
pm�L�, defined such that

RL�pm�L�� = 1/2, �3�

the Reynolds, Stanley, and Klein real-space renormalization
group cell-to-cell estimator �52,53�, pcc�L�, defined such that

RL�pcc�L�� = RL/2�pcc�L�� , �4�

the Ziff and Newman linear combination estimator �34�,
ph�L�, defined as

ph�L� � �pm�L� + 
pcc�L��/�1 + 
� , �5�

where 
�1−2−1/�, and the real-space renormalization group
cell-to-site fixed point estimator of Reynolds, Klein, and
Stanley �54�, pr�L�, defined such that

RL�pr�L�� = pr�L� . �6�

Numerical estimates for these quantities are shown in Table
III.

The estimators pm and pcc are believed to approach their
limiting values on the infinite lattice as L−1−1/�, where �
=4 /3 �33,34�. The estimator ph is believed to converge to its
limit at a faster rate of L−1−�−1/�, where Ziff and Newman
have determined a value of �=0.90�2� �34� for the scaling
exponent proposed by Aharony and Hovi �55,56�. The esti-
mator pr is believed to approach its limit as L−1/�, a much
slower rate of convergence than for the other estimators �34�.
Although each of these four limits is numerically equivalent
to the percolation threshold pc, it will be useful to adopt a
general notation indicating the origin of any threshold esti-
mates.

To second order, the finite size scaling relation for the
median-p estimator is

pm�L� � p
m
* − aL−1−1/� + bL−1−�−1/�. �7�

A parametrized fit of Eq. �7� to the data of Table III produces
p

m
* =0.592 745 95�4�, a=0.413�5�, and b=0.0�4�. That the

coefficient b is indistinguishable from zero suggests that a
first-order model �Eq. �7� with b constrained to zero� is ap-
propriate for the data. As such, a precise value for � is un-
important. In this first-order case, the coefficients are evalu-
ated as p

m
* =0.592 745 96�3�, and a=0.4135�7�. The very

good agreement between model and experiment is shown in
Fig. 2. An empirical power-law fit of the form pm�L�
 p

m
*

−aLz yields p
m
* =0.592 745 95�5�, a=0.42�2�, and z=

−1.75�8�. That the value of z is indistinguishable from the

TABLE III. Site percolation threshold estimators on square lattices of various sizes L. pm�L� is the
median-p estimator, pcc�L� is the cell-to-cell estimator, ph�L� is the linear combination estimator, and pr�L� is
the fixed point estimator. Results were obtained with the Mersenne twister pseudorandom number generator.

L pm�L� pcc�L� ph�L� pr�L�

128 0.592 661 08�21� 0.595 983 52�23�
256 0.592 720 62�18� 0.592 808 5�4� 0.592 746 0�5� 0.594 674 66�18�
512 0.592 738 60�15� 0.592 765 1�4� 0.592 746 2�4� 0.593 892 58�15�
1024 0.592 743 77�14� 0.592 751 4�4� 0.592 746 0�4� 0.593 426 99�15�
2048 0.592 745 28�06� 0.592 747 5�2� 0.592 745 9�2� 0.593 150 51�06�
4096 0.592 745 73�10� 0.592 746 4�3� 0.592 745 9�3� 0.592 986 26�10�
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assumed exponent of −1−1 /�, further supports scaling of the
form L−1−1/� as being the appropriate model for the data at
this level of precision. All three p

m
* estimates are in good

agreement with one another.
The second-order scaling relation for the cell-to-cell esti-

mator is given by

pcc�L� � pcc
* +

a



L−1−1/� + cL−1−�−1/� �8�

�34�. The quality of the cell-to-cell data is lower than that of
the median-p data, as each point is obtained from the inter-
cept of two lines, with statistical uncertainties, at a shallow
angle, and as pcc�L� and pcc�L /2� are not entirely indepen-
dent. A parametrized fit of Eq. �8� to the data of Table III
produces p

cc
* =0.592 7458�2�, a=0.441�5�, and c=−9�8�. Co-

efficient c is not inconsistent with zero, and a first-order
model �Eq. �8� with c constrained to zero� does fit the data,
as shown in Fig. 3, with coefficients of p

cc
* =0.592 7459�2�

and a=0.417�4�, in good agreement with the median-p esti-
mator results. An empirical power-law fit of the form
pcc�L�
 p

cc
* − �a /
�Lz yields p

cc
* =0.592 7458�2�, a=0.34�8�,

and z=−1.71�4�, consistent with the assumed L−1−1/� scaling
relation. All three p

cc
* estimates are consistent with each other

and with the estimates for p
m
*, although the precision is sig-

nificantly lower.
The linear combination estimator of Eq. �5� was con-

structed by Ziff and Newman �34� so as to cancel the first-
order terms of Eqs. �3� and �4�, leaving a faster approach to
the percolation threshold,

ph�L� 
 p
h
* +

b + 
c

1 + 

L−1−�−1/� �9�

�to first order�. A parametrized fit of this expression to the
data of Table III is shown in Fig. 4 and produces p

h
*

=0.592 745 96�7�, and �b+
c�=0.3�9�. The threshold result
is in good agreement with those obtained from the median-p
estimator data. The value of �b+
c� is also in agreement,
although this is not saying much given the large uncertain-
ties. That this value is essentially indistinguishable from zero
is a reflection of the rapid rate of convergence of the ph�L�
estimator with L, as suggested by Eq. �9�, and the relative
lack of precision in the ph�L� data. This is unsurprising given
that no higher-order terms were apparent in either the pm�L�
or pcc�L� data sets. As such, the data was inadequate to em-
pirically test the assumed scaling exponent and is even con-
sistent with ph�L�=constant= p

h
*, for which fitting the

weighted mean gives p
h
*=0.592 7460�1�.
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FIG. 2. Parametrized fit of first-order scaling theory �Eq. �7�
with b=0� to experimental data �pm�L� of Table III� for the
median-p critical point estimator.
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FIG. 3. Parametrized fit of first-order scaling theory �Eq. �8�
with c=0� to experimental data �pcc�L� of Table III� for the cell-to-
cell critical point estimator.
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FIG. 4. Parametrized fit of scaling theory �Eq. �9�� to experi-
mental data �ph�L� of Table III� for the linear combination critical
point estimator.
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The second-order scaling relation for the fixed point
renormalization group estimator is given by

pr�L� 
 p
r
* + rL−1/� + sL−2/� �10�

�34�, and so has a slower rate of convergence to its infinite
lattice limit than any of the other estimators above. A fit to
the data of Table III yields well-defined numerical values
for the coefficients; p

r
*=0.592 7441�7�, r=0.1238�2�, and s

=−0.021�6�. However, as shown in Fig. 5, the model of Eq.
�10� is but a loose match to the data at best, with higher-
order terms evidently remaining significant. As such, the
stated uncertainty in p

r
* is misleading and will be addressed

within the next section. An empirical power-law fit of the
form pr�L�
 p

r
*−rLz yields p

r
*=0.592 743�2�, r=0.1219�8�,

and z=−0.748�2�, consistent with the assumed first-order ex-
ponent of −1 /�. The first-order model �Eq. �9� with s con-
strained to zero� returns p

r
*=0.592 7456�8� and r

=0.1233�1�. Of course, neither of these two functions de-
scribe the data any better than does the second-order model.

VI. ROBUSTNESS

Several estimates have now been made for the square site
percolation threshold, pc, using all the data of Table III and
with varying degrees of precision. Of these, the most precise
is pc= p

m
* =0.592 745 96�3�, obtained from the median-p es-

timator data using the first-order scaling model pm�L�= p
m
*

+aL−1−1/�. It is prudent to establish the robustness of the
results with respect to variations in the data and in the as-
sumed model, over what domains the various models are
valid, and how the domain and any fixed model parameters
influence the estimate of pc. There is a trade off between
fitting to as much data over as great a domain as possible, so
as to reduce statistical sampling fluctuations and hence to

refine the result, and fitting to only data from large lattices
where finite size effects are smaller and the scaling theories
better describe the data. The results in Table I are consistent,
where they overlap at L=128 and L=256, with those of Ziff
and Newman �34�. Hence their data was used to extend the
domain down to L=8 as necessary.

The fixed point renormalization group estimator is pos-
sessed of good quality data, but has a slow rate of conver-
gence to its limit p

r
*. The pr�L� data of Table III can be

reasonably well fit with the addition of an L−3/� term to the
model, however the coefficient of L−4/�, in an even higher-
order model, is not zero. Values of the coefficients fluctuate
with the order of the model, suggesting that even higher-
order terms remain significant. Empirical power-law fits are
consistent with the leading order exponent being −1 /�, how-
ever a purely first-order model does not fit the data well until
the domain is truncated to L�256. Results for p

r
* are sensi-

tive to the presence or absence of individual data points, the
L=4096 point altering the result by �1�10−6. Under differ-
ent models and data ranges, threshold estimates range from
0.592 744 to 0.592 746. The difference is much larger than
the uncertainty in the individual estimates and so not much
weight should be given to those. Consequently, although the
raw data at a given L is relatively precise, the slow rate of
convergence of the fixed point renormalization group estima-
tor leads to only a very rough figure of p

r
*=0.592 745�1�.

The linear combination estimator suffers from relatively
large statistical uncertainties in the data, and points are not
entirely independent of one another. However, the estimator
does claim a very rapid rate of convergence to its limit, p

h
*.

The model of Eq. �9� fits the data well for L�32. Results
thus obtained range from p

h
*=0.592 745 94�5� to p

h
*

=0.592 746 03�8�, with the presence or absence of individual
data points making differences of as much as �4�10−8 in
p

h
*. Allowing for alternative values of the parameter �, be-

tween 0.85 and 0.95, the estimate changes by no more than
�1�10−8. The data is not precise enough to either support
or falsify the assumed scaling relation, and is not inconsis-
tent with ph�L�=constant. Even so, all estimates for p

h
* were

consistent with one another and with the 128	L
	4096ph�L� data mean of 0.592 7460�1�. Hence the linear
combination estimator appears to be robust, and the mean
value, which covers the entire range of results, should be a
more than safe estimate for p

h
*. The value of p

h
*

=0.592 745 96�7�, obtained from all the ph�L� data of this
study, should be reliable.

With similarly low data quality, nonindependent points,
and a slower rate of convergence, the cell-to-cell renormal-
ization group estimator should not be expected to provide
any refinement in pc over the linear combination approach.
Over domains where the various models fit the data, cell-to-
cell results for p

cc
* range from 0.592 7458�2� to

0.592 7461�2�. Sensitivity to the presence or absence of in-
dividual data points is as for the linear combination results,
but here this is much smaller than statistical uncertainties.
The estimate p

cc
* =0.592 7459�2�, obtained earlier from fitting

the first-order scaling model to all the pcc data of Table III, is
in agreement with the entire range of cell-to-cell results
above, and so is robust, if imprecise.
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FIG. 5. Parametrized fit of scaling theory �Eq. �10�� to experi-
mental data �pr�L� of Table III� for the renormalization group fixed
point percolation threshold estimator.
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The median-p based estimates have the same rate of con-
vergence as the cell-to-cell estimates, but with independent
data points of much higher quality. The median-p estimates
are less sensitive to the presence or absence of any one par-
ticular data point, this making a difference of at most 2
�10−8, and typically of less than 1�10−8, in the result for
p

m
*. The first-order model fits the data for L�128, with re-

sults lying in the range p
m
* =0.592 745 94�3� to p

m
*

=0.592 745 96�4�. The second-order model fits the data for
L�16, with results lying between p

m
* =0.592 745 91�8� and

p
m
* =0.592 746 00�5�. The empirical power-law model makes

a good fit for L�64, with estimates of p
m
* running from

0.592 745 89�2� up to 0.592 746 03�2�, and scaling expo-
nents in the range −1.729�7� to −1.79�2�. As noted in the
preceding section, the first-order fit matches the data of Table
III very well, the empirical fit agrees with the assumed ex-
ponent of −1−1 /�, and coefficients of higher-order terms
were insignificant. This indicates that the first-order model
does indeed provide an accurate description for the finite-size
scaling behavior of the median-p estimator. The estimate
thus obtained, of p

m
* =0.592 745 96�3�, does not quite encom-

pass the entire range of results above. Allowing for an ex-
treme scenario, where even the model and scaling exponent
may not be quite right, a more conservative figure of p

m
*

=0.592 745 96�4� does cover all of the above results. Hence
this final value of the median-p estimate for pc should be
quite dependable. Incidentally, a standard error of 4�10−8 in
pc is approximately what would be expected from the total
amount of data sampled in this study �as listed in the pm�L�
column of Table III�. Parameter a of Eq. �7� shows much
more sensitivity to the data domain and model than does p

m
*.

The fitted value given in the preceding section was the most
precise obtained. An overall result of a=0.415�5� is more
reasonable in light of the other estimates.

The four estimators have now produced equally many ro-
bust estimates for the two-dimensional square site percola-
tion threshold pc. As summarized in Table IV, these are p

r
*

=0.592 745�1�, p
cc
* =0.592 7459�2�, p

h
*=0.592 745 96�7�,

and p
m
* =0.592 745 96�4�, in good mutual agreement. Taking

pc=0.592 745 96, and returning to the canonical spanning
probability curves, a good match between the data of 128
	L	4096 and the theory of RL�pc��0.5+kL−1+O�L−2�
was had for k=0.317�1�. No higher-order terms were seen,
with the coefficient of L−2 being indistinguishable from zero.
The value of k found here is a little lower than those of Ziff,
k=0.319�1� �33�, and Newman and Ziff, k=0.320�1� �29�.

The difference in pf�2048� resulting from using k=0.317, as
opposed to k=0.320, in Eq. �2� is around 6�10−9. This is
much less than the statistical uncertainties in the results of
Table I, upholding the claimed insensitivity of those esti-
mates to k. Hence those results remain reasonable �PRNG
biased� estimates for pc, and the direct comparison with ear-
lier pc estimates is valid. The estimate a=0.415�5� found
above is consistent with the results of Ziff, Newman, Hovi,
and Aharony �33,34,56� �a here equates to their ratio b0 /a1�.
Since k equates to b0, it follows that a1=0.76�1� from the
data obtained within this exercise. This estimate is also con-
sistent with those of previous works �33,34,56�.

The above results are based on data acquired solely from
the Mersenne twister, that generator having been determined
as suitable for this problem. In Sec. IV, results obtained from
the SWB, QTA, QTB, and XG generators were found to be
consistent with results obtained from the Mersenne twister.
Although those four generators were not tested to the same
extent as Mersenne twister, there is no objective reason to
discount them entirely. Incorporating the data obtained from
these generators earlier leads to revised values of pm�2048�
=0.592 745 32�4�, pr�2048�=0.593 150 55�4�, pcc�2048�
=0.592 7476�1�, pcc�4096�=0.592 7463�2�, ph�2048�
=0.592 7459�1�, and ph�4096�=0.592 7459�3� for the vari-
ous estimators of Table III. Note that the majority of the data
remains Mersenne twister based.

Use of these revised values does not alter either the fixed
point limit, p

r
*, or the cell-to-cell limit, p

cc
* . The linear com-

bination limit is raised to p
h
*=0.592 745 98�6�, an adjustment

of rather less than its statistical uncertainty.
A parametrized fit of Eq. �7� to the revised median-p data

yields p
m
* =0.592 745 98�3�, a=0.415�7�, and b=0.1�5�. As

before, the coefficient of the higher-order term is indistin-
guishable from zero. A first-order fit �of Eq. �7� with b con-
strained to zero� produces p

m
* =0.592 745 98�3�, and a

=0.414�1�. An empirical power-law fit of the form pm�L�

 p

m
* −aLz finds p

m
* =0.592 745 98�4�, a=0.41�2�, and z

=−1.75�1�. The excellent agreement between this model and
the experimental data is shown in Fig. 6. The fitted value of
z is indistinguishable from the assumed scaling exponent of
−1−1 /� �with �=4 /3�. All fitted parameters are consistent
across the three models. Note that if only the QTB and XG
data were combined with that from the Mersenne twister �the
SWB and QTA generators being suspect on general grounds
�48,49�, although no obvious problems were seen here�, then
the revised median-p estimator would be pm�2048�
=0.592 745 31�5�, leading to p

m
* =0.592 745 98�3� from the

first-order fit and p
m
* =0.592 745 98�4� from the empirical fit.

These two values are identical to those obtained with the
inclusion of SWB and QTA based data.

Performing robustness checks as before, the first-order
model fits the data for L�128, with results lying within a
worst case range of p

m
* =0.592 745 98�6� to p

m
*

=0.592 745 99�8�, and much more typically within p
m
*

=0.592 745 98�2� to p
m
* =0.592 745 99�4�. The second-order

model fits the data for L�16, with results lying between
p

m
* =0.592 745 96�3� and p

m
* =0.592 746 02�4�. The empiri-

cal power-law model makes a good fit for L�128, with es-
timates of p

m
* running from 0.592 745 98�4� up to

TABLE IV. Infinite lattice limit estimates for the percolation
threshold. Results are shown, by estimator, for the Mersenne twister
only data �MT, MTH, DMT�, and also for the combined generators
data �MT, MTH, DMT, SWB, QTA, QTB, XG�.

Limit Mersenne Combined

p
r
* 0.592 745�1� 0.592 745�1�

p
cc
* 0.592 745 9�2� 0.592 745 9�2�

p
h
* 0.592 745 96�7� 0.592 745 98�6�

p
m
* 0.592 745 96�4� 0.592 745 98�3�
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0.592 745 99�8�, and scaling exponents, z, in the range
−1.74�1� to −1.77�1�. Hence, the data supports the validity of
the first-order model with the assumed scaling exponent, and
a standard error of 3�10−8 in p

m
* appears fully justified. The

various threshold estimates are summarized in Table IV. Us-
ing the revised data, and pc=0.592 745 98, the estimate of
the finite size correction parameter remains unchanged at k
=0.317�1�. Nor is any significant change seen in parameter
a.

Assuming the suitability of the Mersenne twister PRNG
for this particular Monte Carlo application, and also assum-
ing that the median-p estimator approaches the critical point
as pm�L�− pc�L−1−1/�, where �=4 /3, as supported by the
data, then a robust estimate for the square site percolation
threshold is pc=0.592 745 96�4�. A value for � is not re-
quired. Further assuming the suitability of the generalized
xorshift and QTB generators, the additional data adjusts this
estimate to pc=0.592 745 98�3� �this value does not change
if the subtract with borrow and QTA generators are addition-
ally assumed to be suitable�. Continuing to assume the reli-
ability of those generators, while dropping the assumed scal-
ing exponent and requiring only that pm�L�− pc�Lz, for some
z, the estimate becomes pc=0.592 745 98�4�. These three es-
timates are mutually consistent to well within statistical un-
certainties. The most precise of them has a standard error of
3�10−8, however a degree of caution is warranted in that
none of the generators were tested to that level of precision.
That being the case, this study’s final estimate for the square
site percolation threshold is

pc = 0.592 745 98�4� . �11�

This, primarily Mersenne twister based, estimate is con-
sistent with almost all previous results in Table II. In particu-
lar, it is in good agreement with the Mersenne twister derived

estimate of Lee. Taken collectively however, those results,
excluding that of Lee, would suggest a higher value for pc, in
the vicinity of 0.592 7463�1�. Although the value obtained
here lies well outside of that range, the difference could be
attributable to the various pseudo-random-number generators
used. While it is not impossible that the result obtained here
may reflect some detectable influence of the chosen genera-
tors, precautions against this were taken and no evidence of
bias was found.

VII. CONCLUSIONS

Increasing availability of highly parallel computer facili-
ties now makes it practical to obtain significant quantities of
Monte Carlo data from large lattices. This allows for greater
precision in derived statistics, but requires very good quality
pseudo-random-number generators as it is well established
that inadequate generators lead to erroneous results.

Tests were performed upon several generators and it was
found that use of simple two-tap generators should probably
be avoided for this application. The MT19937 generator ap-
peared to be suitable and was adopted for the majority of the
Monte Carlo sampling conducted within this study. No de-
pendence was found upon the �reasonable� choice of genera-
tor initialization.

Percolation threshold estimates subsequently made from
various crossing probability statistics were found to be in
good mutual agreement. The most precise of these was ob-
tained from the median-p estimator. Data quality was such
that precise results could be obtained without the need to
assume a particular scaling exponent. Even so, results were
in good agreement with a leading exponent of −1−1 /� and
no higher-order term was found. The square site percolation
threshold was subsequently determined to be pc
=0.592 745 98�4�.

This estimate is consistent with the majority of earlier
results on an individual basis, but not with those same results
combined. Evidence suggests, however, that at least some of
those earlier results have been influenced by the pseudo-
random-number generators used. The generators used here
appear to be of adequate quality, and the main generator,
MT19937, passed an application specific test of randomness.
Furthermore, efforts were made to ensure the reliability of
the error bounds in that final estimate, which should, then, be
accurate.
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