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The influence of quantum phase transitions on the evolution of excited levels in the critical parameter region
is discussed. The analysis is performed for one- and two-dimensional systems with first- and second-order
ground-state transitions. Examples include the cusp and nuclear collective Hamiltonians. Applications in sys-
tems of higher dimensions are possible.
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I. INTRODUCTION

In the last decade, the concept of quantum phase transi-
tions �QPT� �1–3� has triggered a lot of activity in solid-state
physics, see, e.g., Refs. �4–6�, and in many-body �nuclear�
physics, see, e.g., Ref. �7� and the references therein. The
QPT shows up in the system’s infinite-size limit at zero tem-
perature as a nonanalytic change of the ground-state proper-
ties with an external control parameter �e.g., an interaction
strength�. Examples range from order-disorder transitions in
spin lattice systems �4� to transitions between various quasi-
dynamical symmetries in some interacting boson or fermion
models �8–12�.

Phase transitional effects were recently identified also for
excited states in the two-level pairing models that exhibit a
second-order ground-state QPT �13–16�. Two characteristic
signatures of excited-state transitions were recognized,
namely �a� an anomalous evolution of individual excited lev-
els as they cross the phase separatrix in the plane of the
control parameter versus energy, and �b� a singular behavior
of the level density at the critical energy �16�. In this paper, a
generalization of these results to systems with the first-order
ground-state QPT is discussed. It is shown that a phase tran-
sition at zero temperature has significant consequences for
the dynamics and density of excited levels in the critical
region of the control parameter. These features are closely
related to thermodynamical properties of the system.

The plan of the paper is the following: In Sec. II we
introduce a general framework for studying excited-state
phase transitions in quantum systems with coinciding classi-
cal and thermodynamical limits. This type of system under-
lies a wide class of models used in many-body physics. In
Sec. III, the concept of excited-state QPT is illustrated by a
simple, prototypal example of a one-dimensional model with
both first- and second-order ground-state transitions �the
cusp catastrophe�. The dependence of phase-transitional ef-
fects on the dimension is discussed in Sec. IV, where an
example of a two-dimensional system, closely related to the
nuclear collective model, is analyzed. The last section con-
tains a brief summary and conclusions.

II. QUANTUM PHASE TRANSITIONS FOR EXCITED
STATES

As mentioned above, quantum phase transitions are re-
lated to the zero-temperature limit of the system, thus to

properties of the ground state. An extension of the QPT
analysis to excited states can be achieved through the free
energy

F = Tr��̂Ĥ� + T Tr��̂ ln �̂�
�E� −S

= − T ln Z ,

�1�

where Ĥ is the Hamiltonian, �̂ is the canonical density op-
erator, Z is the partition function, �E� is an average energy at
temperature T, and S is the corresponding entropy �17�. For
T=0, the free energy coincides with the ground-state energy.

The known relations

�F

�T
= − S,

�2F

�T2 = −
��E2��

T3 , �2�

where ��E2�� stands for a thermal dispersion of energy, set up
the conditions for thermal phase transitions: While in the
first-order transition the entropy suddenly jumps at a certain
“critical” temperature Tc, implying a discontinuous first de-
rivative of F, in a continuous phase transition only the sec-
ond and/or higher derivatives are affected. Such situations
can only occur in the limit of infinite system size, when the
canonical description is assumed to converge to the microca-
nonical one. Then the entropy can be written as S� ln �,
where � is the level density at energy E= �E�.

If the Hamiltonian depends on an external control param-
eter �, so does the free energy �1�. An interesting question is
whether a quantum phase transition at T=0 and �=�c�0�
extends to T�0 in the above thermodynamical sense, form-
ing a phase separatrix �c�T�. Although specific examples ex-
ist, in which the T=0 critical point is isolated, in generic
situations the phase transition exists in the ��T plane �1–5�.
The classification of such transitions is again in terms of the
behavior of the free energy at the transitional point, but with
respect to both variables T and �. In particular, the first-order
or second-order transitions, respectively, imply a discontinu-
ity of the gradient vector or of the curvature matrix �Hessian�
associated with F�� ,T�.

Assume a linear dependence of the Hamiltonian

Ĥ��� = Ĥ0 + �Ĥ1 �3�

on a single real parameter �, with Ĥ0 and Ĥ1 standing for
two incompatible dynamical terms. From the perturbation
theory it follows that the additional relations to �2� read as
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�F

��
= �Ė�,

�2F

��2 = �Ë� −
��Ė2��

T
,

�2F

�T��
=

��EĖ��
T2 . �4�

Here ��XY��= �XY�− �X��Y�, with ��� standing for the ther-
mal average of individual level energies Ei and their deriva-

tives Ėi�
d

d�Ei, Ëi�
d2

d�2 Ei.
The formulas in Eq. �4� can be used to anticipate the

implications of thermal phase transitions on the level dynam-
ics. The first-order transition, which shows up as a disconti-
nuity of �

�TF and �
��F, leads to a jump of the average slope

�Ė� of energy levels. If the phase separatrix is not parallel

with � or T, the jump of �Ė� is connected with a jump of �,
thus also a jump of the microcanonical entropy S. This may
be viewed from an analogy with the ray refraction on a tilted
interface—the vertical distance of rays �alias level spacing
�−1� changes at the interface. On the other hand, the second-
order transition, with discontinuous �2

�T2 F and �2

��2 F, is linked

to changes of the average level curvature �Ë� and/or of the

slope dispersion ��Ė2��. Singular derivatives generate con-
tinuous phase transitions with no Ehrenfest classification.

In the following, we will illustrate the above general find-
ings by concrete examples. We focus on systems with a finite
number of quantum degrees of freedom f . In the many-body
context, such systems usually arise from boson or fermion
models based on the dynamical Lie algebras of finite dimen-
sions �18�. A typical example is a system consisting of a
conserved number N of interacting bosons with the single-
particle Hilbert space of dimension n: In this case f =n−1,
with U�n� being the dynamical algebra �19�.

A significant feature of the above type of system is the
fact that the infinite-size limit coincides with the classical
limit �2,3,7,20�. In bosonic systems, e.g., the value of N−1

can be associated with the Planck constant �. Therefore, the
asymptotic-size limit of the level density ��E�, which consti-
tutes various kinds of excited-state phase transitions, is pro-
portional to the classical phase-space volume V�E� available
at energy E,

V�E� =� ��E − H�dfpdfx =
d

dE
� ��E − H�dfpdfx

W�E�

.

�5�

Here, H stands for the classical Hamiltonian, � is the step
function, and W�E� represents the phase-space volume avail-
able at energies less than �or equal to� the value E. This
formula will be employed to classify the excited-state QPTs
in the forthcoming examples.

III. CUSP HAMILTONIAN

Consider first a one-dimensional �1D� Schrödinger equa-
tion

Ĥ = −
K2

2

d2

dx2 + x4 + ax2 + bx , �6�

with a potential having the well-known cusp form �21�. Here,
a and b are the cusp parameters and K= �

�M
is a classicality

constant bearing information on the Planck constant and on
the mass parameter M. As discussed above, in the bosonic
models � is inversely proportional to the size of the system,
measured by the boson number N, the effective mass de-
pending on a concrete application. Note that the Hamiltonian
�6� can be transformed �20� to a form equivalent to the model
containing two types of interacting �pseudo�scalar bosons
�the bosonic formulation of the Lipkin model �22,23��, al-
though in the latter case the kinetic part is generally more
complicated than that considered here �16�. While the differ-
ence in kinetic terms obscures a direct comparison of K and
N, it is clear than the limit K→0 corresponds to N→�.

The cusp potential �with germ x4� represents the most
common type of catastrophe �21� in dimension one which
generates both first-order and second-order phase transitions.
These can be associated with two trajectories in the plane
a�b, namely with potentials V1=x4−x2+�x and V2=x4

+�x2 depending on a single parameter �. The potential V1
has two minima at x�0 within the region demarcated by a
pair of spinodal points at �= 	

4
3�6

. If � in V1 varies from
negative to positive values, the ground state exhibits a first-
order phase transition—the swap of both minima at the
“critical” point �c=0. On the other hand, if � in V2 varies
from positive to negative values, the ground state shows a
second-order phase transition—the single minimum at x=0
���0� splits at �c=0 into a pair of degenerate x�0 minima
��
0�.

It is clear that the cusp potential generates the above types
of ground-state QPTs only in the semiclassical limit K→0
�equivalent to N→� in the bosonic formulation�, when the
zero-point motion vanishes. The question is what happens in
this limit with excited states close to the critical point. Let us
first analyze the behavior of the phase-space volume �5�. It
turns out that V�E� has some nonanalytic features, which are
connected with the bottom energies E�1� and E�2� of both
potential wells and with the top energy E�3� of the barrier in
between. For a particle moving in a parabolic minimum with
classical frequency � we find V= 2�

� . Therefore, for the
double-well potential �both minima are locally quadratic� the
phase-space volume V�E� starts from a nonzero value at E
=E�1� and jumps to a higher value at the energy of the sec-
ondary minimum E�2�, where new states become available in
the second well. This results in a first-order phase transition.

The excited-level dynamics for the cusp potential V1 is
shown in panel �a� of Fig. 1. Note that the numerical diago-
nalization was performed in a truncated oscillator basis, the
convergence issues being fully under control. The �-shaped
region, which is apparent in the figure, coincides with the
��E domain where states can be located in both potential
wells. As levels hit this domain, their “laminar” flow turns
into a “turbulent” one. Note that although the mutual ap-
proach of levels in the � region is rather sharp for low-lying
states, the crossings are always avoided due to the tunneling
effects �see the inset�. As the slopes of up- and down-going
stretches of an individual level trajectory compensate each
other, the average slope changes abruptly in transition to the
� region. Indeed, this leads to a sudden increase of the level
density, as anticipated in the previous discussion.

The zig-zag pattern of level trajectories developed in the
� region, Fig. 1�a�, is connected with two families of states
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localized in the first and second potential well. Under the
neglect of tunneling, these states form approximate eigen-
states of the Hamiltonian. While states in the up-going well
rise in energy, those in the down-going well decline. As an
eigenstate propagates through this region, its wave function
alternates between the two localizations, with the changes
taking place at each avoided crossing. This is illustrated in
Fig. 2, where one observes that the structures with 1, 2, 3,
etc., peaks cross the gaps between neighboring levels and

continue along the direction in which the respective well
moves. Interestingly, the wiggling pattern of energy levels
inside the � region becomes infinitely dense �undifferen-
tiable� in the semiclassical limit.

On the top E=E�3� of the quadratic barrier separating both
minima of the cusp potential the phase-space volume V�E�
exhibits a logarithmic singularity. It is connected with
asymptotic dwell times of classical trajectories at the maxi-
mum which yield a locally vanishing gap between quantum
levels. This singularity was analyzed, e.g., in Ref. �24�. Its
impact on the level dynamics is observed at the upper side of
the � region in Fig. 1�a�. When level i reaches the energy

E�3�, the curvature Ëi becomes discontinuous and infinite for
K→0. This leads to a locally infinite growth of the level
density and implies a kind of continuous phase transition
�with no order�. Let us note that the decrease of ��E� after
the singularity is connected with a concave increase of
W�E�, see Eq. �5�, which indicates anomalous thermody-
namical properties �17�. As shown below, this peculiarity is
specific for 1D �or quasi-1D� cases.

Panel �b� of Fig. 1 shows the level dynamics for the
second-order phase-transitional potential V2. The behavior
observed is essentially the same as that in the Lipkin model
without parity violating interactions. All levels are character-
ized by the parity quantum number and for E
0 they form
approximately degenerate parity doublets. The phase-
transitional evolution is detected at energy E=E�3�=0 corre-
sponding to the local maximum of the potential at x=0. This
transition has been studied in the Lipkin model �25� as well
as in a wider class of two-level pairing models used in
nuclear and molecular physics �14–16,26�. Let us note that
the thermodynamical description of this effect, based on the
mean-field approach, was presented in Ref. �2�.

IV. TWO-DIMENSIONAL COLLECTIVE HAMILTONIAN

The cusp catastrophe applies to ground-state QPTs in a
large class of models, including, e.g., two-level interacting
boson models �20�. However, since the number of degrees of
freedom f is usually larger than 1, the excited spectrum dif-
fers from that in the cusp example.

For f �1, only a fraction of trajectories may cross the
stationary point, hence a general trend is a smoothening of
nonanalytic features at the critical energy. In particular, for
f =2 only d

dEV evolves in a discontinuous way when crossing
the energy of a local minimum or maximum of the potential,
i.e., the transition is of the second order in both cases. For a
saddle point, the derivative d

dEV is “continuous” but infinite
�V has a singular tangent�. A further increase of f leads to
even higher orders of transitions. These statements can be
verified by explicit evaluation of Eq. �5� for the respective
forms of the potential in general dimension. As a conse-
quence, for f �1 one obtains continuous �second-order or
softer� phase transitions along all three sides of the �-shaped
region of phase coexistence in the first-order QPT.

To illustrate these conclusions, we analyze the following
f =2 Hamiltonian:

FIG. 1. Level dynamics in �a� first-order and �b� second-order
phase transition generated by the cusp Hamiltonian �6� with �a ,b�
= �−1,�� and �� ,0�, respectively; K=10−2. The inset in panel �b�
shows the subset of levels with positive parity.

FIG. 2. Squared wave function of the fifth state from Fig. 1�a�.
The 	�	2 axis is not drawn.
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Ĥ = −
K2

2

1

r

�

�r
r

�

�r
+

1

r2

�2

��2� + r4 + Ar2 + Br3 cos 3� ,

�7�

where �r ,�� are polar coordinates and �K ,A ,B
 adjustable
parameters �K has the same meaning as in the cusp case�. We
consider only the states with a periodic boundary condition
on the sextant �� �0, �

3 �. This system is closely related to the
geometric model and the interacting boson model of collec-
tive motions in atomic nuclei �19,27�. These models describe
five degrees of freedom related to nuclear quadrupole defor-
mations, i.e., two deformation parameters �� ,����r ,�� and
three Euler angles, but for states with zero spin the Euler
angles become frozen. The potential reads as that in Eq.
�7�.Let us note the genuine five-dimensional �5D� nuclear
Hamiltonian for zero-spin states has a slightly different ki-
netic term than the two-dimensional �2D� Hamiltonian �7�,
but both excitation spectra show the same qualitative fea-
tures �28�.

For K→0, the Hamiltonian �7� exhibits a QPT along the
parabola B2=4A that separates two basic forms of the poten-
tial. The transition is of the first order except at B=0 where it
is of second order. On the inner side of the parabola, the
potential describes a quartic oscillator with the global E=0
minimum at r=0. On the outer side, the potential with �
� �0, 2�

3 � has the global E
0 minimum at r�0, �= �
3 �for

B�0� and a saddle point �with E
0� at r�0, �=0. In the
spinodal region of the first-order transition, the r�0 mini-
mum coexists with the r=0 one, creating another saddle
point �with E�0� in between �at �= �

3 �. For A
0, the E
=0 minimum at r=0 turns into a local maximum.

We consider a scaled potential V=r4+�r2+r3 cos 3� with
the critical point �c= 1

4 and two spinodal points at �=0 and
9

32. The level dynamics in the phase-transitional region, ob-
tained by a numerical diagonalization of the Hamiltonian in a
modified 2D oscillator basis, is depicted in Fig. 3. Computa-
tional details will be given elsewhere �28�. As in Fig. 1�a�, all
levels pass through virtual �avoided� crossings. The legs of

the phase-coexistence “triangle” �dashed lines� correspond to
energy E�2� of the secondary potential minimum �a second-
order phase transition� and the upper side E�3� represents a
saddle point �a continuous phase transition with a singular
tangent of V�.

Despite some similarities, the picture is less dramatic than
that for the 1D cusp Hamiltonian. Under a scrutiny one may
observe that the refraction of levels along the boundaries
changes the dispersion of slopes rather than their average,
consistently with the softer types of phase transitions. Note
that for B=0 one can separate subsets of levels, characterized
by the 2D angular-momentum quantum number m, with
gradually lowering phase-transitional signatures �14,16�, but
this cannot be done in general as m is not conserved for B
�0.

We have evaluated the level density from the numerical
spectra at selected values of � and show the result in Fig. 4.
Parameter K, which scales the absolute density of states, was
chosen for each � to ensure a sufficiently dense spectrum.
While the nondegenerate double-well potentials ��
=0.22,0.27� generate typical forms with three characteristic
slopes of � in the regions E
E�2�, E�2�
E
E�3�, E�3�
E
�see the marks�, the critical potential ��=0.25� yields a shape
with only one transitional point. Changes of � at the critical
energies become sharp in the K→0 limit. The level density
above the coexistence region ��=0.5� exhibits no transitional
features. In contrast, the spectrum below the lower spinodal
point �see the inset� displays transitions connected with the
�=0 saddle point and with the r=0 local maximum.

Apart from indicating the phase structure of the specific
model under study, the curves in Fig. 4 illustrate the detect-
ability limits for continuous phase transitions in a finite sys-
tem. Let us stress that the transitions would be even more
smoothened in higher dimensions. An application of these
results in the interacting boson model �for the zero-spin spec-
trum� is in order.

V. CONCLUSIONS

We have investigated the influence of phase transitions on
the level dynamics in a vicinity of quantum critical points.
Some typical QPT-induced effects have been identified, de-

�

E

FIG. 3. Level dynamics for Hamiltonian �7� close to the first-
order phase transition �A��, B=1, K=10−3�. Dashed lines demar-
cate the phase-coexistence domain.

FIG. 4. The level density for Hamiltonian �7� with �A ,B�
= �� ,1�. Parameter K was set separately for each histogram within
the bounds 10−4�K�5�10−3. The binning of histograms is
shown by small dots. Marks indicate minima ���, maxima ���, and
saddle points ��� of the corresponding potentials.
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pending on the type of the transition and on the dimension.
Of particular interest are the results for first-order ground-
state transitions which supplement earlier findings for the
second-order transitions �14–16�. In dimension one, the cusp
Hamiltonian �6� is a fundamental example of both first-order
and continuous transitions. Despite the fact that the relevant
physics in this case is just the basic-level quantum mechan-
ics, the effects observed constitute the clearest realization of
quantum phase transitions affecting individual excited states.

For higher dimensions, the signatures of excited-state
phase transitions are weakened in a twofold sense: �a� The
transitions only affect higher derivatives of the level density,
and �b� only some bulk properties of the level dynamics are
influenced rather than evolutions of all individual states.
These features—which on the classical level can be linked to
an increasing size of the phase space, hence a decreasing
impact of singular �e.g., stationary� points on the classical
motions—hinder the practical detection of excited-state
QPTs in finite samples of the system.

Finally, let us stress that the findings discussed in this
paper are relevant for the systems with synonymous infinite-
size and classical limits. This feature allows one to associate
the asymptotic level density with the phase-space volume
and therefore to unambiguously classify the excited-state
phase transitions. Numerous examples of this type of system
can be found in nuclear, molecular, and mesoscopic physics.
It would be interesting to learn how the features discussed
here extend to the infinite lattice systems that do not share
the above property.
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