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We consider the Ising model on the Bethe lattice with aperiodic modulation of the couplings, which has been
studied numerically in Phys. Rev. E 77, 041113 �2008�. Here we present a relevance-irrelevance criterion and
solve the critical behavior exactly for marginal aperiodic sequences. We present analytical formulas for the
continuously varying critical exponents and discuss a relationship with the �surface� critical behavior of the
aperiodic quantum Ising chain.
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I. INTRODUCTION

Disorder and different types of inhomogeneities are inevi-
table features of real materials. Their presence may modify
the physical properties of a system and their effect can be
particularly strong close to singularities, such as at phase
transition points �1,2�. In some cases the perturbation can
change the universality class of a second-order phase transi-
tion. In this respect relevance or irrelevance of an inhomo-
geneous perturbation can be analyzed in terms of linear sta-
bility at the pure system’s fixed point as first performed by
Harris �3� for uncorrelated bond disorder. The classification
of the critical behaviors of disordered systems with a random
fixed point is a challenging and theoretically very difficult
task.

Another type of inhomogeneities is introduced by quasi-
periodic or, more generally, aperiodic modulations of the
couplings. Since the discovery of quasicrystals �4� and due to
the progress in molecular beam epitaxy, allowing for the
preparation of good quality multilayers with a prescribed
aperiodic structure �5�, there has been an increased interest to
study theoretically the phase transitions in such nonperiodic
systems �6�. These systems can be considered as somehow
intermediate between pure and random ones and are ex-
pected to display a rich variety of critical behaviors. Indeed a
generalization of the Harris criterion predicts that, depending
on the strength of the fluctuations of the aperiodic sequence
and the value of the correlation length critical exponent � of
the pure system, an aperiodic perturbation may be irrelevant,
marginal, or relevant �7,8�. A series of works on the critical
behavior in different aperiodic systems confirms the validity
of the generalized relevance-irrelevance criterion �9–21�.

Interestingly in the presence of aperiodicity one can ob-
serve truly marginal behavior. Then the critical exponents are
nonuniversal and their value varies continuously with the
amplitude of the aperiodic perturbation. Such a behavior has
been obtained exactly for the aperiodic Ising quantum chains
using a renormalization group transformation or a finite-size
scaling analysis �14,15,17–20�, as well as for the interface

delocalization transition in the Penrose quasiperiodic lattice
�13�. Nonuniversal critical behavior is expected to occur in
real higher-dimensional systems, too, for example, in a three-
dimensional tricritical system where �=1 /2. In this case,
however, no exact results are available yet. Numerical stud-
ies of the related mean-field model with Fibonacci modula-
tion of the couplings show nonuniversal critical behavior
�22,23�.

More recently the Bethe-lattice Ising model, which also
belongs to the mean-field universality class �24�, has been
studied numerically for two types of perturbations �25�. With
a Fibonacci modulation of the couplings, the classical mean-
field exponents are recovered whereas, for a period-doubling
�PD� modulation, the magnetic exponents are nonuniversal.
The difference in the relevance of the Fibonacci modulation
for the two mean-field models is due to the different ways in
which the mean-field behavior is realized, but this question
has not been studied so far.

In this paper we continue the study of the aperiodic
Bethe-lattice Ising model. Our motivations are twofold: First,
we are interested in the formulation of a relevance-
irrelevance criterion adapted to this system in order to ex-
plain the conflicting results of previous numerical works.
Second, and our more important motivation, we can provide
an exact solution of the problem and in this way we obtain
analytical formulas for the continuously varying critical ex-
ponents, among others for the PD sequence studied before
numerically.

The structure of the paper is the following. The model, the
aperiodic sequences and the corresponding relevance-
irrelevance criterion are presented in Sec. II. The critical be-
havior of marginal aperiodic sequences is studied analyti-
cally in Sec. III, in which we point out a close relationship
with the �surface� critical properties of aperiodic quantum
Ising chains. Our results are discussed in Sec. IV and details
about the calculation of sums of aperiodic variables are given
in the Appendix.

II. APERIODIC PERTURBATION AND ITS RELEVANCE

A. Hamiltonian

We consider the spin 1 /2 Ising model on a Bethe lattice
with coordination number z=q+1. The Hamiltonian reads
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− �H = �
n

�
�i,j��n

Kn

q
�i� j + H�

i

�i, �1�

where �=1 /kBT is the inverse temperature. The first sum
runs over the successive layers of the lattice indexed by n
�see Fig. 1� and the second over the bonds between the sites
in layers n+1 and n. The couplings Kn /q are aperiodically
modulated and properly normalized in order to allow us to
take the mean-field limit q→�. They are parametrized as

Kn = Krfn, fn = 0,1, �2�

where r is the ratio of perturbed to unperturbed couplings
and the binary variables fn follow some aperiodic sequence.

Let On= �Oi� be the thermal average of some local opera-
tor Oi in layer n. This average is fluctuating from layer to
layer due to the aperiodic modulation of the couplings. Fol-

lowing Ref. �25�, a mean value Ō is defined by giving the
same weight to the different layers,

Ō =
1

N
�
n=1

N

On. �3�

With this choice, the usual mean-field critical behavior is
obtained for the unperturbed system. When each layer is
weighted according to its number of spins, the surface spins
dominate the critical behavior which is then quite unusual
�26�: There is no long-range order at T�0 and the free en-
ergy displays a power-law singularity in H with a critical
exponent increasing smoothly from 1 to infinity as T goes
from 0 to the Bethe-Peierls temperature.

The Bethe lattice may be embedded in a d=� hypercubic
lattice by placing each link into a different lattice direction.
Then the geometrical distance L, measured in lattice param-
eter units, between two spins located N layers apart grows as
�27�

L2 = N �4�

since the L steps are mutually orthogonal.

B. Aperiodic sequences

As in Ref. �25� we consider aperiodic sequences gener-
ated via substitutions on the binary digits 0 and 1. For the PD
sequence �28� we have S�0�=0 1 and S�1�=0 0 which, start-
ing on 0, give successively

0,

0 1,

0 1 0 0,

0 1 0 0 0 1 0 1. �5�

The properties of the sequence can be deduced from its sub-
stitution matrix �29,30� with entries Mij giving the numbers
ni

S�j� of digits of type i in S�j�. In the case of the PD se-
quence one obtains

M = �n0
S�0� n0

S�1�

n1
S�0� n1

S�1� 	 = �1 2

1 0
	 . �6�

The entries in Mp give the numbers of digits of each type in
the sequence after p iterations. The length N of the sequence
obtained after p iterations �which is also the number of layers
on the Bethe lattice� is related to the leading eigenvalue �1
of the substitution matrix through N=�1

p. Let

nN = �
n=1

N

fn, 	� = lim
N→�

nN

N
, �7�

be the number of 1 in a sequence with N digits and the
corresponding asymptotic density, respectively. On the Bethe
lattice, according to Eq. �3�, the mean value of the coupling
is given by

K̄ = lim
N→�

1

N�
n=1

N

Kn = K + lim
N→�

nN

N
K�r − 1� = K + 	�
 , �8�

where 
=K�r−1� is the amplitude of the aperiodic modula-

tion of the couplings. The mean deviation from K̄ on a sys-
tem with N
�1

p layers takes the form

�K�N� =
1

N
�
n=1

N

�Kn − K̄� = 
�nN

N
− 	�	 





N
�2

p 
 
N�−1,

�9�

where � is the wandering exponent of the sequence given by

� =
ln��2�
ln �1

, �10�

in terms of the second leading eigenvalue �2 of the substi-
tution matrix. For the PD sequence, according to Eq. �6�, we
have �1=2, �2=−1, so that �=0.

C. Relevance-irrelevance criterion

The Harris argument �3�, showing that thermal random-
ness is a relevant perturbation only when the specific heat
exponent  of the pure system is positive, has been general-
ized to the case of aperiodic perturbations in Refs. �7,8�.

The argument can be adapted to our problem as follows:
Near the critical point of the pure system, the relevant length
is the correlation length � diverging as t−� where t
�K
−Kc� measures the deviation from the critical temperature. To

σn+1

K /q
n

H

n+1

n

n−1

n−2

FIG. 1. Aperiodic Bethe lattice with coordination number z=q
+1=3. The couplings Kn /q are aperiodically modulated.
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the length � is associated the number of layers N=�2 accord-
ing to Eq. �4� and the aperiodic perturbation induces a shift
in the critical temperature �t
�K�N� which, according to
Eq. �9�, takes the form �t
�2��−1�
 t−2���−1�. The ratio

�t

t

 t−�, � = 1 + 2��� − 1� �11�

gives the relative strength of the aperiodic perturbation. It
diverges, and thus the perturbation is relevant, when the
crossover exponent ��0. It is irrelevant when ��0 and
marginal when �=0. In this latter case the aperiodicity may
lead to a nonuniversal behavior with some exponents varying
continuously with the amplitude of the perturbation.

The same result can be obtain by studying the scaling
behavior of the perturbation amplitude 
 in Eq. �9�. Under a
change of the length scale by a factor b=L /L�, Eq. �4� leads
to N�=N /b2 and �K�N�, with scaling dimension yt=1 /�, and
transforms as

��K�� 
 
�N��−1 = bt
y
N�−1 �12�

so that


� = byt+2��−1�
 . �13�

Thus the scaling dimension of 
 is � /� and the perturbation
grows under rescaling �is relevant� when � is positive.

A continuous variation of the magnetic exponents was
observed in Ref. �25� for the PD sequence with �=0. This
marginal behavior is expected since yt=1 /�=2 for the mean-
field Ising model. On the contrary, the Fibonacci sequence,
with �=−1 �15�, leads to an irrelevant perturbation. It does
not change the critical behavior which remains classical.

III. CRITICAL BEHAVIOR

A. Finite-size behavior of the magnetization

We consider an n+1-generation branch defined as an ini-
tial site with spin �n+1 connected to q=z−1 n-generation
branches as shown in Fig. 1; a one-generation branch is a
single site. Let Zn

� be the sum of the contributions to the
partition function of an n-generation branch with initial spin
either up ��� or down ���. It satisfies the recursion relation

Zn+1
� = e�H�e�Kn/qZn

+ + e�Kn/qZn
−�q. �14�

In the mean-field limit q→�, the nth layer magnetization
mn= ��n� may be written as

mn =
Zn

+ − Zn
−

Zn
+ + Zn

− �15�

since the contribution of the single branch going forward can
be neglected compared to the contributions of the q branches
going backward. Expanding the exponentials in Eq. �14� one
obtains

Zn+1
� = e�H�Zn

+ + Zn
− �

Kn

q
�Zn

+ − Zn
−� + O�Kn

2

q2 	q

�16�

so that

lim
q→�

Zn+1
�

�Zn
+ + Zn

−�q = e�H lim
q→�

�1 �
Kn

q
mn + O�Kn

2

q2 	q

= exp���H + Knmn�� , �17�

and the layer magnetization satisfies the recursion relation

mn+1 = tanh�H + Knmn� . �18�

Expanding to the first order in the external field H and to the
third order in the first layer magnetization m1, one has

mn+1 = H�
i=1

n

Ki�
k=1

n

�
j=1

k

Kj
−1 + m1�

i=1

n

Ki −
m1

3

3 �
i=1

n

Ki�
k=1

n

�
j=1

k

Kj
2

+ ¯ . �19�

According to Eq. �3� the mean value of the magnetization on
a system with n layers is given by

m̄ =
1

N
�
n=1

N

mn = a0H + a1m1 −
a3

3
m1

3 + ¯ �20�

with

a0 =
1

N
�
n=1

N−1

�
i=1

n

Ki�
k=1

n

�
j=1

k

Kj
−1,

a1 =
1

N
�1 + �

n=1

N−1

�
i=1

n

Ki	 ,

a3 =
1

N
�
n=1

N−1

�
i=1

n

Ki�
k=1

n

�
j=1

k

Kj
2. �21�

The critical point of the system is obtained by analyzing the
asymptotic behavior of a1. It is divergent �goes to zero�, if
�� j=1

N Kj�1/N is greater �smaller� than 1. Consequently the
critical point is given by the condition

lim
N→�

1

N�
j=1

N

ln Kj = ln K = 0, �22�

leading to

Kc = r−	�. �23�

B. Relation with the one-dimensional Ising model
in a transverse field

Let us consider the inhomogeneous quantum Ising chain
with Hamiltonian

H = − �
l

Jlsl
zsl+1

z − h�
l

sl
x, �24�

where sl
x and sl

z are the components of a Pauli spin operator
associated with site l, Jl is the first-neighbor exchange inter-
action, and h, is the transverse field. On a chain with size L
and the end spin fixed, the surface magnetization ms satisfies
the relation �31�
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ms
−2 = 1 + �

l=1

L

�
i=1

l

�i
−2, �25�

where �i=Ji /h. This is just the form of the sum giving Na1 in
Eq. �21�. At the critical coupling, generally given by ln �
=0 �32�, ms

−2 scales like L2xs where xs=�s /� is the scaling
dimension of the surface magnetization with xs=1 /2 for the
unperturbed quantum Ising chain.

This exponent has been determined analytically in the
case of marginal aperiodic modulations of the couplings
�14,15,17,18�. Since N is replaced by L, 2�=1 is replaced by
�Ising=1 in the expression �11� of the crossover exponent �.
Thus marginal behavior is obtained for the same value �
=0 of the wandering exponent.

With the parametrization �i=�rfi, one obtains

xs�r� =
ln�r1/3 + r−1/3�

2 ln 2
�26�

for the PD sequence. Changing r into r−1 does not change xs
for this sequence, but this is not generally true.

The leading behaviors of the sums appearing in Eq. �21�
are calculated in the Appendix. One may notice that since Ki
corresponds to �i

−2, r in Eq. �26� has to be replaced by r−1/2

in the scaling exponent of a1. At the critical point, the differ-
ent coefficients scale with N as follows:

a0 
 Nx0, x0 = 2xs�r1/2� + 2xs�r−1/2� − 1,

a1 
 Nx1, x1 = 2xs�r−1/2� − 1,

a3 
 Nx3, x3 = 2xs�r−1� + 2xs�r−1/2� − 1. �27�

C. Finite-size scaling and critical exponents

In a finite-size system with N layers the free energy den-
sity ḡ is a function of the deviation from the critical tempera-
ture t and the external field H, of the system size N and also
of the magnetization m1 of the first layer. Under a change of
the length scale by a factor b, these variables transforms as

t� = bytt, H� = byHH, N� =
N

b2 , m1� = b2�m1. �28�

For a truly marginal system, the thermal dimension yt=1 /�
has to keep its unperturbed value yt=2.

The critical exponents �, governing the temperature de-
pendence of the spontaneous magnetization, and �, govern-
ing the temperature dependence of the susceptibility, have
the following expressions:

� =
dc − yH

yt
, � =

2yH − dc

yt
, yt = 2, �29�

where dc is the upper critical dimension of the problem. The
dimensions yH, �, and dc remain to be determined for the
aperiodic system.

The free energy density transforms as

ḡ�t,H,N,m1� = b−dcḡ�bytt,byHH,
N

b2 ,b2�m1	 . �30�

The mean value of the magnetization m̄=�ḡ /�H reads

m̄�t,H,N,m1� = b−dc+yHm̄�bytt,byHH,
N

b2 ,b2�m1	 . �31�

It can be expanded in powers of m1 as

m̄�t,H,N,m1� = �
k�0

byH−dc+2k�m̄�k��bytt,byHH,
N

b2	m1
k .

�32�

At the critical temperature, the leading dependence on a
small external field H comes from the term of order zero in
the expansion �32�. With t=0 and b2=N we have

m̄�0,H,N,m1� = N�yH−dc�/2�H
�0��NyH/2H� + O�m1�


 N�2yH−dc�/2H . �33�

When H=0, m̄ is odd in m1 so that, with b2=N, one obtains

m̄�t,0,N,m1� = N�+�yH−dc�/2�t
�1��Nt�m1 + N3�+�yH−dc�/2�t

�3�

��Nt�m1
3 + ¯ . �34�

Comparing Eqs. �33� and �34� to Eqs. �20� and �27� one
can deduce the values of the critical exponents

� = x0 = 2xs�r1/2� + 2xs�r−1/2� − 1,

� =
x3 − 3x1

2
= xs�r−1� − 2xs�r−1/2� + 1,

� =
x3 − x1

2
= xs�r−1� ,

dc = 2 + 4xs�r−1� + 4xs�r1/2� − 4xs�r−1/2� . �35�

For the unperturbed system �r=1, xs=1 /2� the mean-field
Ising values, �=1, �=1 /2, dc=4, are recovered. The varia-
tions of � and � with r for the PD sequence are shown in
Figs. 2 and 3. Similar results for the paper-folding �PF� and
three-folding �TF� sequences are also shown �33�. In these
cases the values �17,18�

xs�r� =
ln�1 + r−1�

2 ln 2
�PF�, xs�r� =

ln�2 + r�
2 ln 3

�TF� �36�

have been used in Eq. �35�.
For the PD sequence, the values of �, �, and � �deduced

from the Widom scaling law �=1+� /�� given in Table I for
r=2 and r=7 compare well with the numerical values ob-
tained in Ref. �25� �notice that r in the present work corre-
sponds to r−1 in �25��.

IV. DISCUSSION

In this paper we have studied the critical behavior of the
Ising model on a Bethe lattice with aperiodic modulation of
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the couplings. Our first result is the relevance-irrelevance
criterion of Eq. �11� which is adapted to the Bethe-lattice
problem. As for the aperiodic quantum Ising chain or previ-
ous mean-field models, it has a form typical of a one-
dimensional aperiodicity. The difference lies in the fact that
the length of the sequence does not scale here like a physical
length L but like the number of layers N on the Bethe lattice,
which itself scales like L2. As a consequence, the correlation
length exponent � is replaced by 2�. Thus for the Bethe-
lattice problem with �=1 /2 the aperiodicity is marginal
when the wandering exponent �=0 as for the Ising quantum
chain with �Ising=1. For the same reason, the aperiodicity is
irrelevant on the Bethe lattice for the Fibonacci sequence
with �=−1 �25� whereas it is marginal for the one-
dimensional mean-field models �22,23�.

We have solved the critical properties of the aperiodic
Bethe-lattice Ising model exactly and we have observed fur-
ther similarities with the quantum Ising chain. For marginal
aperiodic sequences, such as the PD sequence, the critical
exponents are nonuniversal in both cases and the Bethe-
lattice exponents can be expressed in terms of the surface
magnetization exponent of the quantum Ising chain, taken at
different values of the aperiodic coupling ratio r. Since for

the quantum Ising chain there is a vast literature about exact
solutions for different marginal sequences, from these we can
immediately translate the corresponding analytical results for
the Bethe lattice.

We have also noticed that for the Bethe lattice, in order to
satisfy the scaling relations, a varying upper critical dimen-
sion dc�r� has to be introduced. As a matter of fact, this result
follows from an analysis of the Ginzburg criterion �34�, too.
Something similar occurs for the Ising quantum chain, in
which the dynamical exponent z was found to be r dependent
�16,17�. As a consequence, here also the effective dimension
of the system d=1+z varies continuously with r.

Our investigation could be extended into several direc-
tions. For relevant aperiodic sequences, such as the Rudin-
Shapiro sequence, first-order transition is expected in one
range of the ratio, r�1, whereas in the other range, r�1, the
magnetization should exhibit an essential singularity at the
critical point �35�, instead of a power law observed for mar-
ginal perturbations. This type of essential singular behavior
is probably the rule for random interactions, too.
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APPENDIX: CALCULATION OF THE SUMS
THROUGH RENORMALIZATION

Let us consider the sum

SN�K,r� = 1 + �
p=1

N

�
i=1

p

Krfi = �
p=0

N

Kprnp, n0 = 0, �A1�

such that a1 in Eq. �21� is given by SN−1�K ,r� /N. For the PD
sequence the following relations are satisfied �see Ref. �14�
where 0 and 1 are exchanged�:

f2k = 1 − fk, f2k+1 = 0, n2k = n2k+1 = k − nk. �A2�

Splitting the sum into even and odd parts and ignoring minor
end corrections, one obtains

TABLE I. Critical behavior of the Bethe lattice with an aperi-
odic modulation following the PD sequence: comparison of the ex-
act values of the critical exponents �, � in Eq. �35� and � deduced
from the Widom scaling law to the numerical values obtained in
Ref. �25�.

r=1 r=2 r=7

� �exact� 1 /2 0.5094795 0.5675859

� �numerical� 0.5093�4� 0.5664�5�
� �exact� 1 1.0192114 1.1491583

� �numerical� 1.0197�2� 1.1499�4�
� �exact� 3 3.0004955 3.0246421

� �numerical� 3.0006�2� 3.0266�9�

0 1 2 3 4 5
r

0.5

0.55

0.6

0.65

0.7
β

PD
PF
TF

FIG. 2. �Color online� Variation of the critical exponent � of the
spontaneous magnetization with the coupling ratio r for the PD,
paper-folding �PF�, and three-folding �TF� sequences. The exponent
is minimum and takes its mean-field value �=1 /2 for the unper-
turbed system at r=1.

0 1 2 3 4 5
r

1

1.1

1.2

1.3

1.4

1.5

γ

PD
PF
TF

FIG. 3. �Color online� Variation of the critical exponent � of the
susceptibility with the coupling ratio r for the PD, PF, and TF
sequences. The exponent is minimum and takes its mean-field value
�=1 for the unperturbed system at r=1.
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SN�K,r� = �
k=0

N/2

K2krn2k + �
k=0

N/2

K2k+1rn2k+1

= �
k=0

N/2

�K2r�kr−nk + K�
k=0

N/2

�K2r�kr−nk

= �1 + K�SN/2�K2r,r−1� . �A3�

A second iteration leads to

SN�K,r� = �1 + K��1 + K2r�SN/4�K4r,r� �A4�

which is a renormalization transformation leaving r invari-
ant, dividing N by 4 and changing K into K�=K4r. In the
infinite system this transformation has a nontrivial fixed
point at

K* = Kc = r−1/3 �A5�

which is the critical coupling of the problem, in agreement
with the general result of Eq. �23�. At the critical point, Eq.
�A4� gives the finite-size scaling relation

SN�Kc,r� = �1 + r−1/3��1 + r1/3�SN/4�Kc,r�

= �r1/6 + r−1/6�SN/4�Kc,r� . �A6�

Injecting the power law SN�Kc ,r��AN��r� into Eq. �A6�, one
finally obtains

��r� =
2 ln�r1/6 + r−1/6�

2 ln 2
= 2xs�r−1/2� �A7�

in agreement with the value of x1 given in Eq. �27�.
The values of Na0 and Na3 in Eq. �21� are given by the

sum

TN�K,r;m� = �
p=1

N

Kprnp�
l=1

p

Kmlrmnl �A8�

with m=−1 for a0 and m=2 for a3. The leading contribution
to this sum for large N values is given by

TN�K,r;m� � �
p=0

N

KprnpSp�Km,rm� � A�
p=0

N

Kprnpp��rm�.

�A9�

Proceeding as before for SN, the sum can be split into even
and odd parts and after two iterations one obtains �36�

TN�Kc,r;m� � 4��rm��r1/6 + r−1/6�TN/4�Kc,r;m� . �A10�

It follows that, at the critical point, this sum scales with N as

TN�Kc,r;m� 
 N��r;m�, ��r;m� = ��r� + ��rm� ,

��r;m� = 2xs�r−1/2� + 2xs�r−m/2� . �A11�

With the appropriate values of m one recovers the exponents
in Eq. �27�.

�1� B. M. McCoy and T. T. Wu, The Two-Dimensional Ising Model
�Harvard University Press, Cambridge, MA, 1973�, p. 345.

�2� J. Cardy, Scaling and Renormalization in Statistical Physics
�Cambridge University Press, Cambridge, UK, 1996�.

�3� A. B. Harris, J. Phys. C 7, 1671 �1974�.
�4� D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev.

Lett. 53, 1951 �1984�.
�5� C. F. Majkrzak, J. Kwo, M. Hong, Y. Yafet, D. Gibbs, C. L.

Chien, and J. Bohr, Adv. Phys. 40, 99 �1991�.
�6� J. M. Luck, Fundamental Problems in Statistical Mechanics

VIII, edited by H. van Beijeren and M. H. Ernst �Elsevier,
Amsterdam, 1994�, p. 127.

�7� J. M. Luck, Europhys. Lett. 24, 359 �1993�.
�8� F. Iglói, J. Phys. A 26, L703 �1993�.
�9� C. Godrèche, J. M. Luck, and H. J. Orland, J. Stat. Phys. 45,

777 �1986�.
�10� Y. Okabe and K. Niizeki, J. Phys. Soc. Jpn. 57, 1536 �1988�;

E. S. Sørensen, M. V. Jarić, and M. Ronchetti, Phys. Rev. B
44, 9271 �1991�.

�11� Y. Okabe and K. Niizeki, J. Phys. A 23, L733 �1990�.
�12� S. Sakamoto, F. Yonezawa, K. Aoki, S. Nosé, and M. Hori, J.

Phys. A 22, L705 �1989�; C. Zhang and K. De’Bell, Phys.
Rev. B 47, 8558 �1993�.

�13� C. L. Henley and R. Lipowsky, Phys. Rev. Lett. 59, 1679
�1987�; A. Garg and D. Levine, ibid. 59, 1683 �1987�.

�14� L. Turban, F. Iglói, and B. Berche, Phys. Rev. B 49, 12695
�1994�.

�15� L. Turban, P. E. Berche, and B. Berche, J. Phys. A 27, 6349
�1994�.

�16� B. Berche, P. E. Berche, M. Henkel, F. Iglói, P. Lajkó, S.
Morgan, and L. Turban, J. Phys. A 28, L165 �1995�.

�17� P. E. Berche, B. Berche, and L. Turban, J. Phys. I 6, 621
�1996�.

�18� F. Iglói, L. Turban, D. Karevski, and F. Szalma, Phys. Rev. B
56, 11031 �1997�.

�19� J. Hermisson, U. Grimm, and M. Baake, J. Phys. A 30, 7315
�1997�.

�20� J. Hermisson and U. Grimm, Phys. Rev. B 57, R673 �1998�.
�21� A. P. Vieira, Phys. Rev. Lett. 94, 077201 �2005�.
�22� F. Iglói and G. Palágyi, Physica A 240, 685 �1997�.
�23� P. E. Berche and B. Berche, J. Phys. A 30, 1347 �1997�.
�24� R. J. Baxter, Exactly Solved Models in Statistical Mechanics

�Academic Press, London, 1982�.
�25� M. S. Faria, N. S. Branco, and M. H. R. Tragtenberg, Phys.

Rev. E 77, 041113 �2008�.
�26� E. Müller-Hartmann and J. Zittartz, Phys. Rev. Lett. 33, 893

�1974�.
�27� Once the Bethe lattice has been embedded in the hypercubic

lattice, the path between two spins belonging to different lay-
ers is a N-step self-avoiding walk and the end-to-end distance
L is given by Eq. �4�.

�28� P. Collet and J. P. Eckmann, Iterated Maps on the Interval as
Dynamical Systems �Birkhäuser, Boston, 1980�.

�29� M. Queffélec, Substitution Dynamical Systems, Lecture Notes

FERENC IGLÓI AND LOÏC TURBAN PHYSICAL REVIEW E 78, 031128 �2008�

031128-6



in Mathematics No. 1294, edited by A. Dold and B. Eckmann
�Springer, Berlin, 1987�, p. 97.

�30� J. M. Dumont, Number Theory and Physics, Springer Proceed-
ings in Physics No. 47, edited by J. M. Luck, P. Moussa, and
M. Waldschmidt �Springer, Berlin, 1990� p. 185.

�31� I. Peschel, Phys. Rev. B 30, 6783 �1984�.
�32� P. Pfeuty, Phys. Lett. 72A, 245 �1979�.
�33� The PF sequence results from the two-digit substitutions

S�00�=10 00 S�01�=10 01 S�10�=11 00 S�11�=11 01. In

this case the substitution matrix is constructed by considering
the substitutions on the four letters A=00, B=01, C=10, and
D=11. The TF sequence is more simply obtained via the sub-
stitutions S�0�=0 1 0 and S�1�=0 1 1.

�34� V. L. Ginzburg, Sov. Phys. Solid State 2, 1824 �1960� �Fiz.
Tverd. Tela �Leningrad� 21, 2031 �1960��.

�35� F. Iglói and L. Turban, Europhys. Lett. 27, 91 �1994�.
�36� In this calculation the factor �2k+1�� is replaced by �2k��,

which does not change the leading contribution to the sum.

APERIODIC ISING MODEL ON THE BETHE LATTICE:… PHYSICAL REVIEW E 78, 031128 �2008�

031128-7


