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We review statistical properties of models generated by the application of a �positive and negative order�
fractional derivative operator to a standard random walk and show that the resulting stochastic walks display
slowly decaying autocorrelation functions. The relation between these correlated walks and the well-known
fractionally integrated autoregressive models with conditional heteroskedasticity �FIGARCH�, commonly used
in econometric studies, is discussed. The application of correlated random walks to simulate empirical financial
times series is considered and compared with the predictions from FIGARCH and the simpler FIARCH
processes. A comparison with empirical data is performed.
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I. INTRODUCTION

In recent years, there has been a surging interest in the
application of noninteger order differential operators to de-
scribe different types of temporal and spatial anomalies dis-
played by complex systems �1–9�. For example, a fractional
diffusion equation suitably describes the asymptotic behavior
of independent random walkers on random fractal structures
�1�, and also corresponding fractional Fokker-Planck equa-
tions have been used to model anomalous behavior �2�. Sev-
eral recent reviews can be found in literature covering a vast
field of applications �see, e.g., �3,4��. A treatment from a
mathematical point of view can be found in �5,6�. Closely
related to the present work is the subject of fractional deriva-
tive operators as discussed within the framework of random
walks �7,8� and anomalous transport phenomena �9�.

Random walks also play an essential role in modeling the
time evolution of stock prices. The literature in the field is
huge and we just mention a few papers related to the present
work �10–18�. The different features studied include stock-
index cross correlations �10�, probability distribution func-
tions of logarithmic returns �11–18�, the leverage effect �14�,
stock-stock cross correlations and market internal structure
�16�, tick-by-tick behavior �17�, and nonstationarity issues
�18�.

A successful and widely used model to describe price
variations is based on an autoregressive process with condi-
tional heteroskedasticity �ARCH� due to Engle �see, e.g.,
�19��, of which simple variants have been recently suggested
�20,21�. Further variants of ARCH models have been re-
cently discussed with regard to volatility �22,23�. ARCH-
type models have been generalized to incorporate a long-
time memory in the surrogate time series, in an attempt to
mimick the strong autocorrelations observed in volatility and
absolute returns �24–29�.

The issue of long-time autocorrelations, or long-time
memory, in time series is intimately related to the concept of
the Hurst exponent, introduced by Hurst many years ago to
describe the persistence observed in the behavior of Nile
floods �30�. Motivated by these ideas, Mandelbrot introduced
a few years later a long-time memory model known as frac-
tional Brownian motion �FBM�, being stationary on all time

scales, as an attempt to model such anomalous phenomena
�31�. Rigorous mathematical aspects of FBM can be found in
textbooks �32�, the latter including also a discussion of Lévy
processes with long-time memory. A recent work considers
other aspects of the FBM model �33�.

The problem of accurately determining the Hurst expo-
nent of a time series has been the subject of intense activity,
started with the description of persistence in DNA sequences
in which the detrended fluctuation analysis has been intro-
duced �34�. Further developments were achieved based on
Haar wavelets �35� and its generalization to higher orders
�36�. In the present work, we will make use of Haar wavelet
techniques to analyze the surrogate time series and determin-
ing the associated Hurst exponents.

In this work, we apply a fractional derivation �and inte-
gration� operator to an uncorrelated random walk, obtained
within a simple ARCH prescription, to generate a surrogate
financial time series with uncorrelated variations on all time
lags, but having a slowly decaying autocorrelation for the
absolute variations, representing the absolute returns. This
process is denoted as fractional random walk ARCH
�FRWARCH� and we show that it has finite second moments,
in contrast to the fractionally integrated autoregressive pro-
cesses with conditional heteroskedasticity �FIGARCH� char-
acterized by an infinite variance. We will conclude that
FRWARCH can become a useful tool in econometrics appli-
cations.

The paper is organized as follows. In Sec. II, we briefly
review the fractional derivative operator and its main prop-
erties. In Sec. III, we discuss the effects of applying a frac-
tional derivative �and fractional integration� operator to a
standard random walk. The scaling properties of the resulting
fractional random walk are discussed. Section IV is devoted
to FRWARCH processes, for which the associated probabil-
ity distribution functions and autocorrelations are studied. In
Sec. V, we review the widely used FIGARCH process and
discuss several of its properties in comparison with those of
FRWARCH. In Sec. VI we briefly consider, for complete-
ness, the simpler fractionally integrated ARCH models cur-
rently used in the literature. In Sec. VII we present a brief
comparison of FRWARCH and FIGARCH with empirical
data to see how they actually perform in more realistic situ-
ations. Reference is made to a simpler generalized ARCH
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model without long-range memory, but having a slowly de-
caying autocorrelation function, to better understand the role
of memory in the models presented here. Finally, Sec. VIII
summarizes the main conclusions of the work.

II. FRACTIONAL DERIVATIVE OPERATOR

Let us consider a time-dependent function y�t� recorded at
times t= i�, where 0� i�N and � is the time resolution. For
simplicity, we will indicate the associated time series as yi.

In the following, we study the fractional derivative �finite
difference� operator of fractional order �, D�

���, known in the
literature as the Grünwald-Letnikov scheme �see, e.g., �7,9��,
which is defined as

D�
���yn =

1

���
i=0

n

�− 1�i��

i
�yn−i, �1�

where

��

i
� =

��� + 1�
��i + 1���� + 1 − i�

�2�

is the binomial coefficient and ��x� is the Gamma function
�37�.

For the numerical implementation of Eq. �1�, it is more
convenient to work out an equivalent expression for the bi-
nomial coefficients in Eq. �2�. This will also allow us to
make contact with long-range memory models known from
the financial literature. Using the properties of the ��x� func-
tion �37�, ��1+z�=z��z� and i!=��i+1�, one can show that,
for i�1,

��

i
� =

��� − 1��� − 2� ¯ �� − i + 1�
i!

, �3�

where the numerator is a polynomial of ith degree in �.
Using Eq. �3�, Eq. �1� becomes

D�
���yn =

1

���yn − �yn−1 +
�

2!
�� − 1�yn−2 − ¯ + �− 1�n �

n!
�� − 1� ¯ �� − n + 1�y0� . �4�

In what follows, we will consider values of � in the range
−1���1. Indeed, it is easy to see from Eq. �4� that the case
�=1 corresponds to the �Euler� first-order derivative of yn,
i.e.,

D�
�1�yn =

1

�
�yn − yn−1� , �5�

while the value �=−1 yields the integral of yn,

D�
�−1�yn = ��yn + yn−1 + yn−2 + . . . + y0� = �

i=0

n

yi� . �6�

It is also instructive to derive the asymptotic behavior of the
coefficients in the expansion of the fractional operator. To do
this, we write Eq. �3� in the form

��

i
� = �− 1�i �0 − ���1 − ���2 − �� ¯ �i − 1 − ��

i!
. �7�

Now, using the relation � j=0
i−1�j+z�=��i+z� /��z� �37� in Eq.

�7�, with z=−�, the coefficient Ci
�����−1�i� �

i � can be written
as

Ci
��� =

��i + z�
��z�i!

=
��i − ��

��− ����i + 1�
= −

�

��1 − ��
��i − ��
��i + 1�

,

�8�

which yields the correct result also for i=0, i.e., C0
���=1.

Exploiting the large argument expansion ��az+b�
	exp�−az��az�az+b−1/2, one can obtain the asymptotic behav-
ior of Ci

��� for large i as

Ci
��� 	 −

�

��1 − ��
i−�1+��, i 	 1, �9�

which is positive for ��0 and negative for �
0. Results
for 
Ci

���
 are plotted in Fig. 1 in double logarithmic scale for
few a representative values of �. To be noted is the rather
quick approach of the actual value of Ci

��� to its asymptotic
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FIG. 1. �Color online� Absolute value of the coefficients 
Ci
���


vs index i, for different values of the fractional order �=−0.2
�squares�, −0.1 �circles�, 0.1 �diamonds�, and 0.2 �triangles�. The
symbols represent the numerically evaluated coefficients using Eq.
�3� and the straight lines the asymptotic result, Eq. �9�. The results
for �=0.2 have been multiplied �downshifted� by a factor 1 /5 for
clarity.
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form Eq. �9�. This feature can be used in numerical calcula-
tions where Ci

��� can be replaced by Eq. �9� when the differ-
ence between the two is sufficiently small.

It is natural to refer to D�
��� as a fractional derivative op-

erator for values 0���1 and as a fractional integral opera-
tor when −1���0. This can be seen in the case that yn
	n�. In fact, the action of the fractional operator, which will
be denoted as

D�
���yn � yn

��� =
1

���
i=0

n

Ci
���yn−i, �10�

can be estimated for large n using the asymptotic behavior
for Ci

���, Eq. �9�. Roughly, we can write yn
���

	�1
ndx x−�1+���n−x��. When ��0 and n	1, the largest con-

tribution to the integral comes from the smallest values of x,
yielding yn

����n��1
ndx x−�1+���n�−�. Thus,

D�
���yn 	 n�−�. �11�

We show in Fig. 2 numerical examples of the fractional op-
eration D1

���yn �i.e., �=1� in the case yn=1 ��=0�, as an
illustration of the result Eq. �11�. Note that for a constant
function yn, the slope of the curves is just minus the order of
the fractional operator. To be noted also is the rather quick
approach of the fractional operator result Eq. �10� to its
asymptotic behavior Eq. �11�, already for small values of n.

III. FRACTIONAL RANDOM WALKS

Let us consider the case in which yn represents a standard
random walk �RW�, and assume the time resolution �=1 for
convenience. Specifically, yn is constructed as a sum of in-
dependent, equally distributed random numbers, �. Without
loss of generality, let us assume the latter are drawn from a
Gaussian distribution of zero mean and unit standard devia-
tion, i.e., ��=0 and �2�=1, yielding �=1. Thus,

yn = �
i=1

n

�i, 1 � n � N , �12�

where we take y0=0 for simplicity. We are interested in
studying the behavior of the associated fractional random
walks �FRW’s�, obtained by applying the fractional operator
D1

��� to the random walk “profile” yn, Eq. �12�, D1
���yn=yn

���.
Examples of fractional walks yn

��� are illustrated in Fig. 3.
As is apparent from the figure, the amplitude of the fractional
walks increases for negative � with respect to the uncorre-
lated case yn, while for positive � the amplitude of the walks
gets smaller. The question is whether the fractional walks are
also statistically different from the uncorrelated case in the
sense that long-range autocorrelations are present. Before
discussing this quest, let us consider next the distribution
function of the increments of a FRW.

A. Probability distribution functions

The increments of a fractional random walk are denoted
as

�yn
��� = yn

��� − yn−1
��� . �13�

For a standard random walk, as in Eq. �12�, one simply has
�yn=�n, which is a local function of the time step n, i.e.,
independent of the previous values of �i, i�n. In contrast,
for any fractional order � ��0�, we find

�yn
��� = �

i=0

n

Ci
���yn−i − �

i=0

n−1

Ci
���yn−1−i

= Cn
���y0 + �

i=0

n−1

Ci
����yn−i − yn−1−i� = �

i=0

n−1

Ci
����n−i,

�14�

where we have taken y0=0. Thus, for fractional �, the
increments of the fractional random walk, �yn

���, require
the knowledge of the whole history of the walk, ��i�, with
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FIG. 2. �Color online� Fractional function yn
���=D�

���yn vs index
n, in the case yn=1 �i.e., �=0�, �=1, for different values of the
fractional order: �=0.4 �squares�, 0.2 �circles�, −0.2 �diamonds�,
and −0.4 �triangles�. The symbols represent the numerical results
using Eq. �4�, and the straight lines the asymptotic form, Eq. �11�.
The dashed line corresponds to the original series yn.
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FIG. 3. �Color online� Fractional random walks: Plots of yn
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versus time step n, for selected values of � as indicated on the plot.
The standard RW corresponding to �=0, yn

�0��yn is also shown for
comparison. The walks consist of N=32 000 steps each.
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1� i�n. This result suggests that FRW’s may possess long-
range autocorrelations, as we will indeed see below.

The probability distribution function �PDF� of the incre-
ments, denoted as G�g�, is a function of the scaled variable
g�gn= ��yn

���− �yn
����� /�, where � is the standard devia-

tion of �yn
���. If � is normally distributed, G���=G0���

= �2��−1/2 exp�−�2 /2�, so is also G�g�. This does not hold in
general for distributions G����G0��� because the coeffi-
cients Ci

��� in Eq. �14�, weighting the �n−i’s differently, can
yield effectively nonindentically distributed random numbers
and the central limit theorem does not hold. To see this in a
simple case, consider that Ci

���=exp�−i /��. Now, if �→0
then G�g�=G���. Also for finite ��1, the distribution G�g�
will not be Gaussian. In the present case, we illustrate this
behavior by assuming that G���=exp�−
�
�. The correspond-
ing PDF’s for g are shown in Fig. 4 in the case �=−0.2 for
series of different length N, where 0�n�N. As one can see
from the figure, G�g� remains exponentially distributed, at-
taining the form G�g�	A exp�−
g
 /A�, with A	0.7.

B. Autocorrelations

Since for a standard RW the profile behaves, in a statisti-
cal sense, as yn�n1/2, actually meaning that �yn−yn+m�2�
�
m
, the fractional random walk obeys, for −1���1,

yn
��� 	 n1/2−�, �15�

corresponding to �yn
���−yn+m

��� �2��
m
1−2�. Identifying in Eq.
�15� the power of n with the Hurst exponent H �30�, we find

H =
1

2
− � and � =

1

2
− H . �16�

Here, we are interested in cases where 0�H�1, yielding for
� the range of variation −1 /2���1 /2. The case H=1 /2
corresponds to standard �uncorrelated� behavior, values H

1 /2 indicate persistence or long-time autocorrelations,

while values H�1 /2 yield antipersistence or negative auto-
correlations.

The Hurst exponent also determines the behavior of the
autocorrelation function of the increments �yn

���, C��m�,
which is given by C��m�= gngn+m�. If long-range memory is
indeed present, the autocorrelation function is expected to
obey the scaling behavior C��m��
m
−2�1−H� �see, e.g.,
�34,36��, yielding

C��m� 	 − sgn���
m
−�1+2��, 
m
 	 1. �17�

To detect the presence of long-range memory for a frac-
tional random walk yn

���, we apply the method known in the
literature as the fluctuation analysis �FA� �36� based on Haar
wavelets �HW’s� �35�, consisting in studying the scaling be-
havior of yn

��� on the time scale t. To do this, the total number
of points in the series, N, is divided into consecutive non-
overlapping segments of length ��1, corresponding to the
time scale t=��. Inside each segment s, 1�s�N /�, the av-
erage of yn

���, denoted as Bs���, is evaluated according to

Bs��� =
1

��
j=1

�

y�s−1��+j
��� . �18�

The FAHW approach consists in studying the fluctuations of
the profile on the time scale �= t /�, defined as

F��� = �Bs��� − Bs−1����2�1/2, �19�

corresponding to the first-order Haar wavelet, and the aver-
age is performed over all consecutive boxes s and s−1. To be
noted is that Eq. �19� can be generalized to higher-order
wavelets �36�.

The dependence of F��� on � is expected to obey a scal-
ing behavior of the form

F��� � �H, �20�

from which one can obtain the Hurst exponent H. Results for
the fractional orders considered in Fig. 3 are reported in Fig.
5. The results support the expectations of the existence of
long-range memory for FRW’s. If one considers values of �
outside the range −1 /2���1 /2, the corresponding expo-
nent H will fall outside the standard interval 0�H�1. In
such cases, higher-order wavelets analysis is required in or-
der to detect such values of H �see �36��.

IV. FRACTIONAL RANDOM WALKS FOR FINANCIAL
TIME SERIES

It is well known that the daily log-return, i.e. the variation
of the logarithm of asset price Pn at day n, denoted as �Sn
=ln Pn−ln Pn−1, is not correlated with its variations �Sn��n

and the corresponding PDF displays power-law tails, G�g�
�
g
−� with ��4 �see, e.g., �11,16��. In addition, absolute
log-returns, that is, 
�Sn
, appear to be long-range autocorre-
lated �see, e.g., �13,38��. We aim at modeling these features
using the FRW described above for negative values of �.

In order to obtain a PDF for log-returns displaying power-
law tails, we resort to a simple autoregressive conditional
heteroskedastic model �19�. We define the log-returns ac-
cording to
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FIG. 4. �Color online� PDF G�g� for fractional random walk
variations �yn

��� as a function of the scaled variable g= ��yn
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����� /� in the case �=−0.2 �see Fig. 3�, for series of different

length N �0�n�N� indicated in the inset. The continuous line is
the normal distribution, while the dashed line is the exponential
form f�g�=A1 exp�−
g
 /A2�, with A1=0.72 and A2=0.7.
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�Sn = n�n, n � 1, �21�

where �n are uncorrelated random numbers drawn from a
normal distribution with zero mean and unit variance, i.e.,
�n

2�=1 and �Sn�Sm�= ��S�2��n,m. The standard deviation
n changes in time according to the ARCH prescription

n
2 = a + b��Xn−1

��� �2, �22�

where �Xn−1
��� is proportional to the fractional integral of

�Sn−1, Eq. �10�,

�Xn−1
��� =

1

An−1���
D1

����Sn−1, � � 0, �23�

and the factor An−1���=��i=0
n−1�Ci

����2 ensures the constancy
of the second moment ��Xn−1

��� �2�. Indeed, using Eq. �10� the
latter becomes

��Xn−1
��� �2� =

1

An−1
2 ����i=0

n−1

�Ci
����2��Sn−1−i�2� ,

���S�2� = A
2 , �24�

where we find A
2 =a / �1−b� according to Eq. �22�. Plots of

An��� are shown in Fig. 6. The present combination of a
FRW with ARCH will be denoted for brevity FRWARCH.

In the following, we discuss numerical results to illustrate
the implementation of FRWARCH. We consider the frac-
tional order �=−0.4, together with the ARCH parameters a
=0.5 and b=0.7. To improve the accuracy of the numerically
obtained PDF of �Sn, we have considered walks of up to
N=105 time steps and averaged over 100 configurations. The
results for the PDF, G�g�, are plotted in Fig. 7 as a function
of the scaled variable g. A simple fit has been conducted to
the numerical results suggesting a broad distribution function

with power-law tails, G�g��
g
−�, for 
g
	1, with �	3.7,
the latter consistent with the value expected analytically
�20,21,39�.

The fluctuation analysis of FRWARCH time series is re-
ported in Fig. 8, where we plot the function F��� as a func-
tion of time scale � for �Sn and its absolute value 
�Sn
,
together with the behavior of the fractional process �Xn

���,
Eq. �23�. As expected, log-returns �Sn display uncorrelated
behavior �H�S	0.5�, while the corresponding absolute re-
turns show persistence on long time scales with an effective
exponent H
�S
	0.8.

We also include the results for �Xn
��� indicating that for

the fractional process the effective Hurst exponent, H�X
	0.87, is close to the expected value H=1 /2−�=0.9. We
conclude that the long-time memory induced in absolute re-
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FIG. 7. �Color online� PDF G�g� for FRWARCH variations �Sn

as a function of the scaled variable g= ��Sn− �Sn�� /A, in the case
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turns is a bit weaker than the one for the fractional process
�Xn

���. However, the value of H
�S
	0.8 is still consistent
with the time decay of the autocorrelation function observed
in empirical data for which the corresponding Hurst expo-
nent typically varies within the range 0.7�H
�S
�0.9
�16,38�.

V. FIGARCH RECONSIDERED

We briefly review the main properties of FIGARCH mod-
els �27� relevant for our present discussion. Let us start with
the GARCH model �25�, which is considered here in its sim-
plest form. It is defined analogously to Eqs. �21� and �22�,
where now

n
2 = a + b��Sn−1�2 + cn−1

2 , �25�

and a ,b ,c are positive constants. The mean variance be-
comes

G
2 =

a

1 − �b + c�
, �26�

which is finite provided that b+c�1. In order to discuss the
FIGARCH model, one resorts to the fractional differencing
operator, defined as

�1 − L�� = 1 − �L −
1

2!
��1 − ��L2 −

1

3!
��1 − ���2 − ��L3

¯

= 1 − �
i=1

�

Ci���Li, �27�

where 0���1, Ci���
0, and L is the lag operator, defined
according to Lixn

2=xn−i
2 . Analogously to Eqs. �3�, �8�, and �9�,

the coefficients Ci��� above behave for large i according to

Ci��� �
�

��1 − ��
i−�1+��, i 	 1. �28�

Note that Ci���=−Ci
���, for �
0, as can be seen from Eq.

�8�. Finally, taking L=1 in Eq. �27�, one finds the general
sum rule, R���=�i=1

� Ci���=1, valid for 0���1.
The standard way of introducing FIGARCH is to write

Eq. �25� using the lag operator L in the form

�1 − bL − cL���Sn�2 = a + �1 − cL����Sn�2 − n
2� , �29�

and insert the differencing operator �1−L�� in the left-hand
side of the above relation, yielding,

�1 − bL − cL��1 − L����Sn�2 = a + �1 − cL����Sn�2 − n
2� .

This is a generalization of the �=1 integrated GARCH �or
IGARCH� model �27� to the case of a fractional exponent
0���1.

Expanding the operator �1−L�� according to Eq. �27�, we
find

n
2 = a + b��Sn−1�2 + cn−1

2 + �
i=1

�

Ci������Sn−i�2

− �b + c���Sn−1−i�2� , �30�

which, using the relation Ci−1��� /Ci���= i / �i−1−��, be-
comes

n
2 = a + �b + ����Sn−1�2 + cn−1

2 + �
i=2

�

Ci���f i��,b,c���Sn−i�2,

�31�

where

f i��,b,c� =
�i − 1��1 − b − c� − �� + b + c�

i − 1 − �
. �32�

Stability of the process is achieved when the coefficients
f i�� ,b ,c�, Eq. �32�, are positive, yielding the minimal condi-
tion

� + 2�b + c� � 1. �33�

From Eq. �30�, we can write the mean variance for FI-
GARCH as

F
2 =

a

�1 − �b + c���1 − R����
, �34�

which diverges for all 0���1, because R���=1. In the case
0���1 /2, the autocorrelation function of n

2 for a FI-
GARCH process decays as the power law �27�

C��� � 
�
−�1−2��, 
�
 	 1. �35�

Writing the latter as C����
�
−2�1−H� �see above Eq. �17��, we
find the relation �=H−1 /2.

In practical calculations, the sum in Eq. �31� has a finite
number of terms, with an upper memory cutoff that we de-
note as M0. For finite M0, the sum R����1 and as a result
the mean variance of the process is finite. In order to improve
the convergence of the finite M0 case to FIGARCH, one can
use renormalized coefficients �27,28�,
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FIG. 8. �Color online� Fluctuation analysis for FRWARCH time
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C̃i��� =
Ci���

�i=1
M0Ci���

, �36�

so that R̃���=�i=1
M0C̃i���=1. The final expression for n

2 then
reads

n
2 = a + �b + �̃���Sn−1�2 + cn−1

2 + �
i=2

M0

C̃i���f i��,b,c���Sn−i�2,

�37�

where �̃=� /�i=1
M0Ci���.

In order to make contact with the FRW results discussed
in Sec. IV, we consider the simpler case c=0 in Eq. �31�, and
take a=0.01 �in order to obtain a mean standard deviation
similar to that of FRWARCH�, b=0.33 �in order to get a
power-law PDF as in Fig. 7�, and �=0.3. The latter is chosen
to yield the same value of H=0.8 characterizing the autocor-
relation of absolute returns obtained from FRWARCH in the
case �=−0.4. Note also that the chosen value of b obeys the
boundary condition Eq. �33�.

Results for the PDF of �Sn, obtained in the case N=M0
=105, are shown in scaled form in Fig. 9. Also here, G�g�
�
g
−�, for 
g
	1, with �	3.9, as for the FRWARCH in
Fig. 7. Finally, results of the fluctuation analysis are dis-
played in Fig. 10, supporting the expectation that for log-
returns no correlations are present, while for absolute log-
returns the effective Hurst exponent is consistent with H
=1 /2+�=0.8.

VI. FIARCH RECONSIDERED

There are other models currently used in literature regard-
ing long-time memory of absolute log-returns and variable

volatility. We briefly comment on them in order to better
assess the impact of FRWARCH suggested here. Let us con-
sider the fractionally integrated ARCH process �40�, variants
of which have been studied recently �15,41�. The model is
based on the equations

�Sn = n�n, n � 1, �38�

n = 0�
i=1

M0

C̃i���

�Sn−i


�Sn
�

, �39�

where �n are independent normally distributed random num-
bers ��n

2�=1� and 0���1 /2 as for FIGARCH. According

to the sum rule �i=1
M0C̃i���=1 �see Eq. �36��, Eq. �39� yields

n�=0. Thus, log-returns �Sn are uncorrelated to each
other while absolute returns 
�Sn
 display long-time memory.
As one can see from Eq. �39�, the only free parameters are �
and 0 �42�, in contrast to the three parameters for
FRWARCH. This has consequences on the shape of the PDF
as we can see from the numerical results reported in Fig. 11.

The resulting PDF for FIARCH is indeed consistent with
a power-law distribution at the tails, but the power-law ex-
ponent turns out to be large, here ��6, and can not be
controlled by tuning a model parameter. Indeed, the value of
�=0.3 is fixed by the condition that H=0.8. Results of fluc-
tuation analysis for FIARCH �not shown here� confirm that
in this case H�0.8. Thus, it appears that additional degrees
of freedom, in terms of model parameters, are required in Eq.
�39� in order to obtain PDF’s with varying shapes.

To do this, we suggest a slight generalization of Eq. �39�
to the form
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FIG. 9. �Color online� PDF G�g� for FIGARCH variations �Sn

as a function of the scaled variable g= ��Sn− �Sn�� /F, in the case
a=0.01, b=0.33, and �=0.3. The surrogate series considered con-
sist of N=105 time steps each, with a memory cutoff of M0=105

time steps. �Note that each time series is actually 2N long, so that
each of the N time steps considered in the average process is a
function of its previous N steps.� Averages over 100 configurations
were performed. The continuous line has the form f = f0 / �1
+ 
g /g0
��, with f0=0.42, g0=1.08, and �=3.9. Here, we find F

	1.20 and �̃=0.307.

��
����

��
��
��
�����
����
�����
����
����
����
����
����
������

���
���
�����

���
�����

���
�����

��
���
��
�
��
���
��
���
��
��

��
����

��
��
����
��
�
�����
����
��
��
������

��
��
����
��
��
����
��
��
����
��
��
����
��
��
��
�
���
����
��
�
�
��
����
��
�
�����
��
�
�
�
���
��
�
��
�����
��
�

10
0

10
1

10
2

10
3

10
4

Time scale

10
0

10
1

10
2

10
3

Fl
uc

tu
at

io
n

fu
nc

tio
n

|∆S
n
| (H=0.80)

��
��

∆S
n

(H=0.50)��
��

LogR

|LogR|

FIG. 10. �Color online� Fluctuation analysis for FIGARCH time
series in the case �=0.3. Plotted is the fluctuation function
F��� /F�1� vs time scale � for log-returns �circles� and absolute
log-returns �squares�. The straight lines have slopes H as indicated
in the inset. The fluctuation analysis �FAHW� was done on a single
time series of length N=105 with M0=105 steps.
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n = 0�
i=1

M0

C̃i���

�Sn−i


�Sn
�

+ b
�Sn−1
 , �40�

where the mean standard deviation now can be obtained as
n�=0+b
�Sn−1
�=0+bn−1�
�n−1
�, yielding

n� =
0

1 − b
�n
�
. �41�

Note that for a normal distribution 
�n
�=�2 /��0.8.
Although the additional parameter b actually helps in get-

ting different decaying power-law exponents � for the PDF,
the model behaves similarly to FIGARCH in the sense that
there is no a priori way to estimate b and this has to be done
case by case. The numerical examples investigated �see Fig.
12� suggest that appropriate set of parameters can be found
but at the expense of a numerical search.

VII. COMPARISON TO EMPIRICAL DATA

In this section, we discuss results for FRWARCH and
FIGARCH with regards to empirical data. For the latter, we
take daily data for the Dow-Jones index, IDJ�n�, from 1st
October 1928 to 16 May 2008 �43�, consisting of 19 994
values. As the working variable, we consider the daily
changes of the logarithm of the index, �Sn� ln IDJ�n�
−ln IDJ�n−1�. The corresponding PDF is shown by the full
circles in Fig. 13. To be noted is that nonstationarity issues
may play a role for the Dow-Jones index as discussed in
�44�. Here, we disregard such corrections and assume the
series as stationary.

In the following we consider series of N=20 000 values.
Regarding FRWARCH, we use a=0.5, b=0.7, and �=−0.4.
FIGARCH results are obtained for the case a=0.015, b

=0.2, and �=0.4 �here also c=0�, and we have taken M0
=20 000. In addition to these long-memory models, we con-
sider for illustration a short-memory model such as the
GARCH version discussed in Eq. �25�, for the model param-
eters a=0.2, b=0.09, and c=0.9. Alternatively, we will also
discuss the set b=0.9 and c=0.09. Results for the PDF’s are
shown in Fig. 13. To be noted is that both FRWARCH and
FIGARCH yield PDF’s in good agreement with the empiri-
cal one. The results from GARCH are not so satisfactory, for
the chosen set of parameters. If we take instead the alterna-
tive set �b=0.9 and c=0.09�, the agreement becomes compa-
rable to that with FRWARCH and FIGARCH. The reason for
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FIG. 11. �Color online� PDF G�g� for FIARCH variations �Sn

as a function of the scaled variable g= ��Sn− �Sn�� /F, in the case
0=1.2 and �=0.3 �full circles�. The FIARCH series consisted of
N=105 time steps each, with a memory cutoff of M0=105 time
steps. Averages over 100 configurations were performed. The con-
tinuous line has the form f = f0 / �1+ 
g /g0
��, with f0=0.39, g0

=1.22, and �=5.7. Here, we find n
2�1/2	1.30 and �̃=0.307. For

comparison, results from FIGARCH �open circles, taken from Fig.
9� have been included.

��
���
�

��
��
��
����
��
�
�

��
����
����

��
��
��
�
�
�
�

�
�
�
�
�
�

�
�
��
������

��
��
��
����
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
��
������
��

��
��
��
��

����

�
�

�
�
�
�
�
�

�
���
�

�
�
�
�

��
����
����
��

��
��

��
��

��
��

��
��
�
�
�
��
�
�
�
�
�
��
�
���
��
��
��

��
����
��
��
��
��

��
��

��
��
����
���
�

�
��
�

�
�

�
�
�
�
�
�

�
�
�

�
���
��
����
��
��
��
����
��
��
��

��

�
�

�
�
�
���
�
��
�
�
�
�
�
�
�
�����
��
��
��
��
��
��
��������
��
����
��
��
�
�����
��
��
�
�
�
�
������
��
������
��
����
��
��
��
��
��
��
��
�
�
�
��������
�
�
�
�
�
��
��
��
��
��
����������������
��
��
��
�
�
�
�����
�
�
�
�
�
�
�
�
������������
��
��
��
��
����������
��
�
�
�
�
�
������
�
�
�
�
������
��
��
��
��
��������
��
��
��������
��
�
����
�
�
���
�
�
���
����
��
��
������
��������
��������
��
��
�����������
�
�
�
�
����
��
��
����
��
��
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
���
��
��
��
��
����
��
��
��
��
��
��
������
�
�
�
�
�
�
���
�
�
�
�
�
�
������
��
��
��
��
����������
��
��
��
��
���
�
����
�
��
�
�
�
�
����
��
��������
��
��
��
��
��
��
��
��
��
��
�����
�
�
�
��
�
��
�
�
����
��
��
��
������
��
������
��
��
��
��
�
�
�
�
�
�
�����
�
��
��
������
��
��
��
��
����
����
��
��
��
��
�������
�
��
�
�
�

�
�
�
����
��
������
��
������
��
��
��
��

��
�����
�
�
�
�
�
���
�

�
����
��
��

����
��
��
��
��
��
����
����
�����
��
�
�

�
��
���

�
�
�
�
��
��
����

��
��
����
����
��
����

��
��
�
�

�
�
�
�

�
��
�
�
��
�

�
�
�

��
��
��
��

��
����
��

��
��
��
��
��
��

��
��
�
��
�
�
�
�
�
�
�
�
�
�
�

�
���
����
��
����
��
��

��
��
��
��
��
��
��

�
��
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
����
��

�
�
�
�
�
�
��
��
��
��
��
���
�
�
�

�
�
��

��
��
��
��

�
�
��
��
��
��
��
��
�
��
�
�
�

�
�
��

��
����
��

��
��
��
�
�

�
�
�
�
��
��
��

��
����
��
��
��
��
���

�
�
�
�
�
�
��
�
���
�
��

��
����
��������
��
��
��
��

��
��

��
��
��
�
�
�
�

�
���
�
�
�
�

�
�
��
��
����
��

��
����
��
��
��
��
��
��
����
��
����

�
��
��
��
��
�

�
�
���
�
��
��
����
��
��
��
������
��
��
��������
��

��
��
�
�
�
��
�

�
��
�
�
�
�
�
�
��
�
�
��
��
��
����
��

��
��������
��
������
����
��
��
�
�
�

�
���
�
�
�
�
�
�
�
�
���
��
����
��
����
��
��
��
��
��
��
��
��
��
��
������
�
���
�
�
�
�
�
�
�
�
�
�
�
�
��������
��
��
��
��
��
��
������������
��
��
�������
�
�
�
�
�
�
�����
��
��
��
��
��������
��
��
��
��
��������
��
��
�����
�
�
����
�
�
���
�
��
������
��
��
������
������
��
��
����
��
��
����
����
���
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
�
�
�
�
��
�
�
�
�
��
�
�
��
��
����
��
��
��
��
��
��
����
��
��
��
��
��
��
����
�
�
�
�
�
�
���
�
�
�
�
��
��
����
��
����
��
��
��
��
��
��
��
��
��
��
����
�
�
�
��
�
�
�
�
�
�
���
�
�
��
��
��
��
��
��
����
��
��
��
��
��
��
��
����
��
��
��
��
�
�
�
�
�����
�

�
��
�
���
��
��
��
����
��
��
��
��
��
��
������
��
����
�
��
�
�
�
�
�
�
�
�
�����
��
��
��

��
����

��
��
��
��
��
��
��

��
��
��
��
��
��
�
��
�
�
�
�
�
�
�
��

�
��
��
�
��
��
��
��

��
����
��
��
��
��
��
��
��

��
����
����
����
�
�
��
��
�

�
�
�
��

�
���
��
��
��
��
��

��
��

��
��

��

��
����
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�

�
�
�
�
���
��

��
��

��
����
��
��
��

��
��
��
��
��
��
�
�
�
�
��
��
��

��
��
��
��
��
��
��
����
��

�
�
�
��
�

��
����
��

�
�
�
���
��

-30 -20 -10 0 10 20 30
g

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

G
(g

)

β=3.7

FIG. 12. �Color online� PDF G�g� for modified FIARCH varia-
tions �Sn as a function of the scaled variable g= ��Sn− �Sn�� /F,
in the case 0=0.67, b=0.38, and �=0.3 �full circles�. The FI-
ARCH series consisted of N=105 time steps each, with a memory
cutoff of M0=105 time steps. Averages over 100 configurations
were performed. The dashed line has the form f = f0 / �1+ 
g /g0
��,
with f0=0.51, g0=0.75, and �=3.7. Here, we find n

2�1/2	1.30

and �̃=0.307. For comparison, results from FRWARCH �open
circles and continuous line, taken from Fig. 7� have been included.
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FIG. 13. �Color online� PDF G�g� for variations �Sn as a func-
tion of the scaled variable g= ��Sn− �Sn�� / for Dow-Jones index
�full circles�, FRWARCH �open squares�, FIGARCH �filled dia-
monds�, and GARCH �open down triangles�. The model parameters
are indicated in the text.
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the first choice is based on the behavior of the fluctuation
function for absolute returns, as we see below.

The fluctuation function of absolute log-returns for the
Dow-Jones index is displayed by the full circles in Fig. 14.
We find power-law behavior over about three decades with a
Hurst exponent H	0.9, indicating a strong persistence in the
autocorrelation function of absolute log-returns. Similar be-
havior is displayed by 
�Sn
 for FRWARCH �open squares�,
where the latter almost overlap with the empirical ones. Also
FIGARCH yields results in good agreement with the Dow-
Jones values, although the agreement is not as good as for
FRWARCH. In contrast, GARCH yields good results only
for time scales below about 100 days. On larger times, the
GARCH fluctuation function displays uncorrelated behavior
with exponent H=1 /2, indicating the existence of only short-
range autocorrelations in the time series, as expected. If we
use the second set of values �i.e., b=0.9 and c=0.09� for
GARCH, the PDF improves considerably, but the fluctuation
function crosses over to the uncorrelated regime �H=1 /2�
already at about ten days, yielding a poor fluctuation behav-

ior. These results suggest that a “long-range” memory is a
necessary ingredient in a surrogate model, like the one de-
scribed by FRWARCH or FIGARCH.

VIII. CONCLUSIONS

Fractional derivatives represent a conceptually simple
scheme that allows us to build, from a standard random
walk, stochastic processes with long-range autocorrelations.
The long memory built into the walks is controlled by the
order of the fractional operator. Positive orders correspond to
fractional derivatives and negative ones to fractional integra-
tions. The former lead to fractional random walks with
negative �or antipersistent� autocorrelations and the latter to
positive �or persistent� autocorrelations. Long-time autocor-
relations decay as a power law for long time lags, the expo-
nent of which depends on the Hurst exponent associated with
the walks, the latter being a function of the fractional opera-
tor order. Examples have been studied to illustrate the use of
fluctuation analysis based on Haar wavelets to determine the
corresponding Hurst exponents. The results indicate that a
constant Hurst exponent is consistent with a wide range of
time scales, suggesting that FRW’s are essentially stationary
for most practical purposes. A FRW model has been dis-
cussed for describing the behavior of both log-returns and
their absolute values observed in empirical data of financial
assets, which is based on a simple autoregressive �ARCH�
scheme and denoted as FRWARCH. Absolute log-returns, as
well as volatility, display strong autocorrelations, and the
proposed FRW model seems to capture the essential features.
Statistical properties of the present model have been com-
pared with the predictions of FIGARCH and FIARCH pro-
cesses, to illustrate the difficulties that are found in practical
calculations. We may conclude that FRWARCH turns out to
be as accurate as FIGARCH regarding long-time memory
features and it appears to be more stable than the latter with
regard to distribution functions of log-returns. We therefore
suggest that FRWARCH is suitable for simulating empiri-
cally observed slowly decaying absolute log-return autocor-
relations, competing with the presently available models in
the financial literature, as also demonstrated by a direct con-
frontation with daily close data from the Dow-Jones index.
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