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We present an explicit theory of the degradation and thermal fragmentation kinetics of polymerlike systems
and aggregates with multiple bonds in the presence of stochastic evaporation and condensation (restoration) of
bonds. The analysis is conducted on the basis of the determination of the first passage time to state zero
(fragmented state) in the Ehrenfest diffusion model in continuous time. The main approximations of the
developed theory include the assumption that multiple bonds in any link between the primary elements in the
aggregate do not interact with each other and that the coagulation rate after thermal fragmentation of the
aggregates is negligible (which gives the absorbing zero state in the Ehrenfest model). In particular, it is
demonstrated that even small condensation rates (of ~ 10 times smaller than the rates of bond evaporation) may
have a significant effect on typical evolution times for the degrading aggregates and can result in a strong
accumulation of nanoaggregates in the intermediate fragmentation modes. The simple asymptotic (predomi-
nantly exponential) behavior of the obtained solution at large evolution times is analyzed and discussed. The
results will be important for the investigation of the degradation kinetics of a variety of polymerlike systems
with multiple bonds, including self-arranged structures, polymer networks, different types of nanoclusters and

their thermal fragmentation, etc.
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I. INTRODUCTION

The Ehrenfest model was introduced by Ehrenfest and
Ehrenfest [1] as a model for gas diffusion to help explain
why the entropy of a closed system must increase. This
model considers a system with stochastic birth and death
processes and describes the time evolution of probabilities
for obtaining different possible states of the system, given an
initial state. Typical mathematical treatments of the Ehrenfest
model were developed in [2—4]. Since then, the model has
appeared in a multitude of physical and mathematical con-
texts involving stochastic death and birth processes [5-10].
For example, one of the important physical problems that
could be described by the Ehrenfest model is related to frag-
mentation and degradation of polymerlike structures with
multiple bonds and the possibility of stochastic scission
(evaporation) and restoration (condensation) of bonds. This
includes the kinetics of thermal and radiative degradation
and restoration of double-stranded polymers [11-13], evolu-
tion of fractals and polymer multichains [14,15], biological
macromolecules [16,17], kinetics of self-arrangement and
degradation of reversible polymer networks [18,19], poly-
merization and aggregation of clusters (including sol-gel
transitions) [20-28], and thermal fragmentation of nanopar-
ticle clusters due to stochastic evaporation of bonding mol-
ecules [29-32].

In particular, our previous papers [29-32] were focused
on a detailed experimental and theoretical investigation of
the fragmentation and degradation of airborne nanoparticle
clusters. These clusters were formed by primary particles
held together by means of volatile molecules representing
multiple bonds between them [29-31]. Stochastic evapora-
tion of these volatile molecules is equivalent to random
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scission (degradation) of these bonds, with cluster fragmen-
tation occurring when there are no bonding molecules left
between the primary particles [29,31]. Two different methods
of mathematical analysis of thermal degradation in such
nanoclusters (and other polymerlike systems with multiple
bonds) were proposed and developed, based on the graph
representation of stochastic evaporation of multiple bonds
[31] and direct statistical analysis of Poisson processes of
bond evaporation [32]. However, the presented analysis
[31,32] did not involve the possibility of bond restoration—
e.g., the possibility of condensation of bonding molecules in
airborne nanoclusters. At the same time, such stochastic con-
densation or restoration processes are common in realistic
situations involving the evolution of airborne nanoclusters,
self-arrangement and degradation of reversible polymer net-
works [18,19], degradation and restoration of biological
macromolecules [16,17], etc.

The consideration of stochastic evaporation and conden-
sation processes (representing death and birth processes) for
multiple bonds in polymerlike structures—e.g., airborne
nanoclusters with volatile bonding molecules—can be con-
ducted using the Ehrenfest model. However, there are sig-
nificant differences with specific applications of this model
to particular physical systems. For example, for reversible
polymer networks with quadruple hydrogen bonds between
the primary elements of the network [18,19], this will be the
standard Ehrenfest model with the maximum number of
bonds between the elements equal to 4. The network will
then evolve in time with the possibility of total fragmentation
into separate primary elements (when all the hydrogen bonds
are degraded and links between the primary elements are
broken) and complete restoration when all the links between
the primary elements are restored (having at least one bond
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in each). At the same time, dealing with degradation of air-
borne nanoclusters at low concentrations [29,30] should be
treated differently. This is because, once fragmentation of a
cluster has occurred, the probability of its restoration be-
comes negligible, because of typically much lower coagula-
tion rates [33-35]. Therefore, the fragmented state with zero
bonds in a link between the primary particles (the zero state)
should be regarded as an absorbing state in the Ehrenfest
model, and fragmentation of a link can only occur once
(which corresponds to the first passage to the zero state in the
Ehrenfest model). This situation will also be typical for the
consideration of any other polymerlike systems with small
coagulation or polymerization rates. The analysis in this case
is thus reduced to the determination of the first passage time
for the system to the zero state in the standard Ehrenfest
model.

The theory of hitting times that determines the probability
density distribution for the random variable T (which can be
regarded as the time that it takes for the link to fragment—
i.e., to hit the zero absorbing state) has been well developed
for the Ehrenfest model [4,6,36,37]. However, this analysis
has so far been conducted primarily using numerical ap-
proaches. There have only been a few analytical or semiana-
Iytical attempts undertaken so far.

For example, a significant effort in developing analytical
tools for the analysis of the two-urn and multiple-urn Ehren-
fest models has been undertaken by Karlin and McGregor
[4], who derived explicit equations for the transition prob-
abilities between an initial ith state and a final jth state in
terms of generating functions and explicitly in terms of
Krawtchouk (orthogonal) polynomials. They also investi-
gated the asymptotic behavior of the system at large mo-
ments of time and large values of the maximal number of
births [4]. However, this theory is not applicable for the
analysis of aggregate degradation and fragmentation, be-
cause it does not consider the absorbing (zero) state. In the
earlier paper by Bellman and Harris [6], the authors derived
the equations for the Laplace transforms of the probabilities
to find the system in different states. This approach could
potentially be used for the determination of the first passage
time to the zero absorbing state during the degradation and
fragmentation processes in a nanoparticle aggregate. How-
ever, the required inverse Laplace transform is difficult to
perform other than by means of numerical analysis.

Several other attempts of the explicit analytical analysis
of the theory of hitting times in the Ehrenfest model have
recently been undertaken by Di Crescenzo and colleagues
[7-10,39]. For example, the evolution of the system and the
first passage time to the central state with K/2 number of
births (where K is the maximal possible number of births in
the link) has been analyzed in [9,10]. However, the obtained
explicit equations are applicable for the case with equal rates
for the birth and death processes and large even values of K,
which do not seem to be reasonable assumptions for the con-
sideration of degradation and fragmentation of particle ag-
gregates and other polymerlike systems.

Another interesting approach to the determination of first
passage times was developed in [38] and based on a discrete-
time model similar to the original Ehrenfest model [1]. A
closed-form expression was obtained (through the probabil-
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ity generating function of the first passage time probability
density) for the average relaxation time from an arbitrary
initial two-urn state to an absorbing zero state that corre-
sponds to one or the other urn being empty [38] (although no
explicit expression was obtained for the probability density).
However, this approach is not immediately applicable to the
analysis of degradation and fragmentation processes in poly-
merlike systems with multiple bonds, because the zero state
would correspond to none or all bonding sites being occu-
pied in a fragmenting link of a polymerlike cluster. This
means that the zero absorbing state considered in [38] does
not correspond uniquely to the fragmented state of a link in a
cluster. In addition, the analysis was limited to the case of
even total numbers of balls (i.e., even numbers of bonds),
and the rates at which the balls could be transferred between
the urns were assumed to be the same [38]. In the case of
cluster degradation, this would correspond to the same rate
of evaporation and condensation of the bonds, which is an
unreasonable (over restrictive) physical assumption.

Therefore, the aim of this paper is to develop an approach
for the explicit continuous-time analytical analysis of the
processes of degradation and fragmentation in the polymer-
like systems with multiple bonds and the possibility of sto-
chastic evaporation and restoration of bonds. Here, we will
assume that the rates of bond degradation and restoration
(death and birth processes) are independent of the number of
bonds in a link; i.e., possible interaction between multiple
bonds in a link [31,32] is neglected. The developed approach
will be based on the direct solution of the master equation—
i.e., the Kolmogorov forward system. An exact analytical
solution for the first passage time to the zero (absorbing)
state in the Ehrenfest model will be derived. A detailed
analysis of the effect of different evaporation and condensa-
tion rates on the evolution of the aggregates will be con-
ducted, demonstrating the high sensitivity of the kinetic frag-
mentation processes to small variations in the condensation
rate.

II. PROBABILITY DENSITY FOR THE FIRST
PASSAGE TIME

Consider an aggregate formed by coagulated monomers
(primary particles) with K being the maximum number of
bonds (e.g., bonding molecules) in a link between any two
monomers. That is, for any link between two monomers in
the aggregate, there are K bonding sites (K nonabsorbing
states in the Ehrenfest model). It is assumed that evaporation
of each of the existing bonds in a link occurs independently
of the other bonds at a rate A,>0 and condensation (resto-
ration) of bonds occurs at a rate \,>0 for each vacant site.
In particular, this means that additional interaction between
different bonds in a link [31,32] is neglected. If X(z) is the
number of bonds at time 7, then (X(¢),7=0) is assumed to be
a continuous-time Markov chain taking values in S
={0,1,...,K} with transition rates ¢, ,,;=N.(K—-n) and
Gun-1=N\n for n=1,2,3, ... K. However, q,,=&,, because
we assume that once there are no bonds in a link between
two primary particles, these particles dissociate (fragment)
and rebonding does not occur because of the assumed negli-
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gible coagulation rates [33-35]. Thus we have an absorbing
zero state. We are interested in the time 7 that it takes for the
particles to fragment starting from an initial state with X(0)
=N=<K bonds. T is therefore the first passage time to state O
in the standard Ehrenfest model.

Because degradation and condensation processes in the
aggregate under the considered conditions occur indepen-
dently in different links, fragmentation of each of such links
can be considered separately. In this case, the Ehrenfest
model with the absorbing zero state for one link gives the
following rate equations for the probabilities of finding the
considered link in the states with different numbers of bonds
(the Kolmogorov forward scheme [42]):

dP dP,

— =NP1, —=—[N(K—=1)+ NP+ 2\, P>,
e T = INK = D NP NP
dp

7; = NJK = (i = D)]Piy =[N (K = i) + \i]P;

+NG+1DP,, (i=23,...,K-1),

dP
— =APr—\KPy, (1)

where Py(t)= Py,(t)=P[X(1)=0|X(0)=N] is the probability
to find the considered link with the initial number of bonds,
X(0)=N, in the state 0 with the number of bonds, X(#)=0
(fragmented state), at an arbitrary moment of time ¢ [with the
initial condition Py(0)=3yy], and P,(r)= Py;(t)=P[X(z)
=i|X(0)=N] is the probability for the transition from the
initial state with X(0)=N bonds in a link to the state with
X(t)=i bonds in the same link within the time interval 7.

In terms of the probability generating function H(z,?)
=>K P/(1)7, Egs. (1) can be summarized into a single partial
differential equation

oH oH
— (Nz+\)(z— 1)r7_z ~N\K(z—-1)H=—=\K(z—1)Py(1),

()

with the boundary conditions H(0,7)=P(r), H(1,1)=1, and
H(z,0)=z". In order to make the boundary conditions homo-
geneous, it will be convenient to work in terms of G=H+1:

%G\ K(z-1)G=-\K(z= 1O,
0z
3)

where Q(1)=P,(t)—1, with the boundary conditions G(0,r)
=Q(1), G(1,1)=0, and G(z,0)=z"—1. Our aim is to evaluate
Q(#) and thus determine P(1)=P[X(t)=0|X(0)=N], which is
the probability for the considered link with the initial number
of bonds N at t=0 to reach the fragmented state before the
moment of time > 0.

Using the procedure of separation of variables, the solu-
tion to Eq. (3) is sought in the form

G
—+\z+N)z-1)
ot
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K
G(z.0) = 2 ANz + N ) (z - 1), (4)
i=1

where the functions A;(#) do not depend on z. Notice that G
given by (4) satisfies the boundary condition G(1,£)=0. Sub-
stituting (4) into (3) we obtain

K

DAL +iA (DN A+ N TNz + N ) (z = 1)
i=1

== )\L‘K(Z - I)Q(t)

Thus, if we can find constants C; such that EfilCi(ACz
+A )5 (z=1)'==\.K(z—1), then

Al(D)+iA (DN +N)=CO() (i=1,2,3,....K). (5)

The following lemma shows that this is possible and at the
same time establishes the existence of functions A,(r) satis-
fying (5).

Lemma. Let K=1 and f be a polynomial with real coef-
ficients that satisfies the condition f(1)=0 and has degree no
greater than K. Then, Va,b>0, 3 a unique set of constants
B; such that

K
@) =2 Blaz +b)Ki(z - 1) (6)
i=1

and B;,=g;(1), where
i-1

(az+b>f-'<(i—a )f(z). )

akK
dz +b

1
8i(2)= ildz™!

To prove this lemma, we first observe that

(ClZ+b)i_K(i _ a

K
K = . l——]
dz az+b )f(z) - le Bj(a+b)j(az+b)™

X(z— l)j_l.

Using the Leibniz theorem to differentiate i—1 times gives

)f (2)

i-1 i—k—1

X i-1\d
= B =(a+b
E)JE, i )< k )dz

1 4! . ( d akK
(2)= ———(az +b) K| — -
8i(2) itdz™! (az+b) dz az+b

— o laz+ by~

dr .
X —(z-1V"1,
dzk(z )

Because (d*/dz")(z—=1Y7";=(j-1)!8,,, for j=1 and
[(d1dz ) (az +b) 7o = (a+b)'5;,
we get

i-1\d/ .
. )—~_-(a2+b)’_’_'
j=1/dz7

1 5
s()= 2B (a+ b)(
o i =
This proves the lemma.
Using this lemma, we can evaluate C; in Eq. (5) explicitly.
Putting a=\, and b=\, setting f(z)=—\.K(z—1), and evalu-
ating the derivatives in Eq. (7), we find that
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C )\K( _1) (A
A U VS W L

Taking the Laplace transformation of Eq. (5), we find

(i=12,....,K). (8)

SAL(s) = AL0) +i(N. + X )A(s) = C:O(s),

which gives

- C,0(s) +A,(0
Ai(s) = Q(S) ( ) ’
s+i\,+\,)
where Q(s) and g,-(s) are the Laplace transforms of the func-
tions Q(z) and A,(r), respectively.

Since one of the boundary conditions requires that
G(0,1)=0(1), Eq. (4) yields é(s)zEfilgi(s))\f_i(—l)i. There-
fore,

K i k-i\~"l1 K i K—i
é(s):(l_zc,(—me ) S A0 D,

g s+iN+N) ) D s+HIN+N)
)

The third boundary condition for Eq. (3) [G(z,0)=Z"
—1] entails z¥—1=3% A,(0)(\.z+\,)*(z—1)’, and the con-
stants A;(0) can be determined from the above lemma. Put-

ting a=\,, b=\, and setting f(z)=z"-1, we find
min(i,N) . -
N\[K=j\ (=\)7
A0)= X ()( )—_ (i=1.2....K).
RV FAVES DAV WL
(10)

We therefore have an explicit expression for O(s)—see Eq.
(9). Thus the inverse Laplace transformation of Eq. (9) will
give Q(f) and thus the sought probability Py(z)=P[X(t)
=0|X(0)=N] [see Eq. (3)].

The change of variable, s—s/(\.+\,), makes the calcu-
lations more manageable. Using the new variable, if R(s)
=(\.+\,)O[(A.+\,)s], then R(s) is the Laplace transform of
the function R(1)=Q[#/(\,+\,)]. Introducing the notations
g=N,/(\,+\,) and g=\./\,, and substituting Egs. (8) and
(10) into Eq. (9), we find R(s)= E 14 Uy(s), where

min(i,N) R

. N\(K- . .
a;=¢"q" 2 ()( {)(_1),(1_g)., (11)

j=1 \J 1=J

and

Uys) = ! . (12)

(s+z)[1— KZ( )q'ﬁ]

Note that there is no singularity in U(s) at s=—i. This is
because of the term (s+i) in the denominator in the sum
(when j=i). At the same time, it is possible to see that the

function l7,-(s) has K first-order singularities at s=r|,...,rg,
such that —i <r;<-i+1, where i=1,2,...,K. Indeed, the ex-
pression in the denominator in Eq. (12) can be reduced as
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o ()

Jj=1

is a polynomial of the order of K. Its K roots s=ry,...,rg
lie within the intervals —i<r;<-i+1, because

d(—j)=K!g¥(=g)’ (with j=0,1,...,K) are K+1 nonzero val-
ues of ¢ that alternate in sign when j is changed by an
integer. Therefore, we can write (s)=I1X_(s-r,) and
Ui(s)zvi(s)/ﬂﬁ_l(s—rm), where Vi(s)=Hf=1’k#i(s+k) is a
polynomial of the order of K—1 and it is nonzero at any of
values of s=ry, ..., rg [which means that r|, ..., rg are all the

singularities of the Laplace transform U,(s)]. Using partial
fractions we get

K
Ui(s) _ 2 (S _1 ) Vi(rm)

m=1 T'm Hk#m(rm_rk)

In this case, the inverse Laplace transform of and so the
inversion of R(s) becomes straightforward:

_ ol Vi(rm)
R(t)—’nE:le ; lHk#m(rm_rk)
K
= e'm ————— r, +k
mE=l Hk#m(r rk)zzl kl;[l( 0.

(Both products in this equation are taken over k
=1,2,...,K.) Finally, because Q(r)=R[(\.+\,)t], we obtain

K
1+EM2 H(r +k).

m=1 (= 1) =1 k#i
(13)

Substituting here Eq. (11), introducing the notations s,,
=-r,,, so that s,,>0 for all values of m, and differentiating
with respect to ¢, we arrive at the main result that is formu-
lated as the following theorem.

Theorem. The probability density function f(¢) of the first
passage time to O state (fragmented link) starting from the
state with NV bonds in the link is given by

Py()=1+0Q(1) =

< K
E SN+ N exp[=s,,(\. + \,)t] 2 gl(—iH (k-s,,)

m=1 (55 = 5,) i=1 k#i

min(i,N)
<3 <N>(K ’)(—1)] (1= ), (14)
J 1—=J

flt)=

where g=\,/(\,+\,) and s, ...
nomial

,Sg are the roots of the poly-
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K . K
> (’?)(ﬁyﬂ (s—k)=0, (15)
j=0 \J Ne/ k=0

k#j

arranged so that m—1<<s,,<m for m=1,2,... K.

In particular, this theorem provides an explicit solution to
the kinetic problem of fragmentation of aggregates with mul-
tiple bonds with the possibility of their stochastic degrada-
tion and restoration, and at the condition of negligible coagu-
lation rate. At the same time, this theorem is applicable for
any other types of stochastic death and birth processes de-
scribed by the Ehrenfest model with zero absorbing state. It
is also important to note that the above analytical consider-
ation is only applicable if the additional interaction between
multiple bonds in a link between the primary elements can
be neglected, which means that death and birth processes
(degradation and restoration of bonds) occur at rates that are
independent of the number of bonds in a link (see the begin-
ning of this section).

Notice also that in the limit A\.— 0, we have r,,—m and
Py(t) — (1—e )N, This can also be obtained from Eq. (13)
as an exact equation P(f)=(1—-e )V if X\ ,=0. This equation
is quite obvious because, when A.=0, the N bonds evaporate
independently at the same rate A, and each bond lasts for an
exponentially distributed amount of time. Thus the above
equation for Py(r) is simply the product of N independent
(and equal in the case of noninteracting bonds [31,32]) prob-
abilities for evaporation of all N bonds from the link by the
moment of time 7. This is in obvious agreement with the
previous results obtained in [32].

III. NUMERICAL RESULTS AND DISCUSSION

In this section, the above theorem is used for the analysis
of thermal fragmentation of polymerlike systems with the
zero absorbing states and stochastic evaporation and conden-
sation of bonds. This is done in the example of airborne
nanoparticle aggregates resulting from combustion emissions
[29-31]. For this purpose, the theorem from Sec. 1I is com-
bined with the approach developed in [32] for the analysis of
thermal fragmentation (without bond restoration) in a ring or
chain aggregates, ¥ and ¥’ (Fig. 1), with multiple bonds
(e.g., bonding molecules between the primary particles in
combustion nanoaggregates [29-31]). Reference [32] deter-
mined the expectation numbers Q. (V,r) for r-mers (aggre-
gates with r primary particles) at an arbitrary moment of
time ¢, given M|, identical n-mer aggregates in the same ini-
tial state at =0 (r<n). The state of the initial identical
n-mer aggregates is determined by the initial number of links
(n+1 for a ring and n for a chain) and the initial numbers of
bonds i,,ig,i,,... in each of these links (Fig. 1).

For example, for a ring cluster ¥ [Fig. 1(a)] without bond
restoration (condensation), we have [32]

0,(V.1)
Mon(1|p[Dy()p]"![(n = DW (1) + 1), for r=n,
M (0|p[Dy()p]™" [V (),

for r <n,
(16)
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FIG. 1. The diagrams of (a) a ring n-mer ¥ and (b) a chain
n-mer W' with n primary particles (monomers) denoted by the
black circles; the links in the aggregates are identified by the Greek
letters (@,,7,...) with the initial number of bonds i,.ig,i,,...,
respectively.

where |W(r)) and (W(¢)] are the column and row
n-dimensional fragmentation state vectors [32],
Pf’(l(t)

Py (1)

Way=| ") (VOI=(Py, 0P, 0) Py, ().

Pfl.w(t)
(17)

whose components are the probabilities for the respective
link to fragment within the time interval :

Py (1) 0
Py (1)
Dy(1) = L ,

0 Py (1)
0 0 1

O cee O

p=|0 ; (18)

O - 0 1 0

where P, (n=1 -Py () are the probabilities for the links in
the ring not to fragment within the time interval 7, (1| and |1)
are the row and column n-dimensional vectors with all their
components equal to 1, and

[(n=DW(t) + 1) = (n— D|W (1)) +1). (19)

Similar equations can be written for a chain aggregate with
multiple bonds [32].

As indicated above, Egs. (16)—(19) have been derived
[32] for the situation where restoration of bonds (e.g., con-
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densation of bonding molecules) can be neglected. Neverthe-
less, because Egs. (16)—(19) contain only probabilities for
each link in the cluster to fragment, it is clear that these
equations do not depend on whether we take the possibility
of bond condensation into account or not. The only param-
eters that must be affected by bond restoration are the frag-
mentation probabilities themselves, and they are determined
by the theorem in Sec. II. Therefore, Egs. (16)—(19) are also
applicable in the case with bond restoration (condensation) if
we assume that the respective probabilities in Egs. (17) and
(18) are determined by Eq. (13), which, for example, for the
link « can be written as

Pfin(t) = PO(t;ia’)\c’)\e’K)

K

K
=1+ E exp[_ sm()\c+ )\E)t]z ajl__[ (k— Sm).

mel WS = 5,) j=1 k#j

(13%)

Recall that a; are determined by Eq. (11) where instead of N
we use the respective initial number of bonds in any particu-
lar link [e.g., i, for the link a—see Fig. 1(a)] and K is the
maximum possible number of bonds (i.e., the number of
bond sites) in a link: K=i,. This means that the condensa-
tion process has an upper limit on the number of bonds that
can condense into a single link, and this limit is K. Here,
51,82, ...,5g are the roots of the polynomial (15).

To demonstrate the effect of bond restoration (condensa-
tion of bonding molecules [29-31]) on the fragmentation ki-
netics of aggregates with multiple bonds, consider fragmen-
tation of identical 2-mers with multiple bonds. The
probability of fragmentation of the initial 2-mer within a
period of time ¢ is given by Eq. (13’). Therefore, the prob-
ability that the initial 2-mer does not fragment is 1
=Py(t5iqN¢» N, K). The fragmentation reaction rate X\, for
the 2-mers can naturally be defined as the inverse of the
average first passage time 7 to the zero (fragmented) state:

+00 -1
>\f=<T>‘1=( J tf(t)dt) ,

0

where f(¢) is given by Eq. (14).

Figure 2 shows the typical dependences of the fragmen-
tation reaction rate A, normalized to the evaporation rate for
one bond A, on ratio of the rates of condensation A\. and
evaporation A, for different numbers K of bonding sites be-
tween the primary particles and different initial numbers of
bonds i, <K (shown by numbers next to the respective
curves in Fig. 2).

In particular, it can be seen that all the curves correspond-
ing to i,=1 asymptotically tend to one at small condensation
rates (when \./\,—0) (Fig. 2). This is expected, because at
small values of A\. condensation does not play a significant
role, and if the initial number of bonds in a link is equal to 1,
fragmentation of this link occurs irrespectively of the maxi-
mal possible number K of bonds (bonding sites) in the link.
However, if the initial number of bonds in the 2-mers are
different (the curves indicated by numbers 2, 3, 4, and 5 in
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Normalized fragmentation rate,

FIG. 2. The dependences of the normalized fragmentation reac-
tion rate A, for the initial 2-mer clusters with multiple bonds on
ratio \./\, of condensation and evaporation rates at different num-
bers K of bonding sites (which are also the maximum possible
numbers of bonds) in the 2-mers. Different initial numbers of bonds
are indicated by integers (1 <i,<K) next to the respective curves.
The upper solid straight line corresponds to K=i,=1.

Fig. 2), then the fragmentation rate appears to be different
even if the condensation rate is negligible (which is in agree-
ment with the previous results of [31,32]).

Expectedly, the increasing condensation rate A, results in
a substantial decrease of the typical fragmentation rates. As
can be seen from Fig. 2, the condensation rate can only be
neglected when it is more than ~5 times less than the evapo-
ration rate. At larger condensation rates, restoration of bonds
noticeably decreases fragmentation rates. As a result, bond
restoration may play a significant role in the evolution of
airborne combustion aerosol clusters near the source, espe-
cially if the saturated pressure of the bonding volatile mol-
ecules is relatively high. On the other hand, as shown in
[29-31], the typical evaporation time for bonding molecules
in combustion aerosol clusters is ~10 s with a typical bind-
ing energy of ~107'° J [31], which gives A\,~0.1 s~'. Such
low evaporation rates mean low pressures of the saturated
vapor of the volatile compounds responsible for bonding in
aerosol clusters, which also mean a low probability of con-
densation (restoration) of bonds. Therefore, more experimen-
tal evidence is needed, together with their comparison with
the theoretical results of this paper, to determine whether
condensation of bonding molecules (restoration of bonds)
plays a significant role in the evolution of combustion aero-
sol clusters.

It can also be seen that an increasing number of bonding
sites (K) and/or bonds (i,) between the primary particles in
the aggregate also results in a significant decrease of frag-
mentation rate (Fig. 2). This is because increasing K leads to
an increasing probability for condensation (restoration) of
bonds and thus a decreasing probability of fragmentation.
Increasing i, results in increasing the time that it takes for all
these bonds to evaporate and fragmentation to occur. Never-
theless, because the probability of fragmentation is nonzero
for any number of bonds between the primary particles and
coagulation is neglected (we have zero absorbing state), all
the initial aggregates eventually experience fragmentation,
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Relative concentration of -mers

Normalized time, At

FIG. 3. The time-dependent relative (normalized to the initial
number of aggregates) numbers of different r-mers resulting from
fragmentation of the initial ring 1-2-1-2 aggregates. The thick
curves correspond to thermal fragmentation of the initial ring 1-2-
1-2 aggregates with no bond restoration (condensation). The thin
curves correspond to the evolution in the presence of bond restora-
tion with A./\,=1 and the number of bond sites K=4 in each of the
four links in the initial ring aggregate. The TN curves represent the
evolution of the normalized total number of all the r-mer
aggregates.

and the effect of condensation is only in decreasing the frag-
mentation rate, rather than preventing it altogether—
eventually all the initial aggregates will fragment.

Further demonstration of the impact of bond restoration
on the evolution of particle numbers during the fragmenta-
tion kinetics is illustrated in the example of a ring aggregate
with four links between four primary particles with the initial
bond numbers: i,=1, iﬁ=2, iy=1, and ig=2 (the 1-2-1-2
cluster [32]). Figure 3 shows the evolution of normalized
r-mer numbers resulting from degradation and fragmentation
of the initial 1-2-1-2 clusters. The normalization was done
with respect to the initial number of the clusters at 7=0.

As can clearly be seen from Fig. 3, restoration of bonds
may lead to a substantial modification of the evolution pat-
tern for thermal fragmentation of nanoclusters. It can also be
seen that restoration (condensation) of bonds may lead to a
significant accumulation of aggregates in the intermediate
fragmentation modes. For example, the numbers of 2-mers
and 3-mers at relatively large evolution times is drastically
increased in the presence of bond restoration (see dotted and
dashed curves in Fig. 3). At the same time, the typical num-
bers of primary particles, on the contrary, may be signifi-
cantly reduced by bond restoration (compare the thick and
thin dash-dotted curves in Fig. 3).

Interestingly, Eq. (13") allows significant simplification in
the asymptotic regime at large ¢ and relatively large numbers
K. Equation (13") contains K exponential terms with positive
roots s,, of the polynomial (15). Therefore, the term with the
smallest root [which is always s, according to Eq. (15)] will
be dominant in the sum in Eq. (13’), and all other terms can
be neglected at sufficiently large values of ¢. Assuming that
sy is small (i.e., s; << 1—the conditions for that will be dis-
cussed below), we can write
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S

FIG. 4. The dependences of the smallest root s; of the polyno-
mial (15) on the ratio of the condensation rate and evaporation rate.
The 15 different curves correspond to 15 consecutive numbers K of
bond sites in the considered link.

|
Hurm=H%ummlhwm=%uma

k#m k#m k#j

Using these equations and neglecting the terms with all s,
except for the one with s;, Eq. (13’) can be reduced as (for
S < 1)

exp[—sl(xcme)r]g K
J s

Pfi (t) = PO(t;ia’)\C?)\e’K) ~1+
« Wee 154 j=1 J

Using Eq. (15), it can be shown that the product of all the
roots, IT;s;=K!(1+\./\,) 7K. Therefore,

K
a.
Py (1) = 1+ (1+ N /\)" sy exp[-si(\. + N\ )] 2 7
; p=

(20)

Equation (20) suggests that the root s; determines the rate
of changing probability of fragmentation of the considered
link. The typical dependences of s, of the polynomial (15) on
ratio N\./\, are shown in Fig. 4 for different numbers of
bonding sites K in the link. In particular, this figure demon-
strates that increasing K results in decreasing s;—i.e., in im-
proving applicability of the asymptotic equation (20). A simi-
lar situation occurs when the ratio N./\, is increased. For
example, as can be seen from Fig. 4, Eq. (20) is approxi-
mately applicable at all values of K if the condensation rate
is larger than the evaporation rate.

Importantly, the actual applicability of Eq. (20) extends
beyond the asymptotic behavior of the fragmentation prob-
ability at large values of ¢. For example, Figs. 5(a) and 5(b)
present a comparison between the evolutionary curves for
time-dependent numbers of the r-mers (resulting from frag-
mentation of the initial 1-2-1-2 clusters), which were ob-
tained using the full analytical solution for fragmentation
probability [Eq. (13’)] and using the asymptotic equation
(20). Note the good agreement between the rigorous Eq.
(13") and asymptotic Eq. (20) dependences not only for large
evolution times, but even at =0 [Figs. 5(a) and 5(b)]. More-
over, even at the values of A./\,=0.3 and K=2, which cor-

031117-7



FLEGG, POLLETT, AND GRAMOTNEV

1.5 T T

Relative -mer numbers

Dimensionless time, At

FIG. 5. The comparison of the evolutionary curves for time-
dependent r-mers numbers obtained using the full analytical solu-
tion, Eq. (13) (solid curves), and its approximate version in the form
of Eq. (20) (dashed curves) for thermal fragmentation of the 1-2-1-2
ring aggregates at K=2 and for two different values of \./\,: (a)
A/\,=1.1 and \./\,=0.3.

respond to s;~0.6 (Fig. 4), Eq. (20) gives a good approxi-
mation for the whole range of evolution times [Fig. 5(b)].
This suggests that the discussed applicability condition s;
<1 for Eq. (20) is excessively restrictive, and this
asymptotic solution can be used as a good estimate of r-mer
concentrations at all evolution times and pretty much all val-
ues of A\./\, and K.

IV. CONCLUSIONS

This paper has developed the analytical theory of thermal
degradation and fragmentation of polymerlike systems and
aggregates with multiple bonds in the presence of stochastic
evaporation and condensation (restoration) of bonds. In par-
ticular, it has been demonstrated that bond restoration (con-
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densation) may have a significant impact on the fragmenta-
tion kinetics, when its rate exceeds ~10% of the rate of bond
evaporation (rate of thermal degradation). For example, if
the ratio of the condensation rate to the evaporation rate is
equal to 0.2, the typical fragmentation reaction rate for the
initial clusters can easily be decreased by up to ~50 or more,
compared to the case with no bond condensation.

It has also been shown that bond restoration may lead to
substantial accumulation of clusters (products of fragmenta-
tion) in the intermediate fragmentation modes. Particle num-
bers in such intermediate modes resulting from fragmenta-
tion in the presence of bond restoration may be dozens of
times larger than those for fragmentation in the absence of
bond restoration at the same evolution times. This may also
lead to major fragmentation delays and increase of typical
evolutionary times. In particular, this will be important for
the detailed explanation the behavior and evolution of par-
ticle modes in the size distribution in combustion aerosols
[29,40,41], or any other polymerlike aggregates and net-
works. Taking into account thermal fragmentation of nano-
particle aggregates with multiple bonds and bond restoration
will also be useful for the theoretical description of the pre-
viously observed maximum of the total number concentra-
tion of airborne combustion nanoparticles at an “optimal”
distance from the source [29,30].

It is also important to note that the developed theory of
aggregate degradation is applicable for the special case of
multiple bonds that do not interact with each other. If the
multiple bonds (e.g., bonding molecules [31,32]) interact
with each other, e.g., due to additional van der Waals inter-
action between the bonding molecules in a link between the
primary particles [31,32], then the developed analytical
theory is no longer applicable. At this stage, it seems difficult
to derive analytical solution for particle degradation in the
presence of bond restoration and additional interaction be-
tween multiple bonds in a link. Therefore, such an analysis
should rather involve numerical methods of solution of the
respective kinetic equations. However, this is beyond the
scope of the current paper.
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