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We investigate the possibility of an Anderson-type transition in the quantum kicked rotor with a smooth
potential due to dynamical localization of the wave functions. Our results show the typical characteristics of a
critical behavior, i.e., multifractal eigenfunctions and a scale-invariant level statistics at a critical kicking
strength which classically corresponds to a mixed regime. This indicates the existence of a localization to
delocalization transition in the quantum kicked rotor. Our study also reveals the possibility of other types of
transition in the quantum kicked rotor, with a kicking strength well within the strongly chaotic regime. These
transitions, driven by the breaking of exact symmetries, e.g., time reversal and parity, are similar to weak-
localization transitions in disordered metals.
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I. INTRODUCTION

The analogy of the statistical fluctuations of dynamical
systems and disordered systems is well known in the delo-
calized wave regime �corresponding to the metallic limit in
disordered systems and the classically chaotic limit in dy-
namical systems� and has been explained using random ma-
trix theory as a tool �1–4�. A similar analogy exists for fully
localized regimes of the wave functions too �i.e., between the
insulator limit of disordered systems and the integrable limit
of dynamical systems� �1–3�. It is therefore natural to probe
the presence or absence of the analogy in partially localized
or critical regimes of these systems. Our analysis shows that,
similar to the d�2 Anderson Hamiltonian �d as dimension�,
the d=1 quantum kicked rotor �QKR� undergoes a
localization-delocalization transition in the classically mixed
regime. We also find quantum phase transitions in its chaotic
regime due to breaking of the symmetries, e.g., time reversal
and parity, in the quantum system. As in disordered systems,
the symmetry-breaking transitions in the QKR occur due to
weak-localization effects. Similar phase transitions due to
symmetry breakings have been seen in a few other complex
systems too, e.g., ensembles of distinguishable spins �5�.

The connection of the kicked rotor to the d=1 Anderson
Hamiltonian has been known for several decades �2,6–8�. A
recent work �9� further explores the connection and shows
that, for the nonanalytic potentials in the QKR, the eigen-
states show multifractality or power-law localization
�10–13�, a behavior similar to the eigenstates of a
�d�2�-dimensional Anderson Hamiltonian �14� at its critical
point. Our study shows the existence of multifractal eigen-
states in the QKR with smooth potentials too, e.g., V�q�
=K cos�q� in specific parametric conditions. Furthermore, as
in a critical Anderson system, the multifractality in the QKR
is accompanied by a critical level statistics �size independent
and different from that at the two ends of the transition�, a
necessary criterion for critical behavior �10�. This indicates a
much deeper connectivity of the kicked rotor to the Anderson
Hamiltonian, not affected just by the nature of the potential
or the dimension of the system. As discussed here, the con-
nection seems to be mainly governed by the “degree of com-
plexity” �measured by a complexity parameter discussed

later� and may exist among a wider range of dynamical and
disordered systems.

The present study is motivated by a recent analytical work
�15,16� leading to a common mathematical formulation for
the statistical fluctuations of a wide range of complex sys-
tems. The work, based on ensemble averaging, shows that
the fluctuations are governed by a single parameter � in
addition to global constraints on the system �15,16�. �, re-
ferred to as the complexity parameter, turns out to be a func-
tion of the average accuracy of the matrix elements, mea-
sured in units of the mean level spacing. The fluctuations in
two different systems subjected to similar global constraints
are analogous if their complexity parameters are equal, irre-
spective of other system details.

The � formulation was recently used by us to find the
Gaussian Brownian ensemble �GBE� �17� and the power-law
random banded matrix ensemble �PRBME� �18� analogs of
the Anderson ensemble �AE� �for arbitrary d� �19�. However,
it cannot directly be applied to find the QKR analog; this is,
in principle, due to the inapplicability of ensemble averaging
to dynamical systems. Fortunately it is possible to derive �
for dynamical systems by a semiclassical route, using phase-
space averages �20�. The semiclassical � was used by us
�20,21� to map the statistics of the time-evolution operator U
of the QKR to that of the circular Brownian ensemble �CBE�
�17�. The lack of a suitable criterion for the critical statistical
behavior prevented us earlier from a critical QKR analysis.
Our present work pursues the analysis by first analytically
identifying the critical QKR behavior using the semiclassical
���KR; the limit N→�, �→�* with �* independent of
the size N, gives the critical points of transition. This is fol-
lowed by a numerical analysis of an ensemble of QKRs
which confirms critical behavior at the semiclassically pre-
dicted values. This in turn suggests a paradoxical validity of
the ensemble averaging in dynamical systems at least of
QKR type �also indicated by the CBE-QKR mapping�. A
subsequent comparison of the semiclassical �KR to the
ensemble-based �AE of the Anderson Hamiltonian �arbitrary
d� gives us its QKR analog; the analogy is numerically con-
firmed too.

The statistical behavior in the bulk of the spectrum of a
standard Gaussian ensemble is known to be analogous to a
standard circular ensemble �for large matrix sizes� �17,22�.
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Our work extends this analogy to their Brownian ensemble
counterparts too, that is, the analogy between the GBE and
the CBE �by the mapping GBE→AE→QKR→CBE�. This
in turn indicates a connection among a wide range of physi-
cal systems which are known to be well modeled by the
Anderson Hamiltonian, the kicked rotor, and Brownian en-
sembles of Gaussian and circular type.

The paper is organized as follows. Section II briefly re-
views the basic features of the kicked rotor and the Anderson
Hamiltonian required for our analysis; it also discusses the
parametric conditions in the kicked rotor which can support
critical points. Section III deals with the numerical confirma-
tion of the critical level statistics and the multifractality of
the eigenfunctions at critical parametric conditions in the
QKR and their comparison with a �d=3�-dimensional Ander-
son Hamiltonian. We conclude in Sec. IV with a brief dis-
cussion of our main results and open questions.

II. KICKED ROTOR AND ANDERSON HAMILTONIAN

The kicked rotor and the Anderson Hamiltonian have
been subjects of intense study in the past and many of their
details can be found in several references �1,2,4,8,23�. How-
ever, for self-consistency of the paper, we present here a few
details required for later discussion.

A. Kicked rotor and complexity parameter

The kicked rotor can be described as a pendulum sub-
jected to periodic kicks �of time period T� with Hamiltonian
H given as

H =
�p + ��2

2
+ K cos�� + �0� �

n=−�

�

��t − nT� . �1�

Here K is the stochasticity parameter, and � and �0 are the
time-reversal and parity symmetry breaking parameters in
the quantum Hamiltonian when acting in a finite Hilbert
space.

Integration of the equations of motion �̇=−�H /�p, ṗ
=�H /�� between subsequent kicks, e.g., n and n+1, gives
the classical map

pn+1 = pn + K sin��n + �0� �mod 2	� ,

�n+1 = �n + pn+1 �mod 2	� . �2�

The map is area preserving and invariant under the discrete
translation �→�+2	, p→p+2	. It also preserves the time-
reversal symmetry p→2	− p, �→�, t→−t and the parity
symmetry p→2	− p, �→2	−� for all values of � and �0.
Thus the classical dynamics depends only on K, changing
from integrable �K=0� to near integrable �0
K
4.5� to
large-scale chaos �K�4.5�.

The quantum dynamics can be described by a discrete
time-evolution operator U=G1/2BG1/2 �2,7� where

B = exp�− ik cos�� + �0�� , �3�

G = exp�− iT�p + ��2/2�� = exp�i�� �

��
− i

�

�
	2

/2
 . �4�

Here k=K /�, �=T�, and � and p= i�� /�� are the position
and momentum operators, respectively; p has discrete eigen-
values, p�m�=m��m� �m=1→N� due to periodicity of � ��
→�+2	�. The choice of a rational value for � /4	=M /N
results in a periodicity also for the momentum operator p�
= p+4	M /T �l�= l+N� and therefore in discrete eigenvalues
for � ���l�= �2	l /N��n��. The quantum dynamics can then be
confined to a two-dimensional torus �with a Hilbert space of
finite size N=2	m0 /� with m0 an integer�. The classical ana-
log of this model corresponds to the standard mapping on a
torus of size 2	m0 /T in the momentum p; thus the classical
limit is �→0, k→�, N→� with K=const and N�=const
�2,7�.

For the dynamical-localization analysis, it is useful to ex-
press the matrix U in the momentum basis �2,2,20�:

Umn =
1

N
exp�i��m − �/��2/4 + i��n − �/��2/4�


 �
l=−N1

N1

exp�− ik cos�2	l/N + �0��


exp�− 2	il�m − n�/N� , �5�

where n ,m=−N1 , . . . ,N1 with N1= �N−1� /2 if N is odd and
N1=N /2 if N is even. It is clear that the properties of H, Eq.
�1�, are recovered in the infinite matrix size limit.

The quantum dynamics under exact symmetry conditions
��=0, �0=0� can significantly be affected by relative values
of k ,� ,N. It was first conjectured �2� and later on verified
�20� that the statistical properties are governed by the ratio of
the localization length � to the total number of states N or,
equivalently, k2 /N �as �=D /2�2 with D
K2 /2 as the diffu-
sion constant�. However, to the best of our knowledge, the
critical behavior at k2�N was not probed before. The other
parameters playing a crucial role in the quantum dynamics
are � and �0, the measures of time-reversal and parity sym-
metry breaking, respectively �with 0
�
� and −	 /N

�0
	 /N�. Note that the change of p→p+� or �→�
+�0 is a canonical transformation, thus leaving the classical
Hamiltonian unaffected. The corresponding quantum dynam-
ics, however, is affected as the quantum Hamiltonian acting
in a finite Hilbert space may not remain invariant under a
unitary transformation.

Following Eq. �5�, the multiparametric nature of U is ex-
pected to manifest itself in the statistical behavior of its ei-
genvalues �quasienergies� and the eigenfunctions. However,
as shown in �20� using semiclassical techniques, the quasien-
ergy statistics of U is sensitive to a single parameter �KR and
the exact symmetry conditions. Under exact time-reversal
symmetry ��=0� and partially violated parity symmetry ��0
�0� �taking T=1, equivalently, �=�, without loss of gener-
ality�, we have �20�
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�KR,T =
�0

2Nk2

4	2 =
N3�0

2K2

64	4M2 . �6�

Note that, for �0=	 /2N, �KR,T is essentially the same as the
one conjectured in �2� for scaling behavior of the spectral
statistics. Similarly, for the strongly chaotic case �k2�N�
with only parity symmetry ��0=	 /2N� and no time-reversal
symmetry ���0�,

�KR,NT =
�q

2N3

48	2 �7�

with �q=� /�. As Eq. �6� indicates, �KR,T→� in the strongly
chaotic limit k→�; similarly, from Eq. �7�, �KR,T→� for
���; the statistics in these cases can be well modeled
�20,24� by the standard random matrix ensembles of unitary
matrices, known as the standard circular ensembles, e.g., the
circular orthogonal ensemble �COE�, circular unitary en-
semble �CUE�, etc. �17�. The cases with a slow variation of
k, �, or �0 �partial localization, partial time-reversal violation
or partial parity violation respectively� and finite size N cor-
respond to a smooth variation of �KR,T or �KR,NT between 0
and �. The intermediate statistics for these cases �20,21� can
be well described by the circular Brownian ensembles. The
latter are ensembles of unitary matrices, described as
Uw=U0

1/2 exp�iwV�U0
1/2 and characterized by a single param-

eter �CBE=w2��Vkl�2� /D2 �D=2	 /N� and exact system sym-
metries �17,22�. The perturbation V belongs to a standard
Gaussian ensemble of the Hermitian matrices, e.g., the
Gaussian orthogonal ensemble �GOE�, Gaussian unitary en-
semble �GUE�, etc. �17�. The circular Brownian ensemble
analog of a QKR is given by the condition

�KR = �CBE. �8�

As mentioned above, the studies �20,21� did not explore the
infinite size limit of �KR and its application for critical be-
havior analysis; we discuss this in the next section.

B. Critical behavior of quantum kicked rotor

For a critical point analysis of the QKR, we search for the
system conditions leading to the critical eigenvalue statistics
and the multifractal eigenfunctions in the infinite size limit
�N→��. The parametric conditions for the critical level sta-
tistics, characterized by a nonzero, finite � in the limit N
→�, can be obtained from Eqs. �6� and �7�. The analysis
suggests the possibility of several continuous families of
critical points, characterized by the complexity parameter
and the exact symmetries; we mention here only three main
cases.

�i� k��N, �=0, �0=	 /2N. Equation �6� in this case leads
to a size-independent �KR,T=�2 /16 with �=k /�N. For small
k �in the mixed regime�, this corresponds to a localization
→delocalization transition under time-reversal conditions
�no parity symmetry� with a continuous family of critical
points characterized by �. The bulk statistics here is analo-
gous to a circular Brownian ensemble Uw �see Eq. �8�� with
w=�	 /2N �due to a GOE-type perturbation V with �Vkl�2

= �1+�kl� of a Poisson matrix �17�; see Eq. �8��. The two
ends of the transition in this case are the Poisson ��→0� and
the COE ensembles ��→��.

�ii� �q�N−3/2, �0=	 /2N. Equation �7� in this case gives
�KR,NT=�2 /48	2 with �=�qN3/2. For large k �in the strongly
chaotic limit�, a finite � gives the critical parameter for the
transition from a time-reversible to a time-irreversible phase
�both phases delocalized�; it can be referred to as the weak-
localization critical point. The end points of the transition are
the COE ��→0� and the CUE ��→��, with the critical
statistics given by an intermediate circular Brownian en-
semble with w=� / �2N�3� �due to a GUE-type perturbation
V, with �Vkl�2=1, of a COE matrix �17��.

�iii� �=0, �0�N−3/2. Here Eq. �6� gives �KR,T
=�2K2 / �64	4M2� with �=N3/2�0 describing the critical
point family for the transition from a parity-symmetric phase
to a parity-fully-violated phase �both phases with time-
reversal symmetry�. For K in the mixed regime �K
N��, a
variation of � leads to the Poisson→COE transition. For K
in the strongly chaotic regime �K�N��, the transition end
points are the 2-COE �20� ��→0� and the COE ��→��.
The critical statistics for a specific K is given by the inter-
mediate Brownian ensemble with w=K� / �4	MN� �due to a
GOE-type perturbation V, with �Vkl�2=1, of the Poisson en-
semble if K�N�, or, the 2-COE ensemble if K�N��.

As Eqs. �6� and �7� indicate, a size-independent �KR can
be obtained by other combinations of k ,� ,� too. This sug-
gests critical behavior in the symmetry spaces other than
those mentioned above.

The critical nature of the system for specific parametric
conditions can further be confirmed by an analysis of the
eigenfunction fluctuations. Studies of a wide range of sys-
tems �see �10–13� and the references therein� reveal the pres-
ence of strong fluctuations in the eigenfunctions near a criti-
cal point. The fluctuations can be characterized through a set
of generalized fractal dimension Dq or �q= �q−1�Dq, related
to the scaling of the qth moment of the wave function inten-
sity ���r��2 with size N �11�: Pq=�dr���r��2q�N−��q�/d. The
multifractality of the eigenfunctions can also be analyzed
through the spectrum of singularity strengths f��� �10�, re-
lated to ��q� by a Legendre transformation: f(��q�)=q��q�
−��q� �see �10,13� for details�. In Sec. III, we numerically
analyze both ��q� and f��� to detect the multifractality of the
QKR eigenfunctions.

C. Anderson Hamiltonian and the complexity parameter

The Anderson model for a disordered system is described
by a d-dimensional disordered lattice, of size L, with a
Hamiltonian H=�n�nan

†an−�n�mbmn�an
†am+anam

† � in the
tight-binding approximation �14�. In the site representation,
H turns out to be a sparse matrix of size N=Ld with the
diagonal elements as the site energies Hkk=�k and the off-
diagonals Hmn=bmn given by the hopping conditions. For a
Gaussian-type on-site disorder �of variance � and zero
mean� and a nearest neighbor �NN� isotropic hopping with
random �Gaussian� and/or nonrandom components, H can be
modeled by an ensemble �later referred as the Anderson en-
semble� with the following density:
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��H,v,b� = C exp�− �
k

Hkk
2 /2� − �

�k,l�=NN
�Hkl − t�2/2�	


 �
�k,l��NN

��Hkl� �9�

with C as the normalization constant. As discussed in �19�,
the above ensemble can be rewritten as

��H,h,b� = C exp�− �
k�l

�1/2hkl��Hkl − bkl�2	 , �10�

where bkk=0, hkk=�, bkl= tfkl, hkl=�fkl with f�kl�=1 for
�k , l� pairs connected by the hopping and f�kl�→0 for all
�k , l� pairs representing the disconnected sites. The single
parameter �AE governing the spectral statistics �see Eq. �19�
of �19�� can then be given as

�AE�E,Y� = � ��w − �i�F2

�0
	�2dL−d 


��w − �i�
�0N

� F

I2
typ	2

,

�11�

where

�w = ln�1 − �0�� + �z/2�ln��1 − 2�0���t + �t0�� �12�

with z as the number of nearest neighbors, �i=−ln 2, and �0
as an arbitrary constant. Further, F�E� is the mean level den-
sity, � is the localization length, and I2

typ is the typical inverse
participation ratio: I2

typ��−d.

III. NUMERICAL ANALYSIS

The objectives of our numerical analysis are twofold: �i� a
search for the critical points of the quantum kicked rotor, and
�ii� a comparison of its fluctuation measures with those of a
three-dimensional Anderson ensemble. For this purpose, we
analyze the following cases.

�i� QKR1: quantum dynamics with time-reversal symmetry
but parity symmetry broken k2=�2N, �
1.5, �=0, �0
=	 /2N, T=1, �=�=40	 /N, which gives K
189 /�N. This
case corresponds to the critical set �i� in Sec. II B. and is
analyzed for many sizes �N=213→1013� to verify the criti-
cal behavior.

�ii� QKR2: quantum dynamics with both time-reversal and
parity symmetry broken. k
20 000, �=�qN−3/2, �q=6, T=1,
�0=	 /2N, �=�=40	 /N. This case belongs to set �ii� in Sec.
II B and its critical nature is also confirmed by analyzing
many N values.

�iii� QKR3. The same as QKR1 but with �=0.8 which
gives K
100 /�N. We consider this case to verify the anal-
ogy with a d=3 Anderson ensemble.

�iv� QKR4: quantum dynamics with time-reversal symme-
try but parity symmetry broken. k
4.5 /�, �=0, �0=�N−3/2,
�=0.84	2, T=1, �=�=8	 /N �case �iii� in Sec. II B�. This is
also analogous to the Anderson system mentioned above in
the QKR3 case, notwithstanding the crucial changes in k and
�0 for the two QKR cases.

To explore critical behavior, we analyze large ensembles
of the matrices U for both QKR1 and QKR2 for various
matrix sizes N; the ensemble in each case is obtained by

varying k in a small neighborhood while keeping N fixed.
The chosen N range gives K in the mixed regime for QKR1
�6.25
K
13� and in the chaotic regime for QKR2 �1000

K
12 000�. Prior to the analysis, the quasienergies �the
eigenvalues of U� are unfolded by the local mean level den-
sity D−1 �=N /2	, a constant due to repulsion and the unit-
circle confinement of the quasienergies�. Figures 1 and 2
display the nearest-neighbor spacing distribution P�s� and
the number variance �2�r�, the measures of the short- and
long-range spectral correlations, respectively, for QKR1 and
QKR2. Note that the curves in Fig. 1 are intermediate be-
tween the Poisson and the COE limits; the size independence
implies their survival in the infinite size limit too. This indi-
cates QKR1 as the critical point of transition from a local-
ized to a delocalized phase. Similarly the curves in Fig. 2,
intermediate between the COE and the CUE limits, suggest
QKR2 as the critical point of transition from the time-
reversed phase to the time-irreversible phase �both phases in
the chaotic regime�.

To reconfirm the critical nature of QKR1 and QKR2, we
numerical analyze the moments of their local eigenfunction
intensity for various sizes. The results shown for �q in Figs.
3�a� and 4�a� indicate the multifractal nature of the
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FIG. 1. �Color online� Spectral measures of QKR1. �a� nearest-
neighbor spacing distribution P�S� of the eigenvalues for various
sizes N, with inset showing behavior on the linear scale; �b� number
variance �2�r� for various sizes. The convergence of the curves for
different sizes indicates scale invariance of the statistics. The be-
havior is critical, being different from that of the two end points,
namely, Poisson and CUE statistics, even in the infinite-size limit.
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eigenfunctions; for small-q ranges, �q shows the behavior
�q= �1+c�q−d−cq2 �or Dq=1−cq� with d=1 and
c=0.06,0.075 for QKR1 and QKR2, respectively �see Table
I for the first few values of Dq�. These results are recon-
firmed by a numerical study of the f��� spectrum displayed
in Figs. 3�b� and 4�b�. For this purpose, we use the procedure
based on the evaluation of moments, described in �13� �using
Eqs. �4� and �10� of �13�� which has the advantage of full
control over the finite-size corrections. The numerical results
for �0, �1, and �1/2 for the QKR �see Table I� indicate a
parabolic form of f��� �also confirmed by the fits shown in
Figs. 3�b� and 4�b�� and therefore a log-normal behavior of
the local eigenfunction intensity u= ���r��2 for large-u re-
gions �see �10,11,13� for details�. As shown in Figs. 3�c� and
4�c�, the tail behavior of Pu�u�� can be well approximated by
the function

f�u�� = �a/2	eb+au�e−a�u� + c�2/2 �13�

with u�= �ln u− �ln u�� / �ln2 u� �see Figs. 3�c� and 4�c� for
numerical values of a ,b ,c�.

The bulk statistical behavior of the Hermitian matrices is
known to be analogous to the unitary matrices �17,22�. This,

along with the single parametric formulation of the statistics
of the Hermitian matrix ensemble �15�, suggests the analogy
of the QKR and Anderson ensemble statistics if their � pa-
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FIG. 2. �Color online� Spectral measures of QKR2. �a� Distri-
bution P�S� of the nearest-neighbor eigenvalue spacings S for vari-
ous sizes, with inset showing behavior on the linear scale; �b� num-
ber variance �2�r� for various sizes. Again, the statistics being
intermediate between COE and CUE and convergence of the curves
for different sizes indicate its critical behavior.
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FIG. 3. �Color online� Multifractality of QKR1. �a� Fractal di-
mension �q along with the fit y�q�= �1+c�q−1−cq2 with c=0.06
�good only for q�3�. A fit for the large-q regime suggests the
behavior �q=q−1+0.02q2. �b� Multifractal spectrum f��� for vari-
ous sizes along with the parabolic fit f���=d− ��−�0�2 /4��0−d�
with �0=1.09 and d=1. �c� Distribution Pu�u�� with u�= �ln u
− �ln u�� / �ln2 u� of the local intensity of an eigenfunction for QKR1.
The solid line represents the function f�u�� given by Eq. �13� with
a=5.2, b=1.2, and c=0.78 �corresponding to an approximate log-
normal behavior of Pu�u��, a good approximation in the tail region
as expected. The inset shows the behavior on a linear scale.
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rameters are equal �in addition to similar global constraints,
e.g., global symmetries� �16�. Our next step is a comparison
of the fluctuation measures of a time-reversal Anderson case
with QKR3, a time-reversal system with a partially localized

wave dynamics in the momentum space �dynamical localiza-
tion�. For this purpose, we analyze a cubic �d=3� Anderson
lattice of linear size L �N=Ld� with a Gaussian site disorder
�of variance �=W2 /12, W=4.05, and mean zero�, the same
for each site, an isotropic Gaussian hopping �of variance �
=1 /12 and mean zero� between nearest neighbors with hard
wall boundary conditions; these conditions correspond to the
critical point for a disorder-driven metal-insulator transition
�19�. A substitution of the above values �with t=0� in Eq.
�12� gives �w−�i=1.36. As shown by the numerical analysis
in �19,25�, F�E�
0.26e−E2/5 and I2

typ
0.04, which on substi-
tution in Eq. �11� gives �AE=0.056 �with �0=2�.

For the AE-QKR comparison, we analyze the ensembles
of 2000 matrices with matrix size N=L3=512 for the three-
dimensional AE case and N=513 for the QKR case. The
energy dependence of � �see �19,20�� forces us to confine
our analysis to only 10% of the levels near the band center
from each such matrix. The levels are unfolded by respective
local mean-level density in each case �so as to compare the
level density fluctuations on a same density scale� �17�. Fig-
ure 5�a� shows the AE-QKR3-QKR4 comparison of P�s�; the
good agreement among the three curves verifies the � de-
pendence of the spectral correlations. This is reconfirmed by
Fig. 5�b�, showing a comparison of the number variance.
Note that �
0.84	2 for QKR4 is the same as the theoretical
analog given by the condition �KR,T=�AE=0.056 �see Eqs.
�6� and �11��. However, �=0.8 for QKR3 shows a small
deviation from the theoretical prediction ��
0.95�. This
may be because Eq. �6� is a poor approximation at the
integrable-nonintegrable boundary K=0. Note that the clas-
sical limits of QKR3 and QKR4 are different �K=0 for
QKR3, K=4.5 for QKR4�, although their semiclassical K are
the same �K=4.5 with N=513 for QKR3, K=4.5 for any N
for QKR4�. As is clear from Eq. �2�, K=0 marks the bound-
ary between the integrable and mixed dynamics; K=4.5 cor-
responds to the mixed nature of the dynamics �see Fig. 5�c��.

As discussed in �25�, the eigenfunction fluctuations of fi-
nite systems are influenced by two parameters, namely, sys-
tem size N as well as �measure. To compare the �measure de-
pendence of an eigenfunction measure, therefore, the same
system size should be taken for each system. Figure 6�a�
shows the distribution Pu�u�� of the local eigenfunction in-
tensity u�= �ln u− �ln u�� / �ln2 u� for the AE and QKR3. The
close proximity of the two curves suggests �KR,T as the pa-
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FIG. 4. �Color online� Multifractality of QKR2. �a� Fractal di-
mension �q along with the fit y�q�= �1+c�q−1−cq2 with c=0.075
�good only for q
4�. �b� Mulifractal spectrum f��� for various
sizes along with a parabolic fit, of the same form as in Fig. 3�b�
with �0=1.045 and d=1. �c� Distribution Pu�u�� of the local inten-
sity of an eigenfunction for QKR2, with u� the same as in Fig. 3�c�.
The solid line represents the function f�u�� with a=5.3, b=0.95,
and c=0.73 �corresponding to a log-normal behavior of Pu�u��,
which fits well in the tail region of Pu�u��. The inset shows the
behavior on a linear scale.

TABLE I. Multifractality analysis of the QKR: � values here are
obtained by an L→� extrapolation of �L �13�. The 0
D2
1 be-
havior indicates the multifractal nature of the three QKR cases.

Case

QKR1 QKR2 QKR3

�0 1.034 1.008 2.466

�1/2 1.007 1.001 0.812

�1 0.934 0.991 0.543

D0 1 1 1

D1 0 0 0

D2 0.825 0.811 0.89
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rameter governing the local eigenfunction intensity too �we
have verified the analogy also with QKR4�. A comparison of
the AE-QKR3 multifractality spectrum, shown in Fig. 6�b�,
reconfirms their close similarity at least on statistical
grounds.

The numerical confirmation of the statistical analogy of
QKR4-AE-QKR3 systems supports our claim regarding
single parametric ��� dependence of the statistics apart from

global constraints. Note that the latter are the same for both
QKR3 and QKR4 �i.e., parity symmetry violated, time-
reversal symmetry preserved, and mixed dynamics� which
results in their statistics being intermediate to the same uni-
versality classes, namely, Poisson and COE, although the
transition parameters are different in the two cases.

The QKR-AE analogy can be utilized to connect them to
other complex systems too. In �19,25�, we studied the AE
connection with the PRBME �described by �Hkl�=0, �Hkl

2 �
� �1+ �k− l�2 / p2�−1 �18�� and the GBE ��Hkl�=0, �Hkl

2 �� �1
+cN2�−1 �19��. For the AE case considered above, the
PRBME and the GBE analogs for the spectral statistics
turned out to be p=0.4 and c=0.1; these systems are there-
fore the spectral statistical analogs of QKR3 and QKR4 as
well as of an N
N circular Brownian ensemble with
w
0.4	N−1 �see case�i� of Sec. II B�.

IV. CONCLUSION

To summarize, we studied the statistical analogy of two
paradigmatic models of dynamical and disordered systems,
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FIG. 5. �Color online� Comparison of spectral statistics of the
Anderson ensemble with QKR3 and QKR4. �a� P�S�, with inset
showing the linear behavior; �b� �2�r�. Note that the statistics for
QKR3 and QKR4 turn out to be close to that suggested by the
relation �AE=�KR,T �giving �=0.95 for QKR3 and �=0.84	2 for
QKR4�. �c� Phase-space behavior of the classical kicked rotor at
K=4.5 �see Eq. �2��.
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namely, the quantum kicked rotor and the Anderson Hamil-
tonian, in partially localized regimes. Our results indicate the
existence of critical behavior in the classically mixed regime
of the QKR with a smooth potential. This is qualitatively
analogous to a disorder-driven metal-insulator transition in
the Anderson system; the quantitative analogy for their sta-
tistical behavior follows if their complexity parameters are
equal. Our study also reveals the possibility of other transi-
tions in the QKR, e.g., from a symmetry-preserving phase to
a symmetry-fully-violated phase. These transitions are analo-
gous to similar symmetry-breaking transitions in disordered
metals, e.g., the Anderson Hamiltonian in the weak disorder
limit in the presence of a slowly varying magnetic field.

As with the Anderson transition, the QKR transitions are
governed by the complexity parameter � too. However, in
contrast to the � derivation for the Anderson case by an
ensemble route, � for the QKR is derived by a semiclassical
method. The semiclassical � formulation is also numerically
verified for the QKR ensembles. This indicates the equiva-
lence of the ensemble averaging and the phase-space averag-
ing for the statistical analysis. This further lends credence to

the single parametric formulation of the statistical behavior
of complex systems, irrespective of the origin of their com-
plexity. However, it needs to be examined for other dynami-
cal systems.

Research has indicated a multiparametric dependence of
the spectral statistics at long energy scales of dynamical sys-
tems �26�, originating in level-density oscillations due to the
short periodic orbits. However, these studies are not at vari-
ance with our work. This is because the semiclassical � deri-
vation in �20� is based on the assumed equivalence of the
traces of the operators with their phase-space averages. The
assumption may not be valid on short time scales of the
dynamics. One should also understand the exact role of the
ensemble averaging for the statistical analysis of dynamical
systems.
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