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We present an effective field theory to analyze, in a very general way, models defined over small-world
networks. Even if the exactness of the method is limited to the paramagnetic regions and to some special limits,
it provides, yielding a clear and immediate �also in terms of calculation� physical insight, the exact critical
behavior and the exact critical surfaces and percolation thresholds. The underlying structure of the nonrandom
part of the model—i.e., the set of spins filling up a given lattice L0 of dimension d0 and interacting through a
fixed coupling J0—is exactly taken into account. When J0�0, the small-world effect gives rise, as is known,
to a second-order phase transition that takes place independently of the dimension d0 and of the added random
connectivity c. When J0�0, a different and novel scenario emerges in which, besides a spin-glass transition,
multiple first- and second-order phase transitions may take place. As immediate analytical applications we
analyze the Viana-Bray model �d0=0�, the one-dimensional chain �d0=1�, and the spherical model for arbitrary
d0.
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I. INTRODUCTION

Since the very beginning of the pioneering work of Watts
and Strogatz �1�, interest in small-world networks—an inter-
play between random and regular networks—has been grow-
ing “exponentially.” Mainly, there are two reasons that have
caused such a “diffusion.”

The first reason is due to the topological properties of the
small-world network. In synthesis, if N is the size of the
system, for any finite probability p of rewiring or for any
finite added random connectivity c �the two cases correspond
to slightly different procedures for building a small-world
network� one has a “short-distance behavior,” implying that
the average shortest distance between two arbitrarily chosen
sites grows as l�N�� ln�N�, as in random networks, and a
large clustering coefficient, C�N��O�1�, as in regular lat-
tices. The interplay between these two features makes small-
world networks representative of many realistic situations
including social networks, communications networks, chemi-
cal reactions networks, protein networks, neuronal networks,
etc.

The second reason is due the fact that, in models defined
over small-world networks, despite the presence of an under-
lying finite-dimensional structure—a lattice L0 of dimension
d0��—the existence of shortcut bonds makes such models
mean-field like and, hopefully, exactly solvable. However,
even if such a claim sounds intuitively correct, the complex-
ity of these models turns out to be in general quite high and,
compared to numerical works, there are still few exact results
for small-world networks �2–9� �for the percolation and syn-
chronization problem, see �10,11��.

In particular, for d0�1 a mean-field critical behavior is
expected and has been also supported by Monte Carlo �MC�
simulations �12�. Some natural questions then arise. Are we
able to prove analytically such a behavior? If, for example,
d0=2, does the mean-field critical behavior hold for any situ-
ation? Yet does the correlation length diverge at the critical
temperature?

Furthermore, even if for d0=1 an exact analytical treat-
ment has been developed at the level of replica symmetry
breaking �RSB� �5� and one-step replica symmetry breaking
�1RSB� �6�, the calculations are quite involved and the solu-
tions of the coupled equations to evaluate the order param-
eters require a certain numerical work, which becomes rap-
idly hard in the 1RSB case. In any case, even if these
methods are able to give in principle exact results at any
temperature, they are not in general suitable to provide a
clear simple and immediate physical picture of the model,
even within some approximations. The main problem in fact
resides in the presence of short loops: as soon as d0�1 these
loops cannot be neglected and the “traditional” cavity and
replica methods seem hardly applicable. In particular, we are
not able to predict what happens, for example, if we set J0
negative. Should we still expect a second-order phase transi-
tion? And what about the phase diagram?

In this paper, we present a general method to study ran-
dom Ising models defined on small-world graphs built up by
adding a random connectivity c over an underlying arbitrary
lattice L0 having dimension d0. We will show that this
method, in a very simple and physically sound way, provides
an answer to the above questions as well as to many others.

Roughly speaking, as an effective field theory the method
generalizes the Curie-Weiss mean-field equation m
=tanh��Jm� to take into account the presence of the short-
range couplings J0 besides the long-range ones J. As we will
show, the magnetization m of the model defined over the
small-world network, the random model for short, behaves
as the magnetization m0 of the model defined over L0, the
unperturbed model for short, but immersed in an effective
external field to be determined self-consistently. Even if the
exactness of this method is limited to the paramagnetic �P�
region, it provides the exact critical behavior and the exact
critical surfaces, as well as simple qualitative good estimates
of the correlation functions in the ferromagnetic �F� and
spin-glass �SG� regions. Furthermore, in unfrustrated sys-
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tems, the method becomes exact at any temperature in the
two limits c→0+ and c→�.

The consequences of such a general result are remarkable
from both the theoretical and the practical point of view.
Once the explicit form of the magnetization of the unper-
turbed model, m0=m0��J0 ,�h�, is known, analytically or nu-
merically, as a function of the couplings J0 and of the exter-
nal field h, we get an approximation to the full solution of the
random model, which is analytical or numerical, respec-
tively, and becomes exact in the P region. If we do not have
m0=m0��J0 ,�h�, but we know at least some of its properties,
we can still use these properties to derive certain exact rela-
tions and the critical behavior of the random model.

In the first part of the paper, after presenting the self-
consistent equations, we focus on their application for a gen-
eral study of the critical surfaces and of the critical behavior.
In the second part, we apply the method to study models of
interest which can be solved analytically �and very easily�
as for them we know m0��J0 ,�h�: the Viana-Bray model
�which can be seen as a d0=0 dimensional small-world
model�, the one-dimensional chain small-world model, and
the spherical small-world model in arbitrary d0 dimension.

We stress that the critical surfaces as well as the correla-
tion functions in the P region provided by the present method
are exact and not based on any special ansatz as the replica-
symmetry and the treelike ansatz. We prove in particular that
independently of the added random connectivity c, of the
underlying dimension d0, of the structure of the underlying
lattice L0, and of the nature of the phase transition present in
the unperturbed model �if any�, for J0�0 we always have a
second-order phase transition with the classical mean-field
critical indices, but with a finite correlation length if calcu-
lated along the “Euclidean distance” defined in L0; on the
other hand, for J0�0 we show that, as soon as c is suffi-
ciently large, there exist at least two critical temperatures
which, depending on the behavior of �0��J0 ,�h�—the sus-
ceptibility of the unperturbed system—correspond to first-or
second-order phase transitions. This phenomenon will be ex-
plicitly shown in the example of the one-dimensional small-
world model. Note that, as will result from the detailed
analysis of the self-consistent equation �Sec. III B�, in any
case, the critical behavior of the unperturbed model, if any,
can never influence the behavior of the random model.

The paper is organized as follows. In Sec. II we introduce
the class of small-world networks over which we define the
random Ising models, stressing some important differences
concerning the definition of the correlation functions with
respect to those usually considered in “ordinary” random
models. In Sec. III we present our method: in Sec. III A we
provide the self-consistent equations and their relations with
physical correlation functions, in Sec. III B we analyze the
stability of the solutions of the self-consistent equations and
the critical surface and behavior of the system. We separate
Sec. III B into the subcases J0�0 and J0�0. In Sec. III C
we discuss the limits of the method. In Sec. III D we study
the stability between the F and SG phases and the phase
diagram. Finally, in Sec. III E we mention how to generalize
the method to cases with more different short-range cou-
plings J0 and to analyze possible disordered antiferromag-
netic systems. In Secs. IV–VI the theory is applied to the

three above-mentioned example cases. The successive Secs.
VII–IX are devoted to the derivation of the method. The
starting point of the proof is given in Sec. VII and is based
on a general mapping between a random model and a non-
random one �13–15� suitably adapted to the present case. The
self-consistent equations are then easily derived in Sec. VIII.
Note that, apart from the equations concerning the stability
between the P-F and the P-SG transitions, which are derived
in Sec. IX, the derivations of the equations presented in Sec.
III B are mostly left to the reader, since they can be easily
obtained by standard arguments of statistical mechanics us-
ing the Landau free energy 	�m� that we provide and that is
derived in Sec. VIII too. Finally, in Sec. X we draw some
conclusions. In the Appendix we generalize the method to
inhomogeneous external fields to make clear the subtle be-
havior of the correlation functions in small-world models.

II. RANDOM ISING MODELS ON SMALL-WORLD
NETWORKS

The family of models we shall consider are random Ising
models constructed by superimposing random graphs with
finite average connectivity c onto some given lattice L0
whose set of bonds �i , j� and dimension will be indicated by

0 and d0, respectively. Given an Ising model �the unper-
turbed model� of N spins coupled over L0 through a coupling
J0 with Hamiltonian

H0 =
def

− J0 �
�i,j��
0

�i� j − h�
i

�i �1�

and given an ensemble C of unconstrained random graphs c,
c�C, whose bonds are determined by the adjacency matrix
elements ci,j =0,1, we define the corresponding small-world
model as described by the Hamiltonian

Hc,J =
def

H0 − �
i�j

cijJij�i� j , �2�

the free energy F and the averages �O�l, with l=1,2, being
defined in the usual �quenched� way as ��=1 /T�

− �F =
def

�
c�C

P�c� 	 dP�J�ln�Zc,J� �3�

and

�O�l =
def

�
c�C

P�c� 	 dP�J��O�c,J
l , l = 1,2, �4�

where Zc,J is the partition function of the quenched system,

Zc,J = �

�i�

e−�Hc,J�
�i��, �5�

�O�c,J the Boltzmann average of the quenched system ��O�
depends on the given realization of the J’s and of c: �O�
= �O�c;J; for shortness, we later will omit to write these de-
pendences�,
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�O�c,J =
def �
�i�

Oe−�Hc,J�
�i��

Zc,J
, �6�

and dP�J� and P�c� are two product measures given in terms
of two normalized measures d��Ji,j��0 and p�ci,j��0, re-
spectively:

dP�J� =
def

�
�i,j�,i�j

d��Ji,j�, 	 d��Ji,j� = 1, �7�

P�c� =
def

�
�i,j�,i�j

p�ci,j�, �
ci,j=0,1

p�ci,j� = 1. �8�

The variables ci,j � 
0,1� specify whether a “long-range”
bond between the sites i and j is present �ci,j =1� or absent
�ci,j =0�, whereas the Ji,j’s are the random variables of the
given bond �i , j�. For the Ji,j’s we will not assume any par-
ticular distribution, while, to be specific, for the ci,j’s we
shall consider the distribution

p�cij� =
c

N
cij,1

+ 1 −
c

N
�cij,0

. �9�

This choice leads in the thermodynamic limit N→� to a
number of long-range connections per site distributed ac-
cording to a Poisson law with mean c�0 �so that in average
there are in total cN /2 bonds�. Note, however, that the main
results we report in the next section are easily generalizable
to any case in which Eq. �8� holds, or holds only in the
thermodynamic limit due a sufficiently small number of con-
strains among the matrix elements ci,j.

When we will need to be specific, for the Ji,j’s we will
assume either the distribution

d��Ji,j�
dJi,j

= �Ji,j − J� �10�

or

d��Ji,j�
dJi,j

= p�Ji,j − J�dJi,j + �1 − p��Ji,j + J� �11�

to consider ferromagnetism or glassy phases, respectively. In
Eq. �11�, p� �0,1�.

The quantities of major interest are the averages and the
quadratic averages of the correlation functions which for
shortness will be indicated by C�1� and C�2�. For example, the
following are nonconnected correlation functions of order k:

C�1� = ��i1
¯ �ik

� , �12�

C�2� = ��i1
¯ �ik

�2, �13�

where k�1 and the indices i1 , . . . , ik are supposed all differ-
ent. For shortness we will continue to use the symbols C�1�

and C�2� also for the connected correlation function since, as
we shall see in the next section, they obey to the same rules
of transformations. We point out that the set of indices
i1 , . . . , ik is fixed along the process of the two averages. This
implies in particular that, if we consider the spin with index
i and the spin with index j, their distance remains undefined,

or more precisely, the only meaningful distance between i
and j is the distance defined over L0—i.e., the Euclidean
distance between i and j—which we will indicate as �i− j�0.

Therefore, throughout this paper, it must be kept in mind
that, for example, C�1���i− j�0�= ��i� j� is very different from
the correlation function G�1��l� of two points at a fixed dis-
tance l, l being here the distance defined over both L0 and
the random graph c—i.e., the minimum number of bonds to
join two points among both the bonds of 
0 and the bonds of
the random graph c. In fact, if, for J0=0, one considers all
possible realizations of the Poisson graph and then all pos-
sible distances l between two given points i and j, one has

C�1���i − j�0� = ��i� j� − ��i��� j� = �
l=1

N

PN�l�G�1��l� , �14�

where here PN�l� is the probability that, in the system with N
spins, the shortest path between the vertices i and j has
length l. If we now use G�1��l���tanh��J��l �16� �in the P
region holds the equality� and the fact that the average of l
with respect to PN�l� is of the order ln�N�, we see that the
two-point connected correlation function �14� goes to 0 in
the thermodynamic limit. Similarly, all the connected corre-
lation functions defined in this way are zero in this limit.
Note, however, that this independence of the variables holds
only if J0=0. This discussion will be more deeply analyzed
along the proof by using another point of view, based on
mapping the random model to a suitable fully connected
model.

III. EFFECTIVE FIELD THEORY

A. Self-consistent equations

Depending on the temperature T and on the parameters of
the probability distributions, d��·� and p�·�, the random
model may stably stay in either the P, F, or SG phase. In our
approach for the F and SG phases there are two natural order
parameters that will be indicated by m�F� and m�SG�. Simi-
larly, for any correlation function, quadratic or not, there are
two natural quantities indicated by C�F� and C�SG�, and which
in turn will be calculated in terms of m�F� and m�SG�, respec-
tively. To avoid confusion, it should be kept in mind that in
our approach, for any observable O, there are, in principle,
always two solutions that we label as F and SG, but as we
shall discuss in Sec. III D, for any temperature, only one of
the two solutions is stable and useful in the thermodynamic
limit.

In the following, we will use the label “0” to specify that
we are referring to the unperturbed model with Hamiltonian
�1�. Note that all the equations presented in this paper have
meaning and usefulness also for sufficiently large but finite
size N. For shortness we shall omit to write the dependence
on N.

Let m0��J0 ,�h� be the stable magnetization of the unper-
turbed model with coupling J0 and in the presence of a uni-
form external field h at inverse temperature �. Then, the
order parameters m���, �=F,SG, satisfy the self-consistent
decoupled equations
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m��� = m0��J0
���,�J���m��� + �h� , �15�

where the effective couplings J�F�, J�SG�, J0
�F�, and J0

�SG� are
given by

�J�F� = c	 d��Ji,j�tanh��Ji,j� , �16�

�J�SG� = c	 d��Ji,j�tanh2��Ji,j� , �17�

J0
�F� = J0, �18�

and

�J0
�SG� = tanh−1�tanh2��J0�� . �19�

Note that �J0
�F� � �J0

�SG�.
For the correlation functions C���, �=F,SG, for suffi-

ciently large N we have

C��� = C0��J0
���,�J���m��� + �h� + O 1

N
� , �20�

where C0��J0 ,�h� is the correlation function of the unper-
turbed �nonrandom� model.

Concerning the free energy density f we have

�f ��� = −
c

2
	 d��Ji,j�ln�cosh��Ji,j��

− lim
N→�

1

N �
�i,j��
0

ln�cosh��J0�� − ln�2 cosh��h��

+ � lim
N→�

1

N �
�i,j��
0

ln�cosh��J0
����� + ln�2 cosh��h���

�
1

l
+

1

l
L����m���� , �21�

where l=1,2 for �=F,SG, respectively, and the nontrivial
free energy term L��� is given by

L����m� =
def �J����m�2

2
+ �f0��J0

���,�J���m + �h� , �22�

f0��J0 ,�h� being the free energy density in the thermody-
namic limit of the unperturbed model with coupling J0 and in
the presence of an external field h, at inverse temperature �.

For given �, among all the possible solutions of Eqs. �15�,
in the thermodynamic limit, for both �=F and �=SG, the
true solution m̄���, or leading solution, is the one that mini-
mizes L���:

L����m̄���� = min
m��−1,1�

L����m� . �23�

Finally, let k be the order of a given correlation function
C�1� or C�2�. The averages and the quadratic averages over the
disorder, C�1� and C�2�, are related to C�F� and C�SG�, as fol-
lows:

C�1� = C�F�, in F, �24�

C�1� = 0, k odd, in SG, �25�

C�1� = C�SG�, k even, in SG, �26�

and

C�2� = �C�F��2, in F, �27�

C�2� = �C�SG��2, in SG. �28�

From Eqs. �27� and �28� for k=1, we note that the
Edward-Anderson order parameter �17� C�2�= ���2=qEA is
equal to �C�SG��2= �m�SG��2 only in the SG phase, whereas in
the F phase we have qEA= �m�F��2. Therefore, since m�SG�

�m�F�, m�SG� is not equal to �qEA; in our approach, m�SG�

represents a sort of a spin-glass order parameter �18�.
The localization and the reciprocal stability between the F

and SG phases will be discussed in Sec. III D. Note, how-
ever, that, at least for lattices L0 having only loops of even
length, the stable P region is always that corresponding to a
P-F phase diagram, so that in the P region the correlation
functions must be calculated only through Eqs. �24� and �27�.

As an immediate consequence of Eq. �15� we get the sus-
ceptibility �̃��� of the random model:

�̃��� =
�̃0��J0

���,�J���m��� + �h�
1 − �J����̃0��J0

���,�J���m��� + �h�
, �29�

where �̃0 stands for the susceptibility �0 of the unperturbed
model divided by � �we will adopt throughout this dimen-
sionless definition of the susceptibility�,

�̃0��J0,�h� =
def �m0��J0,�h�

���h�
=

1

�

�m0��J0,�h�
�h

, �30�

and similarly for the random model.
For the case �=F without disorder �d��J��

=�J�−J�dJ��, Eq. �29� was already derived in �7� by series
expansion techniques at zero field �h=0� in the P region
�where m=0�.

Another remarkable consequence of our theory comes
from Eq. �20�. We see in fact that in the thermodynamic limit
any correlation function of the random model fits with the
correlation function of the unperturbed model but immersed
in an effective field that is exactly zero in the P region and
zero external field �h=0�. In other words, in terms of corre-
lation functions, in the P region, the random model and the
unperturbed model are indistinguishable �modulo the trans-
formation J0→J0

�SG� for �=SG�. Note, however, that this as-
sertion holds only for a given correlation function calculated
in the thermodynamic limit. In fact, the corrective O�1 /N�
term appearing on the right-hand side �rhs� of Eq. �20� can-
not be neglected when we sum the correlation functions over
all the sites i�L0, as to calculate the susceptibility; yet it is
just this corrective O�1 /N� term that gives rise to the singu-
larities in the random model.

More precisely, for the two-point connected correlation
function

�̃i,j
��� =

def

��i� j�l − ��i�l�� j�l, �31�

where l=1,2 for �=F, SG, respectively, if
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�̃0;i,j =
def

��i� j�0 − ��i�0�� j�0, �32�

we have

�̃i,j
��� = �̃0;i,j��J0

���,�J���m��� + �h� +
�J���

N

�
��̃0��J0

���,�J���m��� + �h��2

1 − �J����̃0��J0
���,�J���m��� + �h�

, �33�

where the dependence on N in �̃i,j
��� and �̃0 is understood.

Equation �33� clarifies the structure of the correlation func-
tions on small-world models. On the rhs we have two terms:
the former is a distance-dependent short-range term whose
finite correlation length, for T�Tc0

��� �Tc0
��� being the critical

temperature of the unperturbed model with coupling J0
����,

makes it normalizable; the latter is instead a distance-
independent long-range term which turns out to be normal-
izable thanks to the 1 /N factor. Once summed, both the
terms give a finite contribution to the susceptibility. It is
immediate to verify that by summing �̃i,j

��� over all the indices
i , j�L0 and dividing by N we get back, as it must be, Eq.
�29�. Equation �33� will be derived in the Appendix where
we generalize the theory to a nonhomogeneous external field.

B. Stability: Critical surfaces and critical behavior

Note that, for � sufficiently small �see later�, Eq. �15� has
always the solution m���=0, and furthermore, if m��� is a
solution, −m��� is a solution as well. From now on, if not
explicitly said, we will refer only to the positive �possibly
zero� solution, the negative one being understood. A solution
m��� of Eq. �15� is stable �but in general not unique� if

1 − �J����̃0��J0
���,�J���m��� + �h� � 0. �34�

For what follows, we need to rewrite the nontrivial part of
the free energy density L����m� as

L����m� = �f0��J0
���,0� − m0��J0

���,0��h + 	����m� ,

�35�

where the introduced term 	��� plays the role of a Landau
free energy density and is responsible for the critical behav-
ior of the system. Around m=0, up to terms O�h2� and
O�m3h�, 	����m� can be expanded as follows:

	����m� =
1

2
a���m2 +

1

4
b���m4 +

1

6
c���m6 − m�h̃���

+ ���f0���J0
���,�J���m� , �36�

where

a��� = �1 − �J����̃0��J0
���,0���J���, �37�

b��� = −
�2

���h�2 ��̃0��J0
���,�h���h=0

��J����4

3!
, �38�

c��� = −
�4

���h�4 ��̃0��J0
���,�h���h=0

��J����6

5!
, �39�

h̃��� = m0��J0
���,0�J��� + �̃0��J0

���,0��J����h . �40�

Finally, the last term ���f0���J0 ,�J���m� is defined implic-
itly to render Eqs. �35� and �36� exact, but terms O�h2� and
O�m3h�, explicitly:

���f0���J0
���,�J���m� = − �

k=4

�
�2k−2

���h�2k−2 ��̃0��J0
���,�h���h=0

�
��J����2k

�2k�!
. �41�

We recall that the �k−2�th derivative of �̃0��J0
��� ,�h�

with respect to the second argument, calculated at h=0, gives
the total sum of all the kth cumulants normalized
to N: ��h

k−2�̃0��J0
��� ,�h��h=0=�i1,. . .,ik

��i1
¯�ik

�0
�c� /N, where

��i1
¯�ik

�0
�c� stands for the cumulant, or connected correla-

tion function, of order k of the unperturbed model,
��i1

�i2
�0

�c�= ��i1
�i2

�0− ��i1
�0��i2

�0, etc. Note that, apart from
the sign, these terms are proportional to the Binder cumu-
lants �19� �which are all zero above Tc0 for k�2� only for N
finite. In the thermodynamic limit the terms b���, c��� , . . ., in
general are nonzero and take into account the large devia-
tions of the block-spin distribution functions from the Gauss-
ian distribution.

Let Tc
���=1 /�c

��� be the critical temperatures, if any, of the
random model and let t��� be the corresponding reduced tem-
peratures:

t��� =
def T − Tc

���

Tc
��� =

�c
��� − �

�c
��� + O�t����2. �42�

Here, the term “critical temperature” stands for any tempera-
ture where some singularity shows up. However, if we limit
ourselves to consider only the critical temperatures crossing
which the system passes from a P region to a non P region,
from Eq. �34� it is easy to see that, independently of the sign
of J0 and of the nature of the phase transition, we have the
important inequalities

�c
��� � �c0

���, �43�

where we have introduced �c0
���, the inverse critical tempera-

ture of the unperturbed model with coupling J0
��� and zero

external field. If more than one critical temperature is present
in the unperturbed model, �c0

��� is the value corresponding to
the smallest value of these critical temperatures �highest in
terms of ��. Formally we set �c0

���=� if no phase transition is
present in the unperturbed model. A consequence of Eq. �40�
is that, in studying the critical behavior of the system for h

=0, we can put h̃���=0. Throughout this paper, we shall re-
serve the name critical temperature of the unperturbed model
as a P-F critical temperature through which the magnetiza-
tion m0��J0 ,0� passes from a zero to a nonzero value, con-
tinuously or not. This implies, in particular, that for J0�0 we
have, formally, �c0=�.

In this paper we shall study only the order parameters m�F�

and m�SG�, whereas we will give only few remarks on how to
generalize the method for possible antiferromagnetic order
parameters. We point out, however, that the existence of pos-
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sible antiferromagnetic transitions of the unperturbed model
does not affect the results we present in this paper.

It is convenient to distinguish the cases J0�0 and J0�0,
since they give rise to two strictly different scenarios.

1. Case J0Ð0

In this case �J����̃0��J0 ,�J���m���+�h� is an increasing
function of � for ���c0

��� �and for h�0�. As a consequence,
we have that for sufficiently low temperatures, the solution
m���=0 of Eq. �15� becomes unstable and two, and only two,
nonzero solutions �m��� are instead favored. The inverse
critical temperatures �c

�F� and �c
�SG� can be determined by

developing -for h=0 -Eqs. �15� for small m�F� and m�SG�,
respectively, which, in terms of �̃0 gives the following exact
equation

�̃0��c
���J0

���,0��c
���J��� = 1, �c

��� � �c0
���, �44�

where the constraint �c
�����c0

��� excludes other possible spu-
rious solutions that may appear when d0�2 �since in this
case �c0

��� may be finite�.
The critical behavior of the system can be derived by

developing Eqs. �15� for small fields. Alternatively, one can
study the critical behavior by analyzing the Landau free en-
ergy density 	����m���� given by Eq. �36�.

In the following we will suppose that for J0�0, b��� is
positive. We have checked this hypothesis in all the models
we have until now considered and that will be analyzed in
Secs. IV–VI. Furthermore, even if the sign of c��� cannot be
in general a priori established, for the convexity of the func-
tion f0 with respect to �h, the sum of the sixth term with
���f0���J0

��� ,�J���m����, in Eq. �36�, must go necessarily to
+� for m���→�. In conclusion, when J0�0, for the critical
behavior of the system, the only relevant parameters of 	���

are a���, b���, and h���= �̃��J0
��� ,0�J���h, so that the critical

behavior can be immediately derived as in the Landau theory
for the so-called m4 model �20�. On noting that

a��� � 0, for t��� � 0,

a��� � 0, for t��� � 0, �45�

it is convenient to define

A��� =
def

− �
�

��
a���, �46�

so that we have

a��� = �A�����=�c
���t��� + O�t����2. �47�

Note that, due to the fact that J0�0, A����0, and, as
already mentioned, b����0 as well. By using Eq. �47� for
���c0 and near �c

���, we see that the minimum m̄��� of
	���—i.e., the solution of Eq. �15� near the critical
temperature—is given by

m̄��� = �0, t��� � 0,

�− �A���

b��� �
�=�c

���
t��� + O�t���� , t��� � 0.�

�48�

Similarly, we can write general formulas for the suscepti-
bility and the equation of state. We have

�̃��� = ��
�J����̃0��J0

���,0�
A��� �

�=�c
���

1

t��� + O�1� , t��� � 0,

��J����̃0��J0
���,0�

− 2A��� �
�=�c

���

1

t��� + O�1� , t��� � 0,�
�49�

m̄����h� = ��J����̃0��J0
���,0�

A��� �
�=�c

���

1/3

h1/3 + O�h2/3� . �50�

Finally, on using Eqs. �36� and �48� we get that the spe-
cific heat C��� has the following finite jump discontinuity at
�c

���:

C��� = �Cc
���, t��� � 0,

Cc
��� + � �A����2

2b��� �
�=�c

���
, t��� � 0,� �51�

where Cc
��� is the continuous part of the specific heat corre-

sponding to the part of the free energy density without 	���.
Hence, as a very general result, independently of the

structure of the underlying graph L0 and its dimension d0,
independently of the nature of the phase transition present in
unperturbed model �if any�, and independently of the added
random connectivity c, provided positive, we recover that the
random model has always a mean-field critical behavior with
a second-order phase transition with the classical exponents
�=1 /2, �=��=1, =3, and �=��=0 and certain constant
coefficients depending on the susceptibility �̃0 and its deriva-
tives calculated at �=�c

��� and external field h=0. Note,
however, that the correlation length of the system calculated
along the distance of L0, � · �0, remains finite also at �c

���. In
fact, from Eq. �20�, for the two-point correlation function at

distance r =
def

�i− j�0 in L0 we have

C����r� = C0��J0
���,�J���m��� + �h;r� . �52�

If we now assume for C0��J0 ,0 ;r� the general Ornstein-
Zernike form

C0��J0,0;r� =
e−r/�0

f0�r�
, �53�

f0�r�= f0��J0 ;r� being a smooth function of r �which has not
to be confused with the free energy density�, and �0
=�0��J0� the correlation length, which is supposed to diverge
only at �c0 �if any�, on comparing Eqs. �52� and �53� for �
��c

��� we have �notice that, as explained in Sec. III A, at
least for lattices L0 having only loops of even length, the
physical correlation function is only that corresponding to
�=F, i.e., C�1�=C�F��

C����r� =
e−r/����

f ����r�
, �54�

where
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f ����r� = f0��J0
���;r� �55�

and

���� = �0��J0
���� . �56�

Therefore, due to the inequalities �43�, we see that

�������=�c
��� = �0��c

���J0
���� � � . �57�

Knowledge of C0��J0 ,�h ;r� also for h�0 would allow us
to find the general expression for C����r� through Eq. �52�
also for ���c

���. However, since C0��J0 ,�h ;r� has no criti-
cal behavior for h�0, it follows that C����r� cannot have a
critical behavior for ���c

��� either �and then also for
�→�c

��� from the right�. This result is consistent with �2�.

2. Case J0�0

In this case J0
�F��0, so that, in general,

�J�F��̃0��J0 ,�J�F�m�F�� is no longer a monotonic function of
�. However, it is easy to see that that for �=0 and �→�,
this function goes to 0. Therefore, for a sufficiently large
connectivity c, from Eq. �34� we see that there may appear at
least two regions where the paramagnetic solution m�F�=0 is
stable, separated by a third region in which a nonzero solu-
tion is instead stable. However, the situation is even more
complicated since, unlike the case J0�0, the nonmonotonic-
ity of �J�F��̃0��J0 ,�J�F�m�F�� reflects also in the fact that the
self-consistent equation �15� for �=F may have more solu-
tions of the kind �m�F� , �m��F� , . . ., which are still stable
with respect to the stability condition �34�, for h=0. We face
in fact here the problem of comparing more stable solutions.
According to Eq. �23�, in the thermodynamic limit, among
all the possible stable solutions, only m̄�F�, the solution that
minimizes L�F�, survives, whereas the ones not leading play
the role of metastable states. This kind of scenario, which
includes also finite jump discontinuities, has been besides
observed in the context of small-world neural networks in
�21� where we even observe some analogy in the formalism
used, at least for the simplest case of one binary pattern.

From Eqs. �38� and �39� we see that the signs of the
Landau coefficients a���, b���, c���, . . . are functions of � and
J0 only. Given J0�0, the most important quantity that fea-
tures the nonmonotonicity of �J�F��̃0��J0 ,�J�F�m�F�� is the
minimum value of � over which b�F� becomes negative:

b�F� � 0, � � �*
�F�. �58�

The equation for �*
�F�, as a function of J0, defines a point

where b�F�=0. If J0�0, the most general equation for a ge-
neric critical temperature is no longer given by Eq. �44�. In
fact, in general, a critical temperature now is any temperature
where the stable and leading solution m̄�F� may have a sin-
gular behavior, also with finite jumps between two non zero
values.

There are some simplification when for the Landau coef-
ficient c�F� we have c�F��0, or at least c�F��0 out of the P
region In this situation, in fact, from Eq. �36� we see that
a�F�, b�F�, and c�F� are the only relevant terms for the critical
behavior of the system and, for small values of m̄�F�, we can

again apply the Landau theory, this time for the so-called m6

model �20�. In such a case, for the solution m̄�F� we have

m̄�F� =� 1

2c�F� ���b�F��2 − 4a�F�c�F� − b�F��, if a�F� � 0

or a�F� � 0 and b�F� � − 4�a�F�c�F�

3
, �59�

whereas

m̄�F� = 0, if a�F� � 0 and b�F� � − 4�a�F�c�F�

3
. �60�

From Eqs. �59� and �60� we see that, if b�F��0, we have a
second-order phase transition and Eqs. �44�–�57� are recov-
ered with Eq. �59� becoming the second equation of Eqs.
�48� for small and negative values of a�F�. However, from Eq.
�59� we see that, if b�F� is sufficiently negative, we have a
first-order phase transition which, for small values of a�F�,
gives

m̄�F� =�−
b�F�

c�F� 1 −
a�F�c�F�

2�b�F��2�, if a�F� � 0 and

b�F� � 0 or a�F� � 0 and b�F� � − 4�a�F�c�F�

3
.

�61�

From Eq. �59� we see that the line b�F�=−4�a�F�c�F� /3 with
a�F��0 establishes a line of first-order transitions through
which m̄�F� changes discontinuously from zero to

�m̄�F� = 3a�F�

c�F� �1/4

. �62�

The point a�F�=b�F�=0 is a tricritical point where the second-
and first-order transition lines meet. If we approach the tric-
ritical point along the line b�F�=0, we get the critical indices
�=1 /2, ��=0, �=1 /4, �=��=1, and =5. However, this
critical behavior along the line b�F�=0 has no great practical
interest since from Eq. �38� we see that it is not possible to
keep b�F� constant and zero as the temperature varies. Finally,
we point out that, even if c�F��0, when the transition is of
first order, Eqs. �59� and �61� hold only for b�F�, and then
a�F�, sufficiently small, since only in such a case the finite
discontinuity of m̄�F� is small and then the truncation of the
Landau free energy term 	�F� to a finite order meaningful.
Note that this question implies also that we cannot establish
a simple and general rule to determine the critical tempera-
ture of a first-order phase transition �we will return soon on
this point�.

When c�F��0, the Landau theory of the m6 model cannot,
of course, be applied. However, as in the case J0�0, even if
the sign of c�F� cannot be a priori established, for the con-
vexity of the function f0 with respect to �h, the sum of the
sixth term with ���f0���J0

�F� ,�J�F�m�F��, in Eq. �36�, must go
necessarily to +� for m�F�→� and a qualitative similar be-
havior of the m6 model is expected. In general, when J0�0,
the exact results are limited to the following ones.
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From now on, if not otherwise explicitly stated, we shall
reserve the name critical temperature, whose inverse value of
� we still indicate with �c

�F�, to any temperature on the
boundary of a P region �through which m̄�F� passes from 0 to
a nonzero value, continuously or not�. For each critical tem-
perature, depending on the value of �*

�F�, we have three pos-
sible scenario of phase transitions:

�c
�F� � �*

�F� ⇐ first order, �63a�

�c
�F� = �*

�F� ⇔ tricritical point, �63b�

�c
�F� � �*

�F� ⇒ second order. �63c�

Note that, according to our definition of critical tempera-
ture, the critical behavior described by Eqs. �59�–�62� repre-
sents a particular case of the general scenario expressed by
Eqs. �63�. We see also that, in general, when b�F��0, ap-
proaching the tricritical point, for the critical exponent � we
have ��1 /4.

In the case in which �c
�F� corresponds to a second-order

phase transition, or in the case in which a�F��0 out of the P
region �at least immediately near the critical temperature�,
�c

�F� can be exactly calculated by Eq. �44�. When we are not
in such cases, the only exact way to determine the critical
temperature is to find the full solution for m̄�F�, which con-
sists in looking numerically for all the possible solutions of
Eq. �15� and, among those satisfying the stability condition
�34�, selecting the one that gives the minimum value of L�F�.

C. Level of accuracy of the method

In the P region, Eqs. �15�–�33� are exact, whereas in the
other regions provide an effective approximation whose level
of accuracy depends on the details of the model. In particu-
lar, in the absence of frustration the method becomes exact at
any temperature in two important limits: in the limit c→0+,
in the case of second-order phase transitions, due to a simple
continuity argument, and in the limit c→�, due to the fact
that in this case the system becomes a suitable fully con-
nected model exactly described by the self-consistent equa-
tions �15� �of course, when c→�, to have a finite critical
temperature one has to renormalize the average of the cou-
pling by c�.

However, for any c�0, off of the P region and infinitely
near the critical temperature, Eqs. �15�–�20� are able to give
the exact critical behavior in the sense of the critical indices
and, in the limit of low temperatures, Eqs. �15�–�19� provide
the exact percolation threshold. In general, as for the
Sherrington-Kirkpatrick �SK� model, which can be seen as a
particular model with J0=0, the level of accuracy is better
for the F phase rather than for the SG one and this is par-
ticularly true for the free energy density f ���, Eq. �21�. In
fact, though the derivatives of f ��� are expected to give a
good qualitative and partly also a quantitative description of
the system, f �SG� itself can give wrong results when the SG
phase at low temperatures is considered. We warn the reader
that in a model with J0=0, and a symmetrical distribution

d��Ji,j� with variance J̃, the method gives a ground-state

energy per site u�SG�, which grows with c as u�SG��−J̃c,

whereas the correct result is expected to be u�SG��−J̃�c
�22�. As a consequence, in the SK model, in the limit �
→�, the method gives a completely wrong result with an
infinite energy. We stress, however, that the order parameters
m�F� and m�SG�, and then also the correlation functions, by
construction, are exact in the zero-temperature limit.

D. Phase diagram

The physical inverse critical temperature �c of the random
model is in general a non-single-value function of X: �c
=�c�X�, where X represents symbolically the parameters of
the probability d� for the couplings Ji,j and the parameter c
the average connectivity �which is also a parameter of the
probability distribution of the shortcut bonds�. The param-
eters of d� can be expressed through the moments of d�,
and as they vary, the probability d� changes. For example, if
d� is a Gaussian distribution, as in the SK model, there are
only two parameters given by the first and second moments.
A concrete example for the one-dimensional small-world
model will be shown in Figs. �17� and �18�.

In the thermodynamic limit, only one of the two solutions
with label F or SG survives, and it is the solution having
minimum free energy. In principle, were our method exact at
all temperatures, we were able to derive exactly all the phase
diagram. However, in our method, the solution with label F
or SG are exact only in their own P region—i.e., the region
where m�F�=0 or m�SG�=0, respectively. Unfortunately, ac-
cording to what we have seen in Sec. III C, whereas the
solution with label F is still a good approximation also out of
the P region, in the frustrated model �where the variance of
d� is large if compared to its first moment� the free energy
of the solution with label SG becomes completely wrong at
low temperatures. Therefore, we are not able to give in gen-
eral the exact boundary between the solution with label F
and the solution with label SG, and in particular we are not
able to give the physical frontier F /SG. However, within
some limitations which we now prescribe, we are able to
give the exact critical surface—i.e., the boundary with the P
phase—establishing which one, in the thermodynamic limit,
of the two critical boundaries P-F or P-SG is stable �we will
use here the more common expression “stable” instead of the
expression “leading”� and to localize some regions of the
phase diagram for which we can say exactly whether the
stable solution is P, F, or SG. We will prove the stability of
these solutions in Sec. IX. When for a region we are not able
to discriminate between the solution with label F and the
solution with label SG and they are both out of their own P
region, we will indicate such a region with the symbol “SG”
and/or “F” �stressing in this way that in this region there may
be also mixed phases and reentrance phenomena�.

In Sec. IX we prove that there are four possible kind of
phase diagrams that may occur according to the cases �i�
�J0�0;d0�2,or d0=��, �ii� �J0�0;2�d0���, �iii� �J0
�0;d0�2, or d0=��, and �iv� �J0�0;2�d0���. The four
kinds of possible phase diagrams are schematically depicted
in Figs. 1–4 in the plane �T ,X�.
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1. J0Ð0

we have seen in Sec. III B 1, if J0�0, for both the solu-
tion with labels F and SG, we have one, and only one, criti-
cal temperature. In the following, to avoid confusion, the
distinction should be kept in mind between the physical �c

=�c�X� and �c
���, with �=F or SG. �c satisfies the following

rules.
Case �i�. If d0�2 and J0 is a finite range coupling, or else

d0=� at least in a broad sense �see �15��, �c�X� is a single-
value function of X, and we have

�c = min
�c
�F�,�c

�SG�� . �64�

A schematic representation of this case is given in Fig. 1.
Case �ii�. If instead 2�d0��, we have

��c = �c
�F�, if �c

�SG� � �c
�F�,

�c
�F� � �c � �c

�SG�, if �c
�SG� � �c

�F�.
� �65�

Notice in particular that the second line of Eq. �65� does not
exclude that �c�X� might be a non-single-value function of
X. A schematic representation of this case is given in Fig. 2.

FIG. 1. �Color online� Phase diagram for the case �i�: J0�0 and
d0�2 or d0=� in a broad sense. Here T is the temperature, while X
represents symbolically the connectivity c and the parameters of the
probability distribution d�.

FIG. 2. �Color online� Phase diagram for the case �ii�: J0�0 and
2�d0��. T and X as in Fig. 1.

FIG. 3. �Color online� Phase diagram for the case �iii�: J0�0
and d0�2 or d0=� in a broad sense. T and X as in Fig. 1.

FIG. 4. �Color online� Phase diagram for the case �iv�: J0�0
and 2�d0��. T and X as in Fig. 1.
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2. J0�0

As we have seen in Sec. III B 2, if J0�0, for a suffi-
ciently large connectivity c, the solution with label F has at
least two separated P regions corresponding to two critical
temperatures. Here we assume that the underlying lattice L0
has only loops of even length so that, for example, triangular
lattices are here excluded. Let us suppose to have for the
solution with label F only two critical temperatures �the
minimum number, if J0�0�, and let be

�c1
�F� � �c2

�F�. �66�

In general we have the following scenario.
Case �iii�. If d0�2 and J0 is a finite range coupling, or

d0=� in a broad sense �see �15��, �c2�X� is a single-value
function of X and satisfies Eq. �64�. The other critical inverse
temperature �c1�X� is instead either a two-value function of
X and we have

�c1 = �c1
�F�

�c
�SG� �, if �c1

�F� � �c
�SG�, �67�

or

∃” �c1, if �c1
�F� � �c

�SG�, �68�

where ∃” in Eq. �68� means that if �c1
�F���c

�SG�, there is no
stable boundary with the P region. A schematic representa-
tion of this case is given in Fig. 3.

Case �iv�. If 2�d0��, �c2 satisfies Eq. �65�, whereas for
�c1 we have either

�c1 = �c1
�F�

�c
�SG�� �, if �c1

�F� � �c
�SG�, �69�

or

if ∃ �c1 ⇒ �c1 � �c
�SG�, if �c1

�F� � �c
�SG�, �70�

where in Eq. �69� we have introduced the symbol SG� to
indicate that in general the stable P-SG surface is above �or
below in terms of temperatures� the surface coming from the
solution with label SG:�c

�SG����c
�SG�. Notice that, similarly

to the case �iii�, we cannot exclude that �c1 in Eq. �70� be a
non-single-value function of X, as well as �c

�SG�� in Eq. �69�.
A schematic representation of this case is given in Fig. 4.

If more than two critical temperatures are present, the
above scheme generalizes straightforwardly.

Keeping our definition for the introduced symbol “SG”
and/or “F,” we stress that in all the fours cases the phases F
and “SG” and/or “F” are exactly localized; in cases �i� and
�iii� the phases P and SG are exactly localized; in cases �ii�
and �iv� the SG phase is always limited below �in terms of
temperatures� by the unstable P-SG surface coming from the
solution with label SG �indicated as P-SG unst in Figs. 2 and
4�. Finally, we stress that, under the hypothesis that L0 has
only loops of even length, the stable P regions correspond
always to the solution with label F.

For 2�d0��, from the second line of Eqs. �65� and �69�
and from Eq. �70�, we see that the method is not able to give
the complete information about the P-SG boundary since we
have only inequalities, not equalities. Furthermore, in these

regions of the phase diagram the physical critical tempera-
ture in general may be a non-single-value function of X. On
the other hand, we have the important information that in
these equations the inequalities between the physical �c and
�c

�SG� �the solution with label SG� are always strict. As a
consequence, we see that, when 2�d0��, in these regions
the SG “magnetization” m�SG� will always have a finite jump
discontinuity in crossing the surface given by �c. In other
words, along such a branch of the critical surface corre-
sponding to the second line of Eqs. �65� and �69� and Eq.
�70�, we have a first-order phase transition, independently of
the fact that the phase transition corresponding to the �c

�SG�

surface is second order and independently of the sign of J0.

E. Generalizations

The generalization to the cases in which the unperturbed
model has an Hamiltonian H0 involving couplings depending
on the bond b�
0 is straightforward. In this case we have
just to substitute everywhere in the formulas �15�–�41�, J0

���

with the set 
J0b
����. However, the critical behavior will be in

general different and more complicated than that depicted in
the Secs. III B 1 and III B 2. In particular, even in the case in
which all the couplings J0b

��� are positive, we cannot assume
that the Landau coefficient b��� be positive so that, even in
such a case, first-order phase transitions are in principle pos-
sible, as has been seen via Monte Carlo simulations in di-
rected small-world models �23�.

As anticipated, our method can be generalized also to
study possible antiferromagnetic phase transitions in the ran-
dom model. There can be two kind of sources of antiferro-
magnetism: one due to a negative coupling J0 in the unper-
turbed model, the other due to random shortcuts Ji,j having a
measure d� with a negative average.

In the first case, if for example the sublattice L0 is bipar-
tite into two sublattices L0

�a� and L0
�b�, the unperturbed model

will have an antiferromagnetism described by two fields m0
�a�

and m0
�b�. Correspondingly, in the random model we will

have to analyze two effective fields m�a� and m�b� which will
satisfy a set of two coupled self-consistent equations similar
to Eqs. �15� and involving knowledge of m0

�a� and m0
�b�. More

in general, we can introduce the site-dependent solution m0i
to find correspondingly in a set of coupled equations �at most
N�, the effective fields mi of the random model.

In the second case, following �24� we consider a lattice L0
which is composed of, say, p sublattices L0

���, �=1, . . . , p.
Then, we build up the random model with the rule that any
shortcut may connect only sites belonging to two different
sublattices. Hence, as already done in �13� for the general-
ized SK model, we introduce p effective fields m��� which
satisfy a system of p self-consistent equations involving the
p fields m0

��� and calculated in the p external fields J�F�m���

�note that here the symbol F stresses only the fact that the
effective coupling must be calculated through Eq. �16��.

IV. SMALL WORLD IN d0=0 DIMENSION

A. Viana-Bray model

As an immediate example, let us consider the Viana-Bray
model �25�. It can be seen as the simplest small-world model
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in which N spins with no short-range couplings �here J0=0�
are randomly connected by long-range connections J �possi-
bly also random�. Note that formally here L0 has dimension
d0=0. Since J0=0, for the unperturbed model we have

− �f0�0,�h� = ln�2 cosh��h�� ,

m0�0,�h� = tanh��h� ,

�̃0��J0,�h� = 1 − �tanh2��h���h=0 = 1. �71�

It is interesting to check that the first and second derivatives
of �̃0 in h=0 are null and negative, respectively. In fact, we
have

�

�h
�̃0�0,�h� = − 2 tanh2��h� � ��1 − tanh2��h����h=0 = 0

�72�

and

�2

��h�2 �̃0�0,�h� = − 2�1 − tanh2��h��2 + 4 tanh2��h��

��1 − tanh2��h����h=0 = − 2. �73�

Applying these results to Eqs. �15�–�19� we get immedi-
ately the self-consistent equations for the F and SG magne-
tizations,

m�F� = tanh�m�F�c	 d� tanh��J�� , �74�

m�SG� = tanh�m�SG�c	 d�tanh2��J�� , �75�

and the Viana-Bray critical surface

c	 d� tanh��c
�F�J� = 1, �76�

c	 d� tanh2��c
�SG�J� = 1. �77�

On choosing for d� a measure having average and vari-
ance scaling as O�1 /c�, for c�N, we recover the equations
for the SK model �26� already derived in this form in
�13,14�. In these papers, Eqs. �74�–�77� were derived by
mapping the Viana-Bray model and, similarly, the SK model
to the nonrandom fully connected Ising model. In this sense
it should be also clear that, at least for ���c and zero ex-
ternal field, in the thermodynamic limit, the connected cor-
relation functions �of order k greater than 1� in the SK and in
the Viana-Bray model are exactly zero. In fact, in the ther-
modynamic limit, the non random fully connected model can
be exactly reduced to a model of non interacting spins im-
mersed in an effective medium so that among any two spins
there is no correlation. Such a result is due to the fact that, in
these models, all the N spins interact through the same cou-
pling J /N, no matter how far apart they are, and the net
effect of this is that in the thermodynamic limit the system

becomes equivalent to a collection of N noninteracting spins
seeing only an effective external field �the medium� like in
Eq. �71� with �h replaced by �Jm.

For the measure �10� our approximated equation �74� can
be compared with the exact known equation that can be de-
rived by using the Bethe-Peierls or the replica approach and
is given by �see, for example �27�, and references therein�

m�F� = �
q=0

�
e−ccq

q!
	 tanh��

m=1

q

Hm��
m=1

q

��Hm�dHm,

where the effective field H is determined by the integral
equation

��H� = �
q=0

�
e−ccq−1

�q − 1�! 	 �H − T tanh−1

��tanh �J tanh��
m=1

q−1

Hm����
m=1

q−1

��Hm�dHm.

In the limit �→�, Eqs. �74� and �75� give the following size
�normalized to 1� of the giant connected component:

m�F� = tanh�m�F�c� , �78�

m�SG� = tanh�m�SG�c� . �79�

These equations are not exact; however, they succeed in giv-
ing the exact percolation threshold c=1. In fact, concerning
Eq. �78� for the F phase, the exact equation for m�F� is �see,
for example �27�, and references therein�

1 − m�F� = e−cm�F�
, �80�

which, in terms of the tanh function, becomes

2m�F� + �m�F��2

2 − m�F� + �m�F��2 = tanh�m�F�c� ,

so that Eqs. �78� and �80� are equivalent at the order O�m�F��.
We see also that, as stated in the Sec. III C, Eqs. �78� and
�80� become equal in the limits c→0 and c→�.

B. Gas of dimers

Let us consider for L0 a set of 2N spins coupled through
a coupling J0 two by two. The expression “gas of dimers”
stresses the fact that the dimers—i.e., the couples of
spins—do not interact each other. As a consequence, the free
energy, the magnetization, and the susceptibility of the un-
perturbed model can be immediately calculated. We have

− �f0��J0,�h� =
1

2
ln�2e�J0 cosh�2�h� + 2e−�J0� ,

m0��J0,�h� =
e�J0 sinh�2�h�

e�J0 cosh�2�h� + e−�J0
,
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�̃0��J0,�h� = � 2e�J0 + 2 cosh�2�h�
�e�J0 cosh�2�h� + e−�J0�2�

�h=0
=

e�J0

cosh��J0�
,

�81�

Let us calculate also the second derivative of �̃0. From

�

�h
�̃0��J0,�h� = 4 sinh��h�

�
e−�J0 − 2e3�J0 − e�J0 cosh�2�h�

�e�J0 cosh�2�h� + e−�J0�3 ,

�82�

we get

�2

��h�2 �̃0���J0,�h���h=0 = − 2
sinh��J0� + e3�J0

�cosh��J0��3 .

We note that, as expected, the second derivative of �̃0 in h
=0, for J0�0, is always negative, whereas, for J0�0, it
becomes positive as soon as � �J0 � � ln��2�.

By using the above equations, from Sec. III we get imme-
diately the following self-consistent equation for the magne-
tizations,

m��� =
tanh�2�J���m��� + 2�h�

1 + e−2�J0 sech�2�J���m��� + 2�h�
,

and, at least for J0�0, the equation for the critical tempera-
ture:

e�c
���J0

���

cosh��c
���J0

����
�c

���J��� = 1.

As will be clear soon, this model lies between the Viana-
Bray model and the more complex d0=1 dimensional chain
small-world model, which will be analyzed in detail in the
next section. Our major interest in this simpler gas of dimers
small-world model is related to the fact that, in spite of its
simplicity and d0=0 dimensionality—since the second de-
rivative of �̃0 may be positive when J0 is negative—
according to the general result of Sec. III B, it is able to give
rise to also multiple first- and second-order phase transitions.

V. SMALL WORLDS IN d0=1 DIMENSION

In this section we will analyze the case in which L0 is the
d0=1-dimensional chain with periodic boundary conditions
�PBCs�. The corresponding small-world model with Hamil-
tonian �2� in zero field has already been analyzed in �5� by
using the replica method. Here we will recover the results
found in �5� for �c and will provide the self-consistent equa-
tions for the magnetizations m�F� and m�SG� whose solution,
as expected, turns out to be in good agreement with the cor-
responding solutions found in �5� for c small and large �the
latter when the frustration is relatively small�. It will be,
however, rather evident how much the two methods differ in
terms of simplicity and intuitive meaning. Furthermore, we
will derive also an explicit expression for the two-point con-
nected correlation function. Finally, we will analyze in the

detail the completely novel scenario for the case J0�0,
which, as mentioned, produces multiple first- and second-
order phase transitions.

In order to apply the method of Sec. III we have to solve
the one-dimensional Ising model with PBCs immersed in an
external field. The solution of this non random model is easy
and well known �see, for example �28�,�. If we indicate by �1
and �2 the two eigenvalues coming from the transfer matrix
method, one has

�1,2 = e�J0 cosh��h� � �e2�J0 sinh2��h� + e−2�J0�1/2,

from which it follows that, for the free energy density, the
magnetization, and the two-point connected correlation func-
tion, we have

− �f0��J0,�h� = ln��1� ,

m0��J0,�h� =
e�J0 sinh��h�

�e2�J0 sinh2��h� + e−2�J0�1/2 , �83�

C0��J0,�h;�i − j�0� =
def

��i� j�0 − ���0
2 = sin2�2���2

�1
��i − j�0

,

�84�

where the phase � is defined by

cot�2�� = e2�J0 sinh��h�, 0 � � �
�

2
, �85�

and �i− j�0 is the �Euclidean� distance between i and j.
Let us calculate �̃0 and its first and second derivatives.

From Eq. �83� we have

�̃0��J0,�h� =
e−�J0 cosh��h�

�e2�J0 sinh2��h� + e−2�J0�3/2 , �86�

�

��h
�̃0��J0,�h� = sinh��h�

�
e−3�J0 − 2e�J0 cosh2��h� − e�J0

�e2�J0 sinh2��h� + e−2�J0�5/2 ,

�87�

�2

���h�2 �̃0��J0,�h� = cosh��h�

�
e−3�J0 − 2e�J0 cosh2��h� − e�J0

�e2�J0 sinh2��h� + e−2�J0�5/2

+ O��h�2. �88�

From Eq. �88� we see that for J0�0 and any � we have, for
sufficiently small h,
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�2

���h�2 �̃0��J0,�h� � cosh��h�

�
1 − 3e�J0

�e2�J0 sinh2��h� + e−2�J0�5/2

+ O��h�2 � 0, �89�

whereas for J0�0 we have

�2

���h�2 �̃0��J0,�h� � 0 for e−4�J0 � 3. �90�

We see therefore that, according to Sec. III B, when J0
�0 for � �J0 � � ln�3� /4=0.1193. . . the Landau coefficient
b�F� is negative and we may have a first-order phase transi-
tion.

From Eqs. �15� and �83�, for the magnetizations m�F� and
m�SG� at zero external field we have

m��� =
e�J0

���
sinh��J���m����

�e2�J0
���

sinh2��J���m���� + e−2�J0
���

�1/2
. �91�

From Eqs. �44� and �86� we see that a solution m��� becomes
unstable at the inverse temperature �c

��� given by

e2�c
���J0

���
�c

���J��� = 1. �92�

For J0�0 the above equation gives the exact P-F and P-SG
critical temperatures in agreement with �5�. When J0�0, un-
less the transition is of second order, Eq. �92� for �=F does
not signal a phase transition. In general, as J0�0 the P-F
critical temperature must be determined by looking at all the
stable solutions m�F� of the self-consistent equation �91� and
by choosing the one minimizing the effective free energy
L�F��m� of Eq. �22�.

Finally, for the two-point connected correlation function,
from Eqs. �20�, �84�, and �85�, we have

C�����i − j�0� = sin2�2�����e−�i − j�0/����
,

where

2���� = cot−1�e2�J0
���

sinh��J���m����� ,

and the correlation length ���� is given by performing the
effective substitutions �J0→�J0

��� and �h→�J���m��� in
ln��1 /�2�.

Note that C0��J0 ,�h� is even in �h, so that
C�−m�=C�m�. Near the critical temperature we have

sin�2����� = 1 −
�e2�J0

���
m����2

2
+ O�m����4

and

������−1 = �ln�tanh��J0
����� −

��J���m����2

4 sinh��J0
����

��e�J0
���

+ e3�J0
����

�tanh��J0
���� + e3�J0

���
− e�J0

���� + O�m����4� .

According to the general result, Eqs. �53�–�57�, we see that
the correlation length remains finite at all temperatures.

In Figs. 5–14 we plot the stable and leading magnetization
m�F� �thick solid line�, �̃0���F�J0

�F� ,0���F�J�F� �dashed line�,
and �̃0���F�J0

�F� ,�J�F�m�F����F�J�F� �dot-dashed line� for sev-
eral cases obtained by solving Eq. �91� numerically with �
=F. The stable and leading solution �the only one drawn�
corresponds to the solution that minimizes L�F��m� �see Eq.
�23��. In all these examples we have chosen the measure
�10�. Figures 5 and 6 concern two cases with J0�0 so that
one and only one second-order phase transition is present.
The input data of these two cases are the same as those
analyzed numerically in �5� �note that in the model consid-
ered in �5�, the long-range coupling J is divided by c�. As
already stated in Sec. III, the self-consistent equations be-
come exact in the limit c→0, for second-order phase transi-
tions, and in the limit c→�. Therefore, for the magnetiza-
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One second-order phase transition

FIG. 5. �Color online� Magnetization �thick solid line� and
curves of stability �dashed and dot-dashed lines� for the case c
=0.5, J0=1, and J=3 /5/. Here Tc=1.687.
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FIG. 6. �Color online� Magnetization �thick solid line� and
curves of stability �dashed and dot-dashed lines� for the case c
=10, J0=0.25, and J=1 /c. Here Tc=1.419.
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tion, by comparison with �5�, in Figs. 5 and 6, where c is
relatively small and large, respectively, we see good agree-
ment also below the critical temperature.

Figures 7–14 concern eight cases with J0�0. In these
figures we plot also the line y=1, to make evident when the
stability conditions for the solutions m�F�=0 and m�F��0,
which are given by �̃0���F�J0

�F� ,0���F�J�F��1 �dashed line�,
and �̃0���F�J0

�F� ,�J�F�m�F����F�J�F��1 �dot-dashed line�, are
satisfied, respectively. As explained above, the critical behav-
ior and the localization of the critical temperatures is more
complicated when J0�0. In particular, given �J0�, if c is not
sufficiently high, the solution m�F�=0 remains stable at all
temperatures, and if it is also a leading solution, no phase

transition occurs. Let us consider Eq. �92�. For J0�0 the lhs

of this equation has some maximum at a finite value �̄ given
by

�̄J =
1

2
ln�1 + �r�

1 − �r�� ,

where r =
def

�J0 � /J and we have introduced

�r� =
def

�1 + r2 − r .

Hence, we see that a sufficient condition for the solution
m�F�=0 to become unstable is that be
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FIG. 7. �Color online� Magnetization �thick solid line� and
curves of stability �dashed and dot-dashed lines� for the case c=5,
J0=−1, and J=1. Note that here m�F�=0 and the two curves of
stability coincide everywhere.
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FIG. 8. �Color online� Magnetization �thick solid line� and
curves of stability �dashed and dot-dashed lines� for the case c
=5.828, J0=−1.4, and J=1. Note that here m�F�=0 and the two
curves of stability coincide everywhere.
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FIG. 9. �Color online� Magnetization �thick solid line� and
curves of stability �dashed and dot-dashed lines� for the case c
=5.5, J0=−1, and J=1. Here Tc1=1.02 and Tc2=2.27.
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FIG. 10. �Color online� Magnetization �thick solid line� and
curves of stability �dashed and dot-dashed lines� for the case c
=5.5, J0=−0.9, and J=1. Here Tc1=0.85 and Tc2=2.78.
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c1 + �r�
1 − �r��

r

�r� � 1. �93�

Note that the above represents only a condition for the insta-
bility of the solution m�F�=0, but the true solution is the one
that is both stable and leading. In fact, when J0�0, a phase
transition in general may be present also when Eq. �93� is not
satisfied and, correspondingly the possible critical tempera-
tures will be not determined by Eq. �92�.

In Fig. 7 we report a case with J=1, J0=−1 �r=1� and a
relatively low value of c, c=5, so that no phase transition is
present. Similarly, in Fig. 8 we report again a case in which

no phase transition is present due to the fact that here r is
relatively big, r=1.1. It is interesting to observe that for r
=1 Eq. �93� requires a value of c greater than the limit value
c=3+2�2=5.8284. . .. In both Figs. 9 and 10 we report a case
in which Eq. �93� is still not satisfied, but nevertheless two
first-order phase transitions are present. In both Figs. 11 and
12 we have one first- and one second-order phase transition.
In both Figs. 13 and 14 we have two second-order phase
transitions. As anticipated in Sec. III B, we note that in Figs.
9–12—i.e., the cases in which there is at least one first-order
phase transition—there are always regions where both solu-
tions m�F�=0 and m�F��0 are simultaneously stable, but only
one solution is leading �the one drawn�, whereas in Figs. 13
and 14, as in Figs. 5 and 6, since we have only second-order
phase transitions, the stability condition turns out to be a
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FIG. 11. �Color online� Magnetization �thick solid line� and
curves of stability �dashed and dot-dashed lines� for the case c=6,
J0=−0.5, and J=1. Here Tc1=0.35 and Tc2=4.87. Tc2 corresponds
to a second-order phase transition.
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FIG. 12. �Color online� Magnetization �thick solid line� and
curves of stability �dashed and dot-dashed lines� for the case c=4,
J0=−0.2, and J=2. Here Tc1=0.22, and Tc2=7.55. Tc2 corresponds
to a second-order phase transition.
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FIG. 13. �Color online� Magnetization �thick solid line� and
curves of stability �dashed and dot-dashed lines� for the case c
=1.6, J0=−0.6, and J=7. Here Tc1=2.58 and Tc2=7.55.
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FIG. 14. �Color online� Magnetization �thick solid line� and
curves of stability �dashed and dot-dashed lines� for the case c
=1.4, J0=−0.5, and J=10. Here Tc1=3.00 and Tc2=9.34.
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necessary and sufficient condition for determining the lead-
ing solution and the critical temperature can be determined
also by Eq. �92� with �=F.

In the top of Figs. 9–14 we write the discriminant tem-
perature T*=4�J0� / ln�3� below which a phase transition �if
any� may be first order �see Eqs. �63� and Eqs. �88�–�90��.

Finally in Figs. 15 and 16 we plot the spin-glass order
parameter m�SG� �solid line�, �̃0���SG�J0

�SG� ,0���SG�J�SG�

�dashed line�, and �̃0���SG�J0
�SG� ,�J�SG�m�SG����SG�J�SG� �dot-

dashed line� obtained by solving Eq. �91� numerically with
�=SG. In these two examples we have chosen the measure
�11� and, for c, �J�, and J0, we have considered the same
parameters of Figs. 5 and 6 of the ferromagnetic case. As
anticipated in Sec. III B, due to the fact that the effective

coupling J0
�SG� is positive, there is only a second-order phase

transition; the stability condition turns out to be a necessary
and sufficient condition for determining the leading solution,
and the critical temperature can be determined also by Eq.
�92� with �=SG.

Note that, unlike the P-F critical surface, the P-SG critical
surface does not depend on the parameter p entering in Eq.
�11�. For the reciprocal stability between the P-F and P-SG
critical surfaces we remind the reader of the general rules of
Sec. III D �see cases �i� and �iii��, which, for J0�0, reduce to
the results reported in Sec. 6.1 of the Ref. �5�. Here we stress
just that, if J0�0, for p�0.5, only the P-SG transition is
possible. However, when J0�0 and c is not sufficiently
large, the SG phase may be the only stable phase even when
p=1. In fact, although when J0�0 the solution m�F� may
have two P-F critical temperatures, in general, if the P-SG
temperature is between these, we cannot exclude that the
solution m�SG� starts to be the leading solution at sufficiently
low temperatures. In Figs. 17 and 18, on the plane �T ,c�, we
plot the phase diagrams corresponding to the cases of Figs.
13 and 14, respectively. These phase diagrams are obtained
by solving Eq. �44� supposing that here, as in the cases of
Figs. 13 and 14, where c=1.4 and c=0.5, respectively, the
P-F transition is always second order. We plan to investigate
in more detail the phase diagram in future works.

VI. SMALL-WORLD SPHERICAL MODEL
IN ARBITRARY DIMENSION d0

In this section we will analyze the case in which the un-
perturbed model is the spherical model built up over a
d0-dimensional lattice L0 �see �28� and references therein�.1

In this case the �’s are continuous “spin” variables ranging
in the interval �−� ,�� subjected to the sole constraint

1Note that from the point of view of the statistical mechanics the
spherical model is an infinite-dimensional model; however, we will
continue to reserve the symbol d0 for the dimension of L0.

0.5 1 1.5 2

T
0

0.2

0.4

0.6

0.8

1

m
(SG)

stab. of m
(SG)

stab. of m
(SG)

=0

Spin glass second-order phase transition

FIG. 15. �Color online� Spin-glass order parameter �solid line�
and curves of stability �dashed and dot-dashed lines� for the case
c=0.5, J0=1, and J=3 /5 /c. Here Tc=1.130.
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c=10, J0=0.25, and J=1 /c. Here Tc=0.424.
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�i�L0
�i

2=N; however, our theorems and formalism can be
applied as well and give results that, within the same limita-
tions prescribed in Sec. III, are exact.

Following �28�, for the unperturbed model we have

− �f0��J0,�h� =
1

2
ln �

�J0
� + ���J0,�h, z̄� ,

m0��J0,�h� =
�h

2�J0z̄
, �94�

where

���J0,�h,z� = �J0d0 + �J0z −
1

2
g�z� +

��h�2

4�J0z
,

g�z� =
1

�2��d0
	

0

2�

¯ 	
0

2�

d�1 ¯ d�d0

� ln�d0 + z − cos��1� − ¯ − cos��d0
�� ,

and z̄= z̄��J0 ,�h� is the �unique� solution of the equation
�z���J0 ,�h ,z�=0,

�J0 −
��h�2

4�J0z̄2 =
1

2
g��z̄� , �95�

from which follows the equation for m0:

�J0�1 − m0
2� =

1

2
g� �h

2�J0m0
� . �96�

The derivative g� can in turn be expressed as

g��z� = 	
0

�

e−t�z+d0��J0�it��d0dt , �97�

J0�it� being the usual Bessel function whose behavior for
large t is given by

J0�it� =
et

�2�t�1/2�1 + O1

t
�� .

The critical behavior of the unperturbed system depends
on the values of g��z� and g��z� near z=0. It turns out that for
d0�2 one has g��0�=� and there is no spontaneous magne-
tization, whereas for d0�2 one has g��0��� and at h=0 the
unperturbed system undergoes a second-order phase transi-
tion with magnetization given by Eq. �96�, which, for �
above �c0, becomes

m0��J0,0� =�1 −
�c0

�
,

where the inverse critical temperature �c0 is given by

�c0J0 =
1

2
g��0� .

Furthermore, it turns out that for d0�4 one has g��0�=�,
whereas for d0�4 one has g��0���. This reflects on the
critical exponents �, �, and , which take the classical mean-
field values only for d0�4.

According to Sec. III, to solve the random model, for
simplicity, at zero external field, we have to perform the
effective substitutions �J0→�J0

��� and �h→�J���m��� in the
above equations. From Eqs. �94�–�96�, we get immediately

z̄��� =
�J���

2�J0
��� ,

the equations for the inverse critical temperature �c
���,

�c
���J0

��� =
1

2
g� �c

���J���

2�c
���J0

���� , �98�

and the magnetizations m���,

m��� = ��1 −
1

2�J0
���g� �J���

2�J0
���� , � � �c

���,

0, � � �c
��� � 0.

�
�99�

Note that, as must be from the general result of Sec. III B,
unlike the unperturbed model, as soon as the connectivity c
is not zero, Eq. �98� has always a finite solution �c

���, inde-
pendently of the dimension d0. In fact, one has a finite-
temperature second-order phase transition even for d0→0+

where from Eq. �97� we have

g��z� =
1

z
, d0 = 0,

so that the equations for the critical temperature Eq. �98�,
become

�c
���J��� = 1, d0 = 0,

which, as expected, coincide with Eqs. �76� and �77� of the
Viana-Bray model.

Similarly, unlike the unperturbed model, in the random
model all the critical exponents take the classical mean-field
values, independently of the dimension d0. In the specific
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FIG. 18. �Color online� Phase diagram for the case considered in
Fig. 14 with the measure of Eq. �10�.
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case of the spherical model, this behavior is due to the fact
that g��z� and g��z� can be singular only at z=0, but as soon
as the connectivity c is not zero, there is an effective external
field �J���m��� so that z̄��� is not zero. For the critical behav-
ior, the dependence on the dimension d0 reflects only in the
coefficients, not on the critical exponents. In particular, con-
cerning the argument of the square root of the rhs of Eq.
�99�, by expanding in the reduced temperature t���, for �t����
�1 we have

1 −
1

2�c
���J0

���g� �c
���J���

2�c
���J0

���� = B���t��� + O�t����2,

�100�

where

B�F� = − 1 +
1

2�c
�F�J0

�F�g� �c
�F�J�F�

�2�c
�F�J0

�F��2�
� c	 d��Ji,j��1 − tanh2��c

�F�Ji,j���c
�F�Ji,j

− c	 d��Ji,j�tanh��c
�F�Ji,j�� ,

B�SG� =
1

2�c
�SG�J0

�SG��− 4
tanh��c

�SG�J0��c
�SG�J0

1 + tanh2��c
�SG�J0�

+ g� �c
�SG�J�SG�

�2�c
�SG�J0

�SG��2�2c	 d��Ji,j�

��1 − tanh2��c
�SG�Ji,j��tanh��c

�SG�Ji,j��c
�SG�Ji,j

− 4c	 d��Ji,j�tanh2��c
�SG�Ji,j�

�
tanh��c

�SG�J0��c
�SG�J0

�1 + tanh2��c
�SG�J0���c

�SG�J�SG��� ,

so that from Eqs. �99� and �100� for the critical behavior of
the magnetizations we get explicitly the mean-field behavior

m��� = ��B���t��� + O�t���� , t��� � 0,

0, t��� � 0.
�

VII. MAPPING TO NON RANDOM MODELS

In Sec. VIII we will derive the main result presented in
Sec. III. To this aim in the next section VII A we will recall
the general mapping between a random model built up over
a given graph and a non random one built up over the same
graph, whereas in Sec. VII B we will generalize this map-
ping to random models built up over random graphs. We
point out that the mapping does not consist in a sort of an-
nealed approximation.

A. Random models defined on quenched graphs

Let us consider the following random model. Given a
graph g, which can be determined through the adjacency

matrix for shortness also indicate by g= 
gb�, with gb=0,1, b
being a bond, let us indicate with 
g the set of the bonds b of
g and let us define over 
g the Hamiltonian

H�
�i�;
Jb�� =
def

− �
b�
g

Jb�ib
� jb

− �
i

hi�i, �101�

where Jb is the random coupling at the bond b and �ib
and

�ib
are the Ising variables at the end points of b. The free

energy F and the physics are defined as in Sec. II by Eqs.
�3�–�6�:

− �F =
def 	 dP�
Jb��ln�Z�
Jb��� , �102�

�O�l =
def 	 dP�
Jb���O�l, l = 1,2, �103�

where dP�
Jb�� is a product measure over all the possible
bonds b given in terms of normalized measures d�b�0 �we
are considering a general measure d�b allowing also for a
possible dependence on the bonds�,

dP�
Jb�� =
def

�
b�
full

d�b�Jb�, 	 d�b�Jb� = 1, �104�

where 
full stands for the set of bonds of the fully connected
graph. As in Sec. II, we will indicate a generic correlation
function, connected or not, by C with understood indices
i1 , . . . , ik all different; see Eqs. �12� and �13�.

In the following, given an arbitrary vertex i of g, we will
consider as first neighbors j of i only those vertices for which
�d�i,j�Ji,j�Ji,j or �d�i,j�Ji,j�Ji,j

2 are at least O�1 /N�. Note that
we can always neglect couplings having lower averages. We
will indicate by D�
g� the average number of first neighbors
of the graph g. For a d-dimensional lattice, D�
g�=2d−1; for
a Bethe lattice of coordination number q, D�
g�=q−1; and
for long-range models, D�
g��N. We will exploit in particu-
lar the fact that D�
L0

�
full�=D�
full��N.
Given a random model defined through Eqs. �101�–�104�,

we define, on the same set of bonds 
g, its related Ising
model through the Ising Hamiltonian

HI�
�i�;
Jb
�I��� =

def

− �
b�
g

Jb
�I��ib

� jb
− �

i

hi�i, �105�

where the Ising couplings Jb
�I� have nonrandom values such

that ∀b ,b��
g:

Jb�
�I� = Jb

�I� if d�b� � d�b, �106�

Jb
�I� � 0 if �	 d�b�Jb�Jb = O 1

N
� ,

	 d�b�Jb�Jb
2 = O 1

N
� .� �107�

In the following a suffix I over quantities such as HI, FI, f I,
gI, etc., or Jb

�I�, �c
�I�, etc., will be referred to the related Ising

system with Hamiltonian �105�.
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We can always split the free energy of the random system
with N spins as follows:

− �F = �
b
	 d�b ln�cosh��Jb�� + �

i

ln�2 cosh��hi�� + � ,

�108�

� being the high-temperature part of the free energy. Let �
be the density of � in the thermodynamic limit:

� =
def

lim
N→�

�/N . �109�

Let us indicate by �I the high-temperature part of the free
energy density of the related Ising model defined through
Eqs. �105�–�107�. As is known, �I can be expressed in terms
of the quantities zb=tanh��Jb

�I�� and zi=tanh��hi�—i.e., the
parameters of the high-temperature expansion:

�I = �I„
tanh��Jb
�I���;
tanh��hi��… . �110�

The related Ising model is defined by a set of, typically
few, independent couplings 
Jb

�I��, through Eqs. �106� and
�107� and, for hi=0, i=1, . . . ,N, its critical surface will be
determined by the solutions of an equation, possibly vecto-
rial, GI(
tanh��Jb

�I���)=0.
In �13� we have proved the following mapping.
Let �c

�SG� and �c
�F/AF� be, respectively, solutions of the two

equations

GI�	 d�b tanh2��c
�SG�Jb��� = 0, �111�

GI�	 d�b tanh��c
�F/AF�Jb��� = 0. �112�

Asymptotically, at sufficiently high dimensions D�
g�, the
critical inverse temperature of the spin-glass model �c is
given by

�c = min
�c
�SG�,�c

�F/AF�� , �113�

and in the paramagnetic phase for D�
g��2 the following
mapping holds:

�� − �ef f

�
� = �C − Cef f

C
� = O 1

D�
g�
� , �114�

�ef f =
1

l
���� =

def 1

l
�I�	 d�b tanhl��Jb��� , �115�

and

Cef f =
1

l
C��� =

def 1

l
CI�	 d�b tanhl��Jb��� , �116�

where

l = �2, if �I��	 d�b tanh2��Jb��� � 2��I��	 d�b tanh��Jb���� ,

1, if �I��	 d�b tanh2��Jb��� � 2��I��	 d�b tanh��Jb���� , � �117�

and �=F /AF or SG for l=1 or 2, respectively.
In the limit D�
g�→� and hi=0, i=1, . . . ,N, Eqs.

�111�–�117� give the exact free energy and correlation func-
tions in the paramagnetic phase �P�; the exact critical
paramagnetic-spin glass �P-SG�, �c

�SG�, and paramagnetic-
F/AF �P-F/AF�, �c

�F/AF�, surfaces, whose reciprocal stability
depends on which of the two ones has higher temperature. In
the case of a measure d� not depending on the bond b, the
suffices F and AF stand for ferromagnetic and antiferromag-
netic, respectively. In the general case, such a distinction is
possible only in the positive and negative sectors in the space
of the parameters of the probability distribution, 
�d�bJb
�0� and 
�d�bJb�0�, respectively, whereas, for the other
sectors, we use the symbol F/AF only to stress that the tran-
sition is not P-SG.

It is not difficult to see that, when the measure d� does
not depend on the specific bond b—i.e., if d�b
�d�b�∀ b ,b��
g—in the P region, Eqs. �111�–�117� lead
to the following exact limit for � and C �15�:

lim
D�
g�→�

� = lim
D�
g�→�

C = 0, for � � �c. �118�

Therefore, the basic role of Eqs. �114�–�117� is to show how,
in the limit D�
g�→�, � and C approach zero and which are
their singularities. In particular, this proves that for all �ran-
dom� infinite-dimensional models and any disorder non-
bond-dependent, the critical exponent �� for the specific heat
has the mean-field classical value ��=0 and that the correla-
tion functions �with different indices� above the critical tem-
perature are exactly zero. We point out, however, that, when
the measure d�b depends explicitly on the bond b, Eq. �118�
in general does not hold.2 In fact, when the measure d�b is
bond dependent, the symmetry expressed by Eq. �118� is
broken since the bonds are no longer equivalent. As we will
see in the next section, in small-world models with an un-
derlying lattice L0 having d0�2, even if Eq. �118� still holds

2This was not strongly emphasized in �15�.
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for �, the symmetry is broken for C since the direction�s� of
the axis�es� of L0 is �are� now favored direction�s�. Yet, if
2�d0��, the symmetry �118� for � is broken as well.

The analytic continuation of Eqs. �114�–�117� to ���c
and/or for h�0 provides certain estimations which are ex-
pected to be qualitatively good. In general, such estimations
are not exact, and this is particularly evident for the free
energy density of the SG phase. However, the analytic con-
tinuation for the other quantities gives a good qualitative
result and provides the exact critical behavior �in the sense of
the critical indices� and the exact percolation threshold.

For models defined over graphs satisfying a weak defini-
tion of infinite dimensionality, as happens on a Bethe lattice
with coordination number q�2, a more general mapping has
been established �15�, In this case, all the above equations,
along the critical surface �at least�, still hold exactly in the
thermodynamic limit, where we can set effectively D�
g�
=�. However, for the aims of this paper we do not need here
to consider this generalization of the mapping.

We have yet to make an important comment about Eqs.
�25�, �26�, and �28�, concerning the evaluation of a correla-
tion function in the SG phase here for a random system with
J0=0 �for the moment being�. In fact, Eq. �116�, for both a
normal and a quadratic correlation function C�1� or C�2�, has
a factor 1 /2 not entering in the physical equations �25�, �26�,
and �28�. The difference is just due to an artifact of the map-
ping that separates the Gibbs state into two pure states �18�
not only in the F case, but also in the SG case. In fact, let us
consider the correlation functions of order k=1—that is,
C�1�= ��1� and C�2�=qEA= ��1�2. We see that, for C�1�, Eq.
�116� in the SG phase gives C�1�=m�SG� /2. On the other
hand, for any nonzero solution m�SG� of the self-consistent
equation �15�, there exists another solution −m�SG�, and both
solutions have 1 /2 probability to be realized in the random
model. Since the SG phase is expected to be the phase char-
acterized by having qEA�0 and ��1�=0, we see that if we
introduce both the solutions m�SG� and −m�SG�, we get ��1�
=0 in the SG phase. Similarly, for C�2�, Eq. �116� in the SG
phase gives C�2�= �m�SG��2 /2, which at zero temperature
gives 1 /2, whereas a completely frozen state with qEA=1 is
expected. Again, we recover the expected physical qEA by
using both the solutions m�SG� and −m�SG�. Repeating a simi-
lar argument for any correlation function of order k and re-
calling that for k even �odd� the correlation function is an
even �odd� function of the external magnetic field h, we ar-
rive at Eqs. �25�, �26�, and �28�.

B. Random models defined on unconstrained random graphs

Let us consider now more general random models in
which the source of the randomness comes from both the
randomness of the couplings and the randomness of the
graph. Given an ensemble of graphs g�G distributed with
some distribution P�g�, let us define

Hg�
�i�;
Jb�� =
def

− �
b�
g

Jb�ib
� jb

− h�
i

�i

= − �
b�
full

gbJb�ib
� jb

− h�
i

�i. �119�

The free energy F and the physics are now given by

− �F =
def

�
g�G

P�g� 	 dP�
Jb��ln�Zg�
Jb��� ,

and similarly for �O� l, l�1,2. Here Zg�
Jb�� is the partition
function of the quenched system onto the graph realization g
with bonds in 
g,

Zg�
Jb�� = �

�i�

e−�Hg�
�i�;
Jb��,

and dP�
Jb�� is again a product measure over all the possible
bonds b given as defined in Eq. �104�. Note that the bond
variables 
gb� are independent from the coupling variables

Jb�.

For unconstrained random graphs, or for random graphs
having a number of constraints that grows sufficiently slowly
with N, the probability P�g�, for large N, factorizes as

P�g� = �
b�
full

pb�gb� .

In such a case we can exploit the mapping we have previ-
ously seen for models over quenched graphs as follows. Let

us define the effective coupling J̃b:

J̃b =
def

Jb · gb.

Correspondingly, since the random variables Jb and gb are
independent, we have

d�̃b�J̃b� = d�b�Jb� · pb�gb� ,

with the sum rule

	 d�̃b�J̃b�f�Jb;gb� = �
gb=0,1

pb�gb� 	 d�b�Jb�f�Jb;gb� .

As a consequence, if we define the following global measure

dP̃�
J̃b�� = P�g� · dP�
Jb�� = �
b�
full

d�̃b�J̃b� ,

we see that the mapping of the previous section can be ap-
plied as we had a single effective graph 
p given by


p =
def


b � 
full:pb�gb = 1� � 0� .

In fact, we have

− �F =	 dP̃�
J̃b��ln�Zp�
J̃b��� ,

where Zp is the partition function of the model with Hamil-
tonian Hp given by

Hp�
�i�;
J̃b�� =
def

− �
b�
p

J̃b�ib
� jb

− h�
i

�i. �120�

VIII. DERIVATION OF THE SELF-CONSISTENT
EQUATIONS

By using the above results, we are now able to derive
easily Eqs. �15�–�23�. Sometimes to indicate a bond b we
will use the symbol �i , j�, or ij for short.
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It is convenient to look formally at the coupling J0 also as
a random coupling with distribution

d�0�J0��/dJ0� = �J0� − J0� . �121�

Let us rewrite explicitly the Hamiltonian �2� as

Hc = − �
�i,j��
0

�J0 + cijJij��i� j − �
i�j,�i,j��
0

cijJij�i� j − h�
i

�i,

�122�

and let us introduce the random variables Jb�, gb�, and J̃b�,
where

Jb� =
def�J0 + cbJb, b � 
0,

Jb, b � 
0,
�

gb� =
def�1, b � 
0,

cb, b � 
0,
�

and

J̃b� =
def

Jb� · gb�.

Taking into account that the random variable J0+cijJij, up to
terms O�1 /N�, is distributed according to d�0�J0�, the inde-
pendent random variables Jb� and gb� have distributions d�b�
and pb�, respectively, given by

d�b��Jb�� = �d�0�Jb�� , b � 
0,

d��Jb�� , b � 
0,
�

and

pb��gb�� = �gb�,1, b � 
0,

p�gb�� , b � 
0,
�

where the measures d� and p are those of the model intro-
duced in Sec. II. As a consequence, Eq. �122� can be cast in
the form of Eq. �120� with the measure

d�̃b��J̃b�� = �d�0�Jb��gb�,1, b � 
0,

d��Jb��p�gb�� , b � 
0.
� �123�

Finally, since pb�gb��0 for any b�
full, we have also


p = 
full, �124�

and due to the fact that D�
full��N, in the thermodynamic
limit the mapping becomes exact.

According to Eqs. �105�–�107�, the related Ising model of
our small-world model has the following Hamiltonian with
two free couplings: J0

�I�, for 
0, and J�I�, for 
full:

HI = − J0
�I� �

�i,j��
0

�i� j − J�I� �
i�j,�i,j��
0

�i� j − h�
i

�i.

�125�

After solving this Ising �I� model the mapping allows us to
come back to the random model by performing simulta-
neously for any b�
full the reverse substitutions

tanh��Jb
�I�� →	 d�̃b��J̃b��tanhl��J̃b�� , �126�

where l=1,2 for �=F or SG solution, respectively. Since the
couplings J0

�I� and J�I� are arbitrary, we find it convenient to
renormalize J�I� as J�I� /N and at the end of the calculation to
put again J�I� instead of J�I� /N. Note that for the mapping
nothing changes if we do not make this substitution; the
choice to use J�I� /N instead of J�I� is merely due to a formal
convenience, since in this way the calculations are presented
in a more standard and physically understandable form. In
fact, according to Eqs. �123� and �126� what matters after
solving the related Ising model with J�I� /N instead of J�I� is
that, once for �=F and once for �=SG, we perform, simul-
taneously in the two couplings, the following reverse map-
ping transformations �l=1,2 for �=F or SG, respectively�:

tanh��J�I�/N� →	 d�̃�J̃ij�tanhl��J̃ij� , �127�

for �i , j��
0, and

tanh��J0
�I�� →	 d�̃�J̃ij�tanhl��J̃ij� , �128�

for �i , j��
0.
Explicitly, by applying Eqs. �123�, �9�, and �121�, the

transformations �127� and �128� become, respectively,

�J�I� → �J��� �129�

and

�J0
�I� → �J0

���, �130�

where we have made use of the definitions �16�–�19� intro-
duced in Sec. III.

Let us now solve the related Ising model. We have to
evaluate the partition function

ZI = �

�i�

exp�J0
�I� �

�i,j��
0

�i� j + �
J�I�

2N�
i�j

�i� j + �h�
i

�i� .

In the following we will suppose that J�I� �and then J���� is
positive. The derivation for J�I� �and then J�F�� negative dif-
fers from the other derivation just for a rotation of � /2 in the
complex m plane and leads to the same result one can obtain
by analytically continue the equations derived for J�I��0 to
the region J�I��0.

By using the Gaussian transformation we can rewrite ZI as

ZI = cN�

�i�

exp�J0
�I� �

�i,j��
0

�i� j�	
−�

�

dm

�exp−
�

2
J�I�m2N + ��J�I�m + h��

i

�i� , �131�

where cN is a normalization constant,

cN =��J�I�N

2�
,

and, in the exponent of Eq. �131�, we have again neglected
terms of order O�1�. For finite N we can exchange the inte-
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gral and the sum over the �’s. By using the definition of the
unperturbed model with Hamiltonian H0, Eq. �1�, whose free
energy density, for given �J0 and �h, is indicated with
f0��J0 ,�h�, we arrive at

ZI = cN	
−�

�

dme−NL�m�, �132�

where we have introduced the function

L�m� =
�

2
J�I�m2 + �f0��J0

�I�,�J�I�m + �h� . �133�

By using ��h�f0��J0 ,�h�=−m0��J0 ,�h� and
��hm0��J0 ,�h�= �̃0��J0 ,�h�, we get

L��m� = �J�I��m − m0��J0
�I�,�J�I�m + �h�� ,

L��m� = �J�I��1 − �J�I��̃0��J0
�I�,�J�I�m + �h�� .

If the integral in Eq. �132� converges for any N, by perform-
ing saddle point integration we see that the saddle point msp

is a solution of the equation

msp = m0��J0
�I�,�J�I�msp + �h� , �134�

so that, if the stability condition

1 − �J�I��̃0��J0
�I�,�J�I�msp + �h� � 0

is satisfied, in the thermodynamic limit we arrive at the fol-
lowing expression for the free energy density f I of the related
Ising model:

�f I = ��

2
J�I�m2 + �f0��J0

�I�,�J�I�m + �h��
m=msp

. �135�

Similarly, any correlation function CI of the related Ising
model is given in terms of the correlation function C0 of the
unperturbed model by the relation

CI = C0���J0
�I�,�J�I�m + �h��m=msp. �136�

Of course, the saddle point solution msp represents the
magnetization of the related Ising model, as can be checked
directly by deriving Eq. �135� with respect to �h and by
using Eq. �134�.

If the saddle point equation �134� has more stable solu-
tions, the “true” free energy and the “true” observable of the
related Ising model will be given by Eqs. �135� and �136�,
respectively, calculated at the saddle point solution which
minimizes Eq. �135� itself and that we will indicate with mI.

Let us call �c0
�I� the inverse critical temperature of the un-

perturbed model with coupling J0
�I� and zero external field,

possibly with �c0
�I�=� if no phase transition exists. As stressed

in Sec. III B, for the unperturbed model we use the expres-
sion “critical temperature” for any temperature where the
magnetization m0 at zero external field passes from 0 to a
nonzero value, continuously or not. Note that, as a conse-
quence, if J0

�I��0, we have formally �c0
�I�=�, independently

from the fact that some antiferromagnetic order may be not
zero.

Let us start to make the obvious observation that a neces-
sary condition for the related Ising model to have a phase

transition at h=0 and for a finite temperature is the existence
of some paramagnetic region PI where mI=0. We see from
the saddle point equation �134� that, for h=0, a necessary
condition for mI=0 to be a solution is that be ���c0

�I� for any
� in PI, from which we get also �c

�I���c0
�I�. In a few lines we

will see, however, that the inequality must be strict if �c0
�I� is

finite, which, in particular, excludes the case J0�0 �for
which the inequality to be proved is trivial�.

Let us suppose for the moment that be �c
�I���c0

�I�. For �
��c0

�I� and h=0, the saddle point equation �134� has always
the trivial solution mI=0, which, according to the stability
condition, is also a stable solution if

1 − �J�I��̃0��J0
�I�,0� � 0. �137�

The solution mI=0 starts to be unstable when

1 − �J�I��̃0��J0
�I�,0� = 0. �138�

Equation �138�, together with the constraint �c
�I���c0

�I�, gives
the critical temperature of the related Ising model �c

�I�. In the
region of temperatures where Eq. �137� is violated, Eq. �134�
gives two symmetrical stable solutions �mI�0. From Eq.
�138� we see also that the case �c

�I�=�c0
�I� is impossible unless

J�I�=0, since the susceptibility �̃0��J0
�I� ,0� must diverge at

�c0
�I�. We have therefore proved that �c

�I���c0
�I�. Note that for

J0
�I��0 and ���c0

�I�, Eq. �137� is violated only for ���c
�I�,

whereas for J0
�I��0, Eq. �137� in general may be violated

also in finite regions of the � axis.
The critical behavior of the related Ising model can be

studied by expanding Eq. �134� for small fields. However,
we find it more convenient to expand L�m� in series around
m=0 since in this way everything can be cast in the standard
formalism of the Landau theory of phase transitions. From
Eq. �133�, taking into account that the function �̃0��J0 ,�h�
is an even function of �h, we have the following general
expression valid for any m, � and small h:

L�m� = �f0��J0
�I�,0� − m0��J0

�I�,0��h + 	�m� , �139�

where we have introduced the Landau free energy density
	�m� given by

	�m� =
1

2
am2 +

1

4
bm4 +

1

6
cm6 − m�h̃ + ���f0���J0

�I�,�J�I�m� ,

�140�

where

a = �1 − �J�I��̃0��J0
�I�,0���J�I�, �141�

b = −
�2

���h�2 ��̃0��J0
�I�,�h���h=0

��J�I��4

3!
, �142�

c = −
�4

���h�4 ��̃0��J0
�I�,�h���h=0

��J�I��6

5!
, �143�

h̃ = m0��J0
�I�,0�J�I� + �̃0��J0

�I�,0���I�J�I��h . �144�

Finally, the last term ���f0� ��J0
�I� ,�J�I�m� is defined implic-

itly to render Eqs. �139� and �140� exact, but terms O�h2� and
O�m3h�; explicitly,
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���f0���J0
�I�,�J�I�m�

= − �
k=4

�
�2k−2

���h�2k−2 ��̃0��J0
�I�,�h���h=0

��J�I��2k

�2k�!
.

�145�

Finally, to come back to the original random model, we
have just to perform the reversed mapping transformations
�129� and �130� in Eqs. �133�–�145�. As a result, we get
immediately Eqs. �15�–�43�, but Eq. �21�.

IX. DERIVATION OF Eq. (21) AND Eqs. (64)–(70)

Concerning Eq. �21� for the full expression of the free
energy density, it can be obtained by using Eqs. �108�, �109�,
�115�, and �117�. Here �I is the high-temperature part of the
free energy density of the related Ising model we have just
solved:

− �f I = lim
N→�

1

N �
�i,j��
0

ln�cosh��J0
�I��� +

N − 1

2

� ln�cosh��J�I�/N�� + ln�2 cosh��h�� + �I,

�146�

where we have taken into account the fact that our related
Ising model has �
0� connections with coupling J0

�I� and
N�N−1� /2 connections with the coupling J�I� /N. By using
Eq. �135� calculated in mI and Eq. �146�, for large N we get

�I = −
�

2
J�I�mI

2 − �f0��J0
�I�,�J�I�mI + �h�

− lim
N→�

1

N �
�i,j��
0

ln�cosh��J0
�I��� − ln�2 cosh��h��

+ O 1

N
� . �147�

Therefore, on using Eq. �115�, for the nontrivial part ���� of
the random system, up to corrections O�1 /N�, we arrive at

���� = −
�

2
J����m����2 − ln�2 cosh��h��

− lim
N→�

1

N �
�i,j��
0

ln�cosh��J0
�����

− �f0��J0
���,�J���m��� + �h� . �148�

In terms of the function L����m�, Eq. �148� reads as

���� = − L����m���� − lim
N→�

1

N �
�i,j��
0

ln�cosh��J0
�����

− ln�2 cosh��h�� . �149�

By using Eqs. �108�, �149�, �115�, and �117�, with l=1 or 2
for �=F or �=SG, respectively, we get Eq. �21�.

For h=0, Eq. �149� can conveniently be rewritten also as

���� = �0��J0
���,0� + �L����0� − L����m����� , �150�

where

�0��J0,�h� = − �f0��J0
���,�h�

− lim
N→�

1

N �
�i,j��
0

ln�cosh��J0
�����

− ln�2 cosh��h�� �151�

is the high-temperature part of the free energy density of the
unperturbed model with coupling J0

��� and external field h.
There are some important properties for the function
�0��J0 ,0�: it is a monotonic increasing function of �J0; if
the lattice L0 has only loops of even length, �0��J0 ,0� is an
even function of �J0; furthermore, if d0�2 and the
coupling-range is finite, or if d0=� at least in a wide sense
�15�, in the thermodynamic limit we have �0��J0 ,0�=0; if
instead 2�d0��, �0��J0 ,0��0. We see here therefore
what anticipated in Sec. VII A: when J0�0, the symmetry
among the random couplings is broken and for d0 sufficiently
high this reflects in a nonzero ���� also in the P region.

Next we prove Eqs. �64�–�70�. To this aim we have to
calculate Eq. �150� at the leading solution m̄��� and to com-
pare ��F� and ��SG�. Note that the term in the square brackets
of Eq. �150� is non-negative since m̄��� is the absolute mini-
mum of L���. We recall that for critical temperature we mean
here any temperature lying on the boundary P-F or P-SG, so
that �m̄�����=0 for any � in the P region.

A. J0Ð0

If J0�0, for both solutions with labels F and SG, we have
only one second-order phase transition so that m̄�F�=0 and
m̄�SG�=0, respectively, are the stable and leading solutions
even on the boundary with the P region.

Let us suppose �c
�F���c

�SG�. Let be �0�· ,0��0. From Eq.
�150� and by using J0

�F��J0
�SG�, we see that

���F���c
�F� = �0��c

�F�J0
�F�,0� � ���SG���c

�F� = �0��c
�F�J0

�SG�,0� .

�152�

Finally, by using this result and the general rule given by
Eqs. �115� and �117�, we see �and with a stronger reason, due
to the factor 1 /2 appearing in these equations for the SG
solution� that the stable phase transition is the P-F one: �c
=�c

�F�. Similarly, by using Eq. �150� for �c
�F�����c

�SG�, we
see that even for any � in the interval ��c

�F� ,�c
�SG�� the stable

solution is that with label F. This last observation makes also
clear that if �0�· ,0�=0 we reach the same conclusion: F is
the stable phase in all the region �c

�F�����c
�SG� and in par-

ticular this implies also that the stable phase transition is the
P-F one: �c=�c

�F�.
Let us suppose �c

�F���c
�SG�. If �0�· ,0��0, we arrive at

���F���c
�SG� = �0��c

�SG�J0
�F�,0� � ���SG���c

�SG� = �0��c
�SG�J0

�SG�,0� .

�153�

Finally, by using this result and the general rule given by
Eqs. �115� and �117�, we see �and with a stronger reason�
that the stable phase on the boundary is that predicted by the
F solution which has zero magnetization at �c

�SG�. This does
not imply that �c=�c

�F�, but only that �c
�SG���c��c

�F�. If
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instead �0�· ,0�=0, by using Eq. �150� for �c
�SG�����c

�F�,
we see that for any � in the interval ��c

�SG� ,�c
�F�� the stable

solution is SG and then, in particular, the stable boundary is
P-SG: �c=�c

�SG�.

B. J0�0

If J0�0, for the solution with label F, we may have both
first and second-order phase transitions. In the first case we
cannot in general assume that 0 is the stable and leading
solution on the boundary with the P region: �m�F���c

�F��0 in
general. As a consequence, for a first-order transition the
term in square brackets of Eq. �150� may be nonzero even on
the critical surface. Furthermore, as J0�0, for the solution F
we have at least two critical temperatures that we order as
�c1

�F���c2
�F�. However, despite these complications, if we as-

sume that L0 has only loops of even length, �0�· ,0� turns out
to be an even function and, due to the inequality �J0

�F��
�J0

�SG�, almost nothing changes in the arguments we have
used in the previous case J0�0.

Let us consider first the surfaces �c2
�F� and �c

�SG�. Indepen-
dently of the kind of phase transition, first or second order,
we arrive again at Eqs. �152� and �153�, for �c2

�F���c
�SG� and

�c2
�F���c

�SG�, respectively, with the same prescription for the
cases �0�· ,0��0, or �0�· ,0�=0.

Let us now consider the surfaces �c1
�F� and �c

�SG�. If �c1
�F�

��c
�SG� and �0�· ,0��0, for any � in the interval ��c1

�F� ,�c
�SG��

we have

���F��� = �0��J0
�F�,0� � ���SG��� = �0��J0

�SG�,0� , �154�

so that the interval ��c1
�F� ,�c

�SG�� is a stable P region corre-
sponding to the solution with label F. Similarly, we arrive at
the same conclusion if �0�· ,0�=0. However, the interval of
temperatures where the P region ��c1

�F� ,�c
�SG�� is stable can be

larger when d0�2. In fact �exactly as we have seen for J0
�0�, in this case the P-SG stable boundary may stay at lower
temperatures. Finally, let us consider the case �c1

�F���c
�SG�. If

�0�· ,0�=0, by using Eq. �150� we see that for any �
��c

�SG� we have that the stable solution corresponds to the
SG one, so that there is no stable boundary with the P region.
If instead �0�· ,0��0, due to the fact that ���SG��� and ���F���
grow in a different way with �, we are not able to make an
exact comparison, and it is possible that the P-F boundary
becomes stable starting from some �c1 with �c1��c1

�F�. In
general, as in the case J0�0, we could have one �or even
more� sectors where the P region corresponding to the solu-
tion with label F is stable.

X. CONCLUSIONS

In this paper we have presented a general method to ana-
lytically face random Ising models defined over small-world
networks. The key point of our method is the fact that, at
least in the P region, any such a model can be exactly
mapped to a suitable fully connected model, whose resolv-
ability is in general nontrivial for d0�1, but still as feasible
as a nonrandom model. As a main result, we then derive a
general self-consistent equation, Eq. �15�, which allows us to
describe effectively the model once the magnetization of the

unperturbed model in the presence of a uniform external
field, m0��J0 ,�h�, is known.

The physical interpretation of this general result is
straightforward. From Eqs. �15� we see that, concerning the
magnetization m�F�, the effect of adding long-range Poisson-
distributed bonds implies that the system, now perturbed,
feels, besides the coupling J0, also an effective external field
J�F� shrunk by m�F� itself. Concerning m�SG�, the effect is that
the system now feels a modified effective coupling J0

�SG� and
an effective external field J�SG� shrunk by m�SG� itself.

We are therefore in the presence of an effective field
theory, which, as opposed to a simpler mean-field theory,
describes m�F� and m�SG� in terms of not only an effective
external field, but also through the nontrivial function
m0��J0 ,�h�, which, in turn, takes into account the correla-
tions due to the nonzero short-range coupling J0 or J0

�SG� felt
by the unperturbed system. The combination of these two
effects gives rise to the typical behavior of models defined
over small-world networks: the presence of a nonzero effec-
tive external field causes the existence of a phase transition
also at low d0 dimension. However, the precise determina-
tion of both the critical surface and the correlation functions
is obtained in a nontrivial way via the unperturbed magneti-
zation m0��J0 ,�h�.

We have used the method introduced to analyze the criti-
cal behavior of generic models with J0�0 and J0�0 and
showed that they give rise to two strictly different phase
transition scenarios. In the first case, we have a mean-field
second-order phase transition with a finite correlation length,
whereas, in the second case, we obtain multiple first- and
second-order phase transitions. Furthermore, we have shown
that the combination of the F and SG solutions results in a
total of four possible kinds of phase diagrams according to
the cases �i� �J0�0; d0�2, or d0=��, �ii� �J0�0; 2�d0
���, �iii� �J0�0; d0�2, or d0=��, and �iv� �J0�0; 2�d0
���. One remarkable difference between systems with d0
�2, or d0=� and those with 2�d0��, is that in the latter
case we have, in principle, also first-order P-SG phase tran-
sitions and, moreover, reentrance phenomena are in principle
possible even for J0�0.

In Secs. IV–VI we have applied the method to solve ana-
lytically those models for which the unperturbed magnetiza-
tion m0��J0 ,�h� is known analytically—i.e., the small-world
models in dimension d0=0 ,1, �—corresponding to an en-
semble of noninteracting units �spins, dimers, etc.�, the one-
dimensional chain, and the spherical model, respectively. In
particular, we have studied in detail the small-world model
defined over the one-dimensional chain with positive and
negative short-range couplings, showing explicitly how, in
the second case, multicritical points with first- and second-
order phase transitions arise. Finally, the small-world spheri-
cal model—an exact solvable model �in our approach� with
continuous spin variables—has provided us with an interest-
ing case study to explore what happens as d0 changes con-
tinuously from 0 to �. As expected on general grounds, un-
like the nonrandom version of the model, the small-world
model presents always a finite-temperature phase transition,
even in the limit d0→0+. This latter result, besides being
consistent with what we have found in the d0=0 dimensional
discrete models, has a simple physical explanation in our
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approach. In fact, it consists on mapping the small-world
model �a random model� to a corresponding nonrandom
model �no long-range bonds�, but immersed in an effective
uniform external field which is active as soon as the added
random connectivity c is not zero �see Eqs. �15�–�17��.

Many interesting variants of the above models can be
considered and are still analytically solvable by our approach
�see also the generalizations considered in Sec. III E�. How-
ever, our approach can be also applied numerically to study
more complex small-world models for which the correspond-
ing unperturbed model is not analytically available �29�. In
fact, the numerical complexity in solving such small-world
models is comparable to that required in solving a nonran-
dom model immersed in a uniform external field.

Models defined on complex small-world networks3 are an
interesting subject of future work.
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APPENDIX: GENERALIZATION TO NONHOMOGENEOUS
EXTERNAL FIELD

In this appendix we prove Eq. �33� calculating the
O�1 /N� correction responsible for the divergence of the sus-
ceptibility of the random system at Tc. To this aim we first
need to generalize our method to an arbitrary external field.
Let us consider again a fully connected model having, as
done in Sec. VIII, long-range couplings J �for brevity we
will here omit the label I� and short-range couplings J0, but
now immersed in an arbitrary �nonhomogeneous� external
field 
hn�, where n=1, . . . ,N. After using the Gaussian trans-
formation we have the partition function

Z = cN	
−�

�

dme−NL�m�, �A1�

where we have introduced the function

L�m� =
�

2
Jm2 + �f0��J0,
�Jm + �hn�� , �A2�

f0��J0 , 
�hn�� being the free energy density of the unper-
turbed model in the presence of an arbitrary external field

�hn�. By using

��hi
�f0��J0,
�hn�� = − m0i��J0,
�hn�� �A3�

and

�̃0;i,j��J0,
�hn�� =
def

��i� j�0 − ��i�0�� j�0 = ��hj
m0i��J0,
�hn�� ,

�A4�

we get

L��m� = �J�m −
1

N
�

i

m0i��J0,
�Jm + �hn��� , �A5�

L��m� = �J�1 − �J
1

N
� �

i,j
�̃0ij��J0,
�Jm + �hn��� .

�A6�

By performing the saddle point integration we see that the
saddle point msp is a solution of the equation

msp =
1

N
�

i

m0i��J0,
�Jmsp + �hn�� . �A7�

Hence, by using

�̃0��J0,
�Jm + �hn�� =
1

N
�
i,j

�̃0ij��J0,
�Jm + �hn�� ,

�A8�

we see that if the stability condition

1 − �J�̃0��J0,
�Jmsp + �hn�� � 0 �A9�

is satisfied, in the thermodynamic limit we arrive at the fol-
lowing expression for the free energy density f of the related
Ising model immersed in an arbitrary external field:

�f = ��

2
Jm2 + �f0��J0,
�Jm + �hn���

m=msp
. �A10�

On the other hand, by derivation with respect to �hi and by
using Eq. �A7�, it is immediate to verify that

mi =
def

��i� = m0i��J0,
�Jmsp + �hn�� , �A11�

and then also �from now on for brevity on we omit the sym-
bol “sp”�

m =
1

N
�

i

mi. �A12�

We want now to calculate the correlation functions. From
Eq. �A11�, by deriving with respect to �hj we have

�̃ij =
def �mi

���hj�
= �

l

�̃0;i,l��J0,
�Jm + �hn��

� �J
�m

���hj�
+ l,j� , �A13�

which, by summing over the index i and using �A12�, gives

�m

���hj�
=

1

N
�

i

�̃0;i,j��J0,
�Jm + �hn��

1 − �J�̃0��J0,
�Jm + �hn��
. �A14�

We can now insert Eq. �A14� into the rhs of Eq. �A13� to get3For a recent review on complex networks, see Ref. �27�.
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�̃ij = �̃0;i,j��J0,
�Jm + �hn��

+
�J

N

�l�̃0;l,j�k�̃0;i,k

1 − �J�̃0��J0,
�Jm + �hn��
, �A15�

where for brevity we have omitted the argument in �̃0;l,j and
�̃0;i,k, which is the same �̃0 appearing in the denominator. If
we now come back to choice a uniform external field hn=h,
n=1, . . . ,N, we can use translational invariance and for the
related Ising model �fully connected� we obtain the correla-
tion function

�̃ij =
�J

N

��̃0��J0,�Jm + �h��2

1 − �J�̃0��J0,�Jm + �h�
+ �̃0;i,j��J0,�Jm + �h� .

�A16�

Finally, by performing the mapping substitutions �129� and
�130� we arrive at Eq. �33�.

Similarly, any correlation function C of the related Ising
model will be given by a similar formula with the leading
term C0 plus a correction O�1 /N� becoming important only
near Tc.
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